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Abstract

Safety is paramount for mobile robotic platforms such

as self-driving cars and unmanned aerial vehicles. This

work is devoted to a task that is indispensable for safety

yet was largely overlooked in the past – detecting obsta-

cles that are of very thin structures, such as wires, cables

and tree branches. This is a challenging problem, as thin

objects can be problematic for active sensors such as li-

dar and sonar and even for stereo cameras. In this work,

we propose to use video sequences for thin obstacle detec-

tion. We represent obstacles with edges in the video frames,

and reconstruct them in 3D using efficient edge-based vi-

sual odometry techniques. We provide both a monocular

camera solution and a stereo camera solution. The for-

mer incorporates Inertial Measurement Unit (IMU) data to

solve scale ambiguity, while the latter enjoys a novel, purely

vision-based solution. Experiments demonstrated that the

proposed methods are fast and able to detect thin obstacles

robustly and accurately under various conditions.

1. Introduction

Obstacle detection (OD) is a vital component for au-

tonomous robot maneuver. While the task has been exten-

sively studied in robotics and vision community [31, 28, 22,

42, 36] and several consumer-level products have become

available [2, 3, 4], detecting obstacles in less constrained en-

vironments with various obstacle types remains a challeng-

ing problem. Besides, an OD algorithm should be fast and

efficient, such that they can be deployed onto low-power on-

board devices or embedded systems, allowing for real-time

collision avoidance.

In this paper, we focus ourselves on a scenario that hith-

erto has received little investigation in the obstacle detection

literature, i.e., detecting thin obstacles (e.g. wires, cables or

tree branches) in the scene. This task is of practical im-

portance for Unmanned Aerial Vehicles (UAV) such as a

∗Work performed while interning at Microsoft Research.

drone: crashing into cables / tree branches has become an

important reason for UAV accidents. Moreover, thin obsta-

cle detection can also enhance the safety for ground mobile

robots such a self-driving car or an indoor robot. For exam-

ple, it is desired that an indoor moving robot stops in front

of a laptop power cord instead of dragging the laptop off the

desk. However, detecting these types of obstacles is partic-

ularly challenging and presents difficulties to today’s OD

systems. Active sensors, such as sonar, radar or lidar, pro-

vide high accuracy distance measurements but usually suf-

fer from low resolution or high cost. IR structure light (e.g.

Kinect) is vulnerable in outdoor scenes. Passive sensors,

such as a stereo camera, can provide images with high spa-

tial resolution, but thin obstacles still can be easily missed

during stereo matching due to their extremely small image

coverage and the background clutter.

To tackle these difficulties, we propose to perform thin

obstacle detection using video sequences from a monocular

camera or a stereo camera pair. More specifically, we rep-

resent obstacles with edges in the video frames, i.e., image

pixels exhibiting large gradients, and focus on recovering

their 3D locations. The advantages of adopting an edge-

based representation for our application are twofold. First,

while thin obstacles like wires or branches are difficult to

extract using region or patch based approaches, they can be

more easily detected by a proper edge detector. Second, as

critical structural information of the scene is also preserved

in the edge map, a compact representation is obtained and

efficient computation can be carried out, which is critical

for embedded systems.

With the edge representation, there are three goals we

seek to achieve for our method:

• Obstacle Identification: The edges of the obstacle

should be extracted, and be complete enough that the

obstacle will not be missed.

• Depth Recovery: The 3D coordinates of the edges need

to be recovered, and be accurate enough that obstacle

avoidance actions can be safely performed.

• Efficient Solution: The algorithm should be efficient
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enough to run on-board in real-time with limited com-

putational resources.

These three goals are important for successful thin obstacle

detection. While the second and third goals are common

for OD systems, we give some remarks for the first one. In

our case, the thin lines or cables as obstacles may cross the

whole image, and missing a portion of the line may lead

to collision. However, for a classical region-based OD sys-

tem targeting at regularly shaped objects, missing the same

portion of an object will probably be acceptable, as long as

some margin around the object is reserved. Therefore, the

completeness problem is more critical in our case.

