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Abstract

A wide range of research has used face data to estimate

a person’s engagement, in applications from advertising to

student learning. An interesting and important question

not addressed in prior work is if face-based models of en-

gagement are generalizable and context-free, or do engage-

ment models depend on context and task. This research

shows that context-sensitive face-based engagement mod-

els are more accurate, at least in the space of web-based

tools for trauma recovery. Estimating engagement is im-

portant as various psychological studies indicate that en-

gagement is a key component to measure the effectiveness

of treatment and can be predictive of behavioral outcomes

in many applications. In this paper, we analyze user en-

gagement in a trauma-recovery regime during two separate

modules/tasks: relaxation and triggers. The dataset com-

prises of 8M+ frames from multiple videos collected from

110 subjects, with engagement data coming from 800+ sub-

ject self-reports. We build an engagement prediction model

as sequence learning from facial Action Units (AUs) us-

ing Long Short Term Memory (LSTMs). Our experiments

demonstrate that engagement prediction is contextual and

depends significantly on the allocated task. Models trained

to predict engagement on one task are only weak predic-

tors for another and are much less accurate than context-

specific models. Further, we show the interplay of subject

mood and engagement using a very short version of Profile

of Mood States (POMS) to extend our LSTM model.

1. Introduction

Engagement is a critical component of student learn-

ing, web-based interventions, commercial applications for

marketing, etc. and face-based analysis is the most suc-

cessful non-invasive approach for engagement estimation

[36, 35, 53, 41, 59]. Techniques that involve face-based es-

timation of the six basic emotions are considered to apply

to any situation, i.e. nearly universal. It is natural to ask

if we can build a universal engagement predictor as well.

This paper examines the role of “context” in engagement,

in particular, engagement in trauma treatment. As shown in

Fig 1, depending on the task, the same facial expression can

be interpreted as engaged or disengaged.

Before getting deeper into the issues of context and en-

gagement we layout our application space: mental trauma

treatment. Each year, over 3 million people in the United

States are affected by post-traumatic stress, a chronic men-

tal disorder. Moreover, mental trauma following disasters,

military service, accidents, domestic violence and other

traumatic events is often associated with adversarial symp-

toms like avoidance of treatment, mood disorders, and cog-

nitive impairments. Lack of treatment for serious mental

health illnesses annually cost $193.2 billion in lost earn-

ings [28]. Providing proactive, scalable and cost-effective

web-based treatments to traumatized people is, therefore, a

problem with significant societal impact [4].

Amongst the currently available e-health interventions,

evidence to support the clinical effectiveness of most in-

terventions exists, however, patient engagement with these

interventions is still a major concern [36, 35, 53]. Such in-

terventions measure user engagement from infrequent ques-

tionnaire’s. Self-reported user engagement has been found,

in many psychology studies, to be highly correlated with

outcomes [12, 18, 16]. Research suggests that personal-

ization and automated adaption in self-help websites can

positively aid people with mental health issues and advance

mental health computing [7]. In this work, we show that

computer vision and deep-learning-based techniques can be

used to predict user engagement from webcam feeds with

content. Once we have tools for reliable engagement mea-

surement during an intervention, the website and task can

adapt to enhance or maintain engagement and recovery. We

further prove that context-specific modeling is more accu-

rate than a generic model of user engagement.

Emotions are well studied with multiple prod-

ucts/systems to estimate emotional response from face

data in a context-free manner. While named emotions are

important, the basic emotion categories fail to capture the

complete richness of facial behavior. Furthermore, most

studies have elicited emotional responses via a stimulus;

prototypical expressions of basic emotions occur relatively
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Figure 1. Consider the images on the left. Which subjects are engaged and which are disengaged? Would you change your answer if you

knew one had a task of doing a relaxation exercise? What if it was reading web content, watching a video or taking a test? We contend that

face-based engagement assessment is context sensitive. Traditional engagement prediction pipelines based on facial feature extraction

and machine learning techniques learn a generic engagement model, and would consider the face in lower left disengaged. In trauma

recovery, individuals are often advised to do particular exercises, e.g. self-regulation exercises where the task involves the subject to “close

your eyes, relax and breathe”. The image on the lower left is a highly engaged subject. Hence, there is a need to re-visit existing facial-

expression-based engagement prediction techniques and augment them with the context of the task at hand. As shown in bottom right, this

work develops context-sensitive engagement prediction methods based on facial expressions and temporal deep learning.

infrequently in natural interaction and even less so while

people operate on a web-based intervention. Facial analysis

gives strong clues about the internal mental state, e.g., a

slight lowering of the brows or tightening of the mouth

may indicate annoyance. De la Torre and Cohn [11] did

seminal work in showing that face and voice are effective

predictors of important psychological states, in particular

for analysis of depression. Thus, to create engagement

prediction model for trauma recovery, we use subtle facial

movements or action-units rather than emotional responses

as an intermediate representation.

The ground truth for the development of engagement

prediction systems generally comes in one of two forms:

sparse labels obtained from self-reports [15] or observa-

tional estimations from external human observers [59].

Generally, self-reports are collected from questionnaire’s

in which subjects report their level of engagement, atten-

tion, distraction, excitement, or boredom; in observational

estimates, human observers use facial and behavioral cues

to rate the subjects apparent engagement. This work uses

self-reported engagement levels, which does not presume

that face data necessarily reflects engagement. We eval-

uate our machine learning model on a dataset, described

in detail in Sec 3, which is collected from trauma sub-

jects while they work on a recovery website at http:

//ease.vast.uccs.edu/. The dataset comprises of

hundreds of videos collected from 110 subjects with mul-

tiple video-synchronized self-reports of levels of engage-

ment.

The contributions of this paper are as follows:

1. The first exploration of engagement in two contextu-

ally different tasks within the recovery regime: “Re-

laxation” and “Triggers”. The associated dataset of

AUs and engagement data will be publicly released.

2. Developing automated engagement prediction meth-

ods based on automatically computed AUs using

LSTMs. We train/test this on both subtasks within

trauma recovery.

3. We build context-specific, cross-context and mixed

prediction models and show the importance of context

in predicting engagement from facial expressions.

4. Exploring the relationship of a subject’s mood as

an initialization parameter for engagement estimation.

User mood state is retrieved from a very short form

of the Profile of Mood States (POMS) questionnaire’s

asked before the beginning of task [49]. Our exper-

iments demonstrate that contextual engagement mod-

els show improvement in engagement prediction per-

formance by combining AUs with POMS data.

While this paper addresses engagement in the context of

treatment of mental trauma, we conjecture that our obser-

vations of contextual engagement hold for not just trauma

recovery but also for other domains. For example, in