Inspired by the works of [25, 27, 16], we propose to use

an image edge detector to detect edges in conjunction with

edge-based Visual Odometry (VO) techniques to achieve

the above goals. Put simply, we detect edge points from im-

ages, reconstructing them to 3D using video sequences and

efficient VO techniques, and finally identifying obstacles in

the front. We present both a monocular camera solution

with IMU data incorporation and a stereo camera solution.

As our edge-based method identifies thin obstacles by

their recovered 3D positions, there’s no need to distinguish

between physically thin objects and large objects with color

edges: classifying edges belonging to a large object which

are close to the robot as obstacles is correct. In this sense,

though designed to detect thin objects, our method is also

capable of detecting generic obstacles with texture edges.

Of course, large textureless or transparent objects cannot

be handled by our method due to the inherent limitation of

vision-based techniques. Nonetheless, our goal is to pro-

vide a complementary solution for small and thin objects,

and large objects can be easily detected by other approaches

such as active sensors. Indeed, we have developed a proto-

type system combing our method and some low-cost sonar

sensors, which is extremely robust and reliable in practice.

In summary, this paper has the following contributions:

• We present fast and accurate solutions to the challeng-

ing problem of thin obstacle detection, which has been

largely ignored in the OD literature.

• We employed edge-based VO techniques [25, 27, 16]

and extend them in various ways such as incorporat-

ing IMU information. In particular, we proposed the

first edge-based VO algorithm for stereo cameras, to

the best of our knowledge.

• We developed a mobile robotic system combining

our thin obstacle detection algorithm and sonar sen-

sors, enabling detecting obstacles of general types and

avoiding collision reliably.

Our full method runs at 17 fps on an onboard PC of a Turtle-

bot with a quad-core Celeron 1.5GHz CPU, processing se-

quences of 640×360 stereo image pairs.

2. Related Work

Our system is related to several lines of work in robotics

and computer vision community, which we briefly review

in this section.

Obstacle Detection: Vision-based obstacle detection

methods can be generally grouped into monocular or stereo

based ones. Monocular methods typically estimate the

depth of the obstacles by exploiting supervised learning

techniques or monocular depth cues. In [33], an obstacle

avoidance system for ground vehicle is proposed. Images

are divided into vertical stripes and the depth of each stripe

is predicted by a regression model using texture features.

The more recent work of [31] exploits a deep encoder-

decoder network for depth prediction with image and op-

tical flow as input, however a GPU is needed to run the al-

gorithm. Monocular depth cues have also been extensively

explored. Motion parallax is utilized in optical flow based

methods [10, 14] where the robot moves in the direction of

minor flow amplitude. [36] detects obstacles by monitoring

their relative size change across frames. SURF features [8]

are extracted from images and template matching is used to

detect size change of the features. Saliency detection mod-

els have also been used for obstacle detection [28].

Stereo camera setting has the advantage of providing ab-

solute distance estimates to the obstacles. Many of the OD

systems for autonomous driving assume the existence of

a ground plane [45], and detect obstacles raising from the

ground by tessellation of the 2D / 3D space and clustering

the disparities from stereo matching [29, 40, 11]. A sur-

vey can be found in [9]. Although performing well for au-

tonomous driving, such methods are usually too computa-

tionally expensive for embedded systems. For stereo-based

OD systems on UAVs, fast computation is often achieved

by making some compromise to a complete, global stereo

matching method. For example, [7] achieves high frame

rate on a mobile-CPU by matching only fixed disparities

and fusing these measurements in a push-broom fashion.

Others have resorted to FPGA implementations [24, 39].

While the above methods yield robust results for

medium-sized and regularly shaped obstacles, little atten-

tion has been paid to the detection of thin obstacles such

as cables or branches. Recently, Ramos et al. [43, 45]

have raised a relevant problem of detecting small unex-

pected road hazards. The difficulty presented by small ob-

ject size and unknown object types is addressed by com-

bining deep semantic labeling and Stixel-based geometric

modeling [45]. However, their method relies on the as-

sumption that the ground plane exists while we do not, and

their region based semantic labeling and geometric model-

ing strategy is still not suitable for thin obstacle detection as

in our case.
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Semi-Dense Visual Odometry (VO) / SLAM: VO /

SLAM algorithms have been widely used for robot local-

ization and position control [6, 21]. However, classical VO

/ SLAM algorithms that track only sparse features are not

particularly suitable for application of identifying obstacles.

Fortunately, VO / SLAM algorithms producing semi-dense

depth maps which capture the structural information of the

scene have become more popular recently, and our system

is closely related to these semi-dense methods.

Engel et al. [20] propose a monocular VO algorithm that

tracks camera motion with direct image alignment. The in-

verse depth of each pixel with non-negligible gradient is

represented as a Gaussian probability distribution, and up-

dated via a probabilistic Bayesian model. The algorithm is

later extended to a key-frame based full SLAM system [18],

and further extended to work with stereo cameras [19].

Another line of work exploits edges [25, 27, 16] as fea-

tures for monocular VO or SLAM. Compared to the direct

methods above which minimizes photometric error for cam-

era tracking [17], in these works edges are explicitly ex-

tracted and matched across frames, and geometric error is

minimized during camera tracking.

Both lines of work above produce semi-dense depth

maps that could be applied to obstacle detection. We choose

the representation with explicit edge extraction in this work

for two reasons. First, the explicit edge extraction process

gives us more control on detecting thin objects like wires.

Second, when similar structural information in the image is

captured, an edge map that has gone through edge thinning

and cleaning contains fewer edge pixels to process than di-

rect methods, therefore more suitable for embedded systems

with limited computing budgets.

Semi-Dense Stereo Reconstruction: Recently, Rama-

lingam et al. [44] and Pillai et al. [41] have proposed meth-

ods that perform semi-dense stereo matching at very high

frame rates. Beginning with sparse keypoint matching,

[44] matches new edge points that satisfy cross-ratio con-

straints on a local planar region. [41] adopts a coarse to fine

strategy, iteratively performing triangulation on the current

sparse depth map and re-sampling depth on edge points.

The major issue of these methods is that they implicitly

rely on the geometric assumption that the scene is locally

planar [31]. Unfortunately, this assumption usually does

not hold near the thin obstacles we seek to detect.

3. Vision-Based Thin Obstacle Detection

In this work, we are interested in detecting thin obstacles

with edge representation. As mentioned in Section 1, there

are three goals we seek to achieve for our method: i) reli-

able obstacle identification, ii) accurate depth recovery, and

iii) high efficiency. This section presents our vision-based

technique to achieve these goals.

Stated succinctly, we represent obstacles with edges in

the consecutive images captured by a monocular or stereo

camera, and perform obstacle detection using three main

steps: edge extraction, edge 3D reconstruction, and obstacle

labeling from edge depth maps.

Notations: An edge pixel is represented as a tuple e =
{p,g,d,σ}, where p is the image edge coordinate and g is

the edge gradient. d denotes the inverse depth of an edge,

and σ represents the variance of the inverse depth.

We denote the rotation between the current frame and

the new frame as w ∈ so(3), and translation as v ∈R
3. R =

exp(w)∈ SO(3) denotes the rotation matrix. In particular, a

3D point pc in the current frame coordinate is transformed

to the new frame coordinate as pn = Rpc + v. We also use

a a six dimensional vector ξ = {w,v} ∈ se(3) as a compact

representation of the Euclidean transformation. π denotes

the projective function that projects a 3D point in the camera

coordinate to image coordinate.

3.1. Monocular Thin Obstacle Detection

As a starting point, we present in this section our basic

obstacle detection algorithm for the monocular cases, where

IMU data can be incorporated to resolve scale ambiguity.

Later on we show how the method can be extended to the

stereo cases without the need for IMU data.

3.1.1 Edge Extraction

Extracting edges in the images, though seemingly an easy

task, is important in our case. It requires a deliberate al-

gorithm design which takes into account various factors in-

cluding recall / completeness, efficiency, accuracy, etc.

We propose to use a DoG detector [32] for edge detection

in combination with a consequent Canny-style hypothesis

linking step [13]. The DoG detector is chosen because of its

good repetitivity. The hypothesis linking step is introduced

to improve the recall of weak edges which are common on

thin obstacles. It also allows a more aggressive threshold

setting for edge detection: our experiments show that it en-

ables our method to extract 10%−20% fewer edges for one

image without affecting the thin obstacle detection results,

thus improving the efficiency.

Note that we use the regular grid coordinates for the de-

tected edge points, despite subpixel localization can be es-

timated by parametric fitting (e.g., [30] fits 3D Trivariate

quadratics in the DoG pyramid, and [25] fits 2D planes on

the image of second derivatives). We empirically found

such a subpixel localization step unnecessary in our case:

it is time-consuming and has little impact on the depth esti-

mation results.

3.1.2 Edge 3D Reconstruction

After extracting image edges, the next step is to reconstruct

these edges to 3D, i.e., estimating their depth.
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Our reconstruction method is built upon the recent edge-

based VO algorithm proposed by Tarrio et al. [25]. As a

light-weight VO system, their algorithm stores only a lo-

cal inverse depth map of the current frame, with the inverse

depth of each edge pixel represented as a Gaussian distribu-

tion similar to [20]. When a new frame arrives, the camera

motion is tracked by fitting the edge map from the current

frame to the edge map of the new frame. Specifically, the

following geometric error is minimized (see [25, 46]):

Eo(w,v) = ρ((W (pi,di,ξ )− p̄i) · ḡi) (1)

where W is the warping function that projects an edge pixel

pi in the current frame into the next frame, taking the im-

age coordinate pi, inverse depth di and the transformation

ξ ∈ se(3) between the two frames. p̄i is the corresponding

edge in the next frame, found by searching along the gradi-

ent direction of the reprojected pixel pi, and ḡi the gradient

direction of p̄i. Mapping is done by epipolar search from

the new edge map to the current one. The inverse depth

map of the current frame is propagated to the new frame

using camera motion, and updated with new observations

obtained during the epipolar search. The data is merged in

an EKF (Extended Kalman Filter) manner. For more details

of the algorithm, we refer the readers to [25].

VO algorithms usually focus on accurately recovering

the camera trajectory, whereas for our application, we are

concerned more about the completeness of thin obstacle

edge detection, and the accuracy of the local inverse depth

map. To this end, we extend the original algorithm of [25]

by i) modeling the uncertainty in edge matching and ii) in-

corporating IMU data, described respectively as follows.

Modeling Uncertainty in Edge Matching: A major dif-

ficulty for edge-based VO is that edge features are hard to

match, both due to the aperture problem and a lack of ef-

fective matching descriptors. In the system, this data asso-

ciation problem is approached by projecting the new frame

edges to the last frame, and then searching for the closest

edge along the epipolar line that satisfies criterions like gra-

dient direction/magnitude consistency and motion consis-

tency [16, 25].

However, the matching criteria for edges are weak. False

matchings are common when the initial depth estimation is

inaccurate, and multiple similar edges may present in the

search range. We address this problem within the EKF fu-

sion framework. To be more concrete, when searching for

a match, we collect all the edges that satisfy the criteri-

ons in the epipolar search range, and compute their posi-

tion variance along the epipolar line. For non-ambiguous

matching, the variance will be small, whereas when multi-

ple candidates are present, the variance will be large, and

subsequently will have a smaller impact on data fusion.

Incorporating IMU Data In this work, we use inertial

data information primarily for resolving the scale ambiguity

for monocular cameras. Some existing works such as [38]

consider the VO system as a blackbox and incorporates the

scale as a variable in the robot state. Instead, we use the

readings from inertial sensors both for initialization and as

prior for our vision-based camera tracking procedure.

More specifically, for many mobile robotic platforms,

metric 6D robot poses can be estimated from inertial sensors

(e.g. using off-the-self libraries such as [34] that integrate

sensor readings using EKF) and converted to the camera

coordinate system. We denote the relative motion between

two consecutive frames obtained in this way as w0 ∈ so(3)
and v0 ∈ R

3. Note that w0 and v0 are subjected to noise in

practice. We modify the objective function to be

E(w,v) = Eo(w,v)+λw||w−w0||
2 +λv||v−v0||

2 (2)

where Eo(w,v) denotes the original geometric error in

Eq. 1, and the two quadratic terms are priors to regularize

the final solution closer to (w0, v0). We minimize Eq. 2

using the Levenberg-Marquardt algorithm [35] initialized

with (w0, v0), instead of the zero and constant velocity mod-

els used in [25] for initialization.

3.1.3 Obstacle Labeling on Edge Depth Maps

With the metric depth recovered, we are now ready for thin

obstacle identification.

Ideally, back-reprojected edge pixels falling into a pre-

defined 3D volume S in front of the camera should be la-

beled as obstacle pixels. However, as in other OD meth-

ods [9, 40], the raw depth maps are usually noisy and post-

processing is necessary. For robust obstacle labeling, we

only consider edge pixels with stable (inverse) depth esti-

mations that have been observed and matched across mul-

tiple frames. For each edge ei, besides its image position

pi and inverse depth di, we also store its variance σi and

the number of frames ti it has been successfully matched as

criteria for obstacle labeling.

Observing that noisy edges are usually scattered in the

depth map, we optionally perform a filtering step on small

connected components that have been labeled. For effi-

ciency reason, the filtering step is not performed if the num-

ber of initially labeled obstacle edges are below a thresh-

old cntl (indicating unlikely existence of any obstacles) or

above a threshold cnth (indicating highly likely existence of

obstacles). The algorithm is summarized in Algorithm 1.

The FILTERSMALLCONNECTEDCOMPONENTS proce-

dure removes small connected components labeled as ob-

stacles. Two obstacle edge pixels with L1-norm distance

less than nt (set as 4 in our experiments) is defined to be

neighboring. The procedure is efficiently implemented by

searching for connected components on a resized image Ir

by a factor of nt . Each pixel of Ir stores the number of obsta-

cle pixels of the corresponding nt ×nt block in the original

image, and the connected component size of obstacle pixels
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Algorithm 1 Obstacle Edge Pixels Labeling

Input: List of edges ei = {pi,di,σi, ti},
Thresholds σth, tth, cntl, cnth, Obstacle Space Volume S

Output: List of obstacle edgel labelings O

cnt← 0

for each edge pixel ei do

if σi < σth and tth < ti and π−1(pi,di) ∈ S then

oi = true ⊲ The ith edgel labeled as obstacle

cnt← cnt+1

if cnt ∈ [cntl,cnth] then

O←FILTERSMALLCONNECTEDCOMPONENTS(O)

return O

Figure 1: Workflow of Our Stereo Obstacle Detection

in the original image is computed by summing up the pixel

values of connected components in Ir.

3.2. Stereo Thin Obstacle Detection

In this section, we extend the monocular OD method to

work with a stereo camera, which combines spatial and tem-

poral stereo. It offers a number of benefits compared to

a monocular scheme. Apart from resolving the scale am-

biguity, matching and reconstruction are now possible for

degenerate camera movements, and the necessity of a boot-

strapping step is erased. Moreover, the different epipolar

line directions for spatial and temporal matching renders

them highly complementary: while the matching is ambigu-

ous in one direction, it may be more clear in another.

Our stereo OD method also has three steps as the monoc-

ular method, with the edge extraction and depth map based

obstacle labeling steps exactly the same (See Section 3.1.1

and 3.1.3 respectively). The edge 3D reconstruction step is

based on a novel, edge-based stereo VO algorithm.

In the stereo setting, we still use a Gaussian distribution

on the inverse depth (i.e. d,σ ) for each edge pixel. The re-

lationship between stereo disparity u and inverse depth d is

u = B f d, where B is the baseline length and f is the camera

focal length. Similarly, variance in disparity is computed as

σu = B f σ . We assume a calibrated stereo camera here thus

the input images are rectified. We use the left view as the

reference view, and the stereo matching result to refine the

inverse depth on the reference view. The workflow is shown

in Fig. 1, with some detailed explanations below.

Inverse Depth Propagation: Given the current frame It
and the new frame It+1, camera motion ξ is tracked with

IMU as in the monocular case. The inverse depth map Dt

(i.e. inverse depth distributions) is propagated to the next

frame via the found correspondences during the tracking

stage, yielding an initial inverse depth map Dinit
t+1 on the ref-

erence view of frame t +1.

Edge-based Stereo Matching: In this step, edge-based

stereo matching is performed on the new frame pair. Dinit
t+1

is used to constrain the stereo search range. In particular,

for an edge pixel with inverse depth distribution d,σ in

Dinit
t+1, we search for corresponding edges only in the range

[u− 2σu,u+ 2σu] in the right view, which is very efficient

when the estimation converges. Best matching is found in a

similar way as in the monocular case where we perform gra-

dient direction / magnitude and motion consistency check

(Section 3.1). Uninitialized edges have large values of σ ,

therefore a full search along the epipolar line will be per-

formed.

EKF Fusion: The disparities from stereo matching

Dstereo are treated as observations, and fused with Dinit
t+1

again using EKF, yielding the refined inverse depth distri-

bution D
re f ined
t+1 . The temporal matching result is also fused

in the same way as before.

A Remark: Engel et al. [19] have used a similar scheme

to extend their semi-dense LSD-SLAM to the stereo set-

ting. Our approach is different from theirs in that as an in-

direct method, we rely on edge representation for tracking

and mapping, whereas theirs is a direct method 1. To the

best of our knowledge, our algorithm is the first edge-based

stereo VO algorithm.

4. An Obstacle Detection System

Having presented our core technique – vision-based thin

obstacle detection, in this section we present a system which

combines our vision-based OD and ultrasound sonar sen-

sors, arriving at a fully functioning, extremely robust OD

system. The sonar sensors are used to detect large texture-

less or transparent objects, e.g., a large white wall or glass.

The overall system is shown in Fig. 2a. Our proto-

type system is implemented on a Turtlebot with a Kobuki

base. For vision data acquisition, we use a ZED stereo

camera [5]. For inertial data, we use the ROS package

robot pose ekf to integrate wheel odometry and gyro-

scope data and providing robot poses. A hand-eye calibra-

tion procedure [47] is carried out to obtain the transform

between the camera frame and the robot base.

1See [17] for a brief review on direct and indirect methods for visual

odometry / SLAM
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(a) (b)

Figure 2: Robot Platform and Ground Truth Labeling.

(a) Our mobile robot platform. Note that the Kinect is not

used; we use the ZED camera below (in silver). (b) The top

image shows the labeled contour of the thin obstacle, and

a series of user-specified corresponding points. The bottom

image shows the corresponding depth map.

We installed a sonar array on top of the Turtlebot. Nine

sonar sensors are assembled in a circular pattern, clockwise

in top view, dividing 360 degrees by constant intervals of

40 degrees. The sonar array returns measurements at 9Hz

at 5m range, or 14Hz at 3m range.

Our OD system makes an alert sound and stops when

either the vision system detects an obstacle, or the sonar

module detects one. The vision module sends out a detec-

tion signal if the edges labeled as obstacle is above a thresh-

old, and the sonar module issues a detection if for any of

the sonars, the average measurements of the past 5 readings

are below a distance threshold. Unlike traditional obstacle

avoidance systems that deal with regularly shaped obsta-

cles raising from the ground, the thin obstacles we seek to

detect can cross the whole image, and a proper strategy to

bypass the obstacle is not obvious. Therefore, we simply

force stopping when an obstacle is detected.

5. Experiments

This section presents the results of our proposed ap-

proach and comparisons to baseline methods. The platform

described in Section 4 is used as the testbed. Since the sonar

part is well established, our primary focus is to evaluate our

vision-based thin obstacle detection algorithms.

5.1. Dataset

To our knowledge, there is no existing dataset focus-

ing on evaluating thin obstacle detection. Therefore, we

recorded a novel dataset for our purpose, where the Turtle-

bot was driven in various indoor environments (corridor,

meeting room, office, etc.) with different lighting conditions

and background clutter. Video sequences were captured by

the ZED camera mounted on the robot when the robot was
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Figure 3: Quantitative Results. The left figure shows the

precision-recall curve of our detection algorithm, and the

right figure shows the completeness measure.

approaching thin objects. Synchronized IMU readings and

wheel odometry were also recorded. In the experiments,

we use a total of 10 videos captured in six different indoor

environments, as shown in Fig. 4.

To evaluate the accuracy and completeness of our meth-

ods, the ground truth of the thin obstacles is vital. More con-

cretely, we need the extents (edges) as well as the depths of

the obstacles to evaluate completeness and accuracy. How-

ever, obtaining such data is non-trivial. The resolution of

many common sensors turns out to be too low for ground

truth capture (e.g. the pre-mounted Kinect sensor on Turtle-

bot). We address this problem by interactive labeling. The

extents of the thin obstacles are sketched out by exploit-

ing the interactive segmentation method of [37] (i.e. Intelli-

gent Scissors). And for depth, the annotator is instructed to

roughly specify a series of corresponding points on the thin

obstacle, then the exact correspondence is searched consid-

ering the epipolar constraint. Finally, the depth in-between

is computed by interpolation. A labeled stereo image is

shown in Fig. 2b for illustration.

We labeled five frames for each of the 10 videos, result-

ing in 50 images used for the evaluation. The frames are

selected based on proper robot-thin obstacle distances and

with some time intervals within each video.

5.2. Methods

We evaluate two of our methods: a monocular version

with IMU data, and a stereo version. As baseline meth-

ods, we choose the Semi-Global Block Matching (SGBM)

method [23] from OpenCV and the LSD-SLAM work by

Engel et al. [18]. The SGBM method itself has been used

as ground truth for some semi-dense reconstruction meth-

ods [44, 7]. However, here we investigate how it performs

with respect to thin objects. LSD-SLAM is a sophisticated

state-of-the-art SLAM system exploiting semi-dense repre-

sentation, which also has the potential to be exploited for

thin obstacle detection. As only the monocular version is

publicly available, in the experiments we use stereo match-

ing results as initialization to the first several frames, pro-
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viding initial scene and scale information (we found this

greatly improved the quality).

5.3. Quantitative Evaluation

Quantitatively, we are interested in measuring the perfor-

mance of our methods in terms of accuracy and complete-

ness, both of which are very important indexes to ensure

safety.

Accuracy: To measure the accuracy, we take into con-

sideration both correct prediction for the foreground (i.e.

ground truth obstacle) and for the background (which in

our case doesn’t have ground truth depth). In brief, OD

is treated as a classification problem. Let d denote the dis-

tance of the current pixel to the closest ground truth (GT)

edge, and s be the smallest disparity difference to GT edges,

the following quantities are recorded:

True Positive (TP) d < τ0 and s < τ1

True Negative (TN) d > τ0 and s > τ1

False Positive (FP) d > τ0 and s < τ1

False Negative (FN) d < τ0 and s > τ1

The Precision-Recall (PR) curve in Fig. 3 is generated by

fixing τ0 as 2 pixels and varying τ1.

It can be seen from Fig. 3 that our methods, both monoc-

ular and binocular, have much larger Area Under PR Curve

(AUCPR) compared to SGBM and LSD-SLAM methods,

indicating significantly better performances. Moreover,

as expected, our stereo method slightly outperforms our

monocular method.

Completeness: We calculate completeness as the per-

centage of ground truth obstacle edges covered by correct

predictions. A ground truth obstacle edge is covered, if a

reconstructed edge pixel with disparity difference less than

τ is within 2 pixel’s distance. Fig. 3 shows that our stereo

method outperforms other methods by wide margins. Our

monocular method is only inferior to SGBM when the al-

lowed disparity error is small, which is reasonable because

of the higher accuracy achieved by dense stereo matching.

The LSD-SLAM has lower completeness not until the al-

lowed disparity error reaches 10.

5.4. Qualitative Evaluation

We present some qualitative results in Fig. 4. The readers

are suggested to zoom in to see the difference.

For SGBM (2nd column), the margin on the left is

caused by the OpenCV function. LSD-SLAM is a key-

frame based method, non-key frames are only used for

tracking and refinement of the depth on the key frames. To

obtain the depth map for any frame, we project the point

cloud of the latest key frame to the current frame.

Apart from this, there are several remarks we want to

make about the results. First, note how by incorporating

Table 1: Speed Comparison (in fps). Measured on a

1.5GHZ quad-core Celeron onboard CPU.

SGBM LSD-SLAM
Ours- Ours-

Monocular Stereo

640×480 4.97 14.26 37.56 17.59

1280×720 1.12 8.73 12.65 5.26

stereo matching in our method, the noisy edges on the de-

tected obstacles becomes more clear (Row 1), and the error

introduced by the regularization averaging process on the

prominent vertical edge is reduced (Row 2). Also, as an

indirect method, the explicit edge extraction stage helps to

better recover the thin line in front of the cluttered back-

ground, whereas the LSD-SLAM method mixes the thin

line edge pixels and background pixels (Row 1). For Row

4, note the serious ”fattening” phenomenon on the earphone

wire, which frequently occurs when SGBM is applied to

thin objects. The last row shows a case in which combining

stereo matching information may not help. The highly non-

frontal parallel ground plane with repetitive texture causes

the classical SGBM method to fail (2nd column), and sim-

ilar thing happens for our stereo version. It can be ob-

served that the stereo version yields slightly worse results

in the ground part (some edges are estimated too far) than

our monocular version. However, our method didn’t fail as

badly as SGBM in this case, due to the integration of tem-

poral information.

5.5. Running Speed

Finally we present our evaluation of the efficiency. Note

that running speed is also important in practice, as higher

speed ensures higher safety especially when the robot is in

fast motion. Moreover, efficient methods are more favor-

able for embedded and low-power systems.

Table 1 shows the running speed of different methods

on two image sizes. The timing is measured on a 1.5GHZ

quad-core Celeron CPU on the Turtlebot. It can be seen that

our monocular method is 1.5 ∼ 2.5 times faster that LSD-

SLAM, and our stereo method is 4 ∼ 5 times faster than

SGBM. For real-time performance or nearly so, we can run

on 640×480 images on the Turtlebot system at over 17fps.

6. Thin Obstacle Detection on a Drone

Besides ground robots, we also demonstrate the effec-

tiveness of our system on a drone. We ported our system to

a DJI Matrice 100 quadcopter with the Guidance system [1]

installed. The Guidance system itself is a sensing system

equipped with stereo cameras and sonar sensors, capable of

providing stereo image pairs of size 320×240 at 20Hz via

a USB connection. Disparity maps can be obtained at the

same frame rate via hardware-based computation. In a pre-

liminary experiment, we compared the disparities computed

7



Input (left view) SGBM LSD-SLAM Ours-Monocular Ours-Stereo

Figure 4: Qualitative Results and Comparison to Baseline Methods. Best viewed on screen with zoom-in.

by our system with the ones provided by the Guidance sys-

tem. From Fig. 5, it can be clearly seen that our method

provides superior thin obstacle detection than the DJI Guid-

ance system.

7. Conclusions and Future Work

In this paper, we studied the thin-structure obstacle de-

tection problem, and presented vision-based methods to

tackle this problem. Our method represents obstacles with

image edges, and reconstructs them using visual odometry

techniques. A monocular camera solution as well as a stereo

camera solution are provided, both of which are fast and ac-

curate as shown in the experiments. The system is further

extended to a drone and preliminary experiments show en-

couraging results.

Currently, our vision-based methods are restricted to

static scenes. Extending the system to handle dynamic

scenes would be important. How our edge-based method

can be combined with existing dense stereo matching / vi-

sual odometry methods for better performance is also an

interesting direction to investigate.

(a) (b)

(c) (d)

Figure 5: Thin Obstacle Detection on a Drone. (a)The scene

for experiment. (b) Camera captured image (left view). (c) Dispar-

ity map by the DJI Guidance system (noisy regions with area less

than 50 pixels are removed). (d) Disparity map by our method.

The detected thin obstacles are displayed with a larger line width.
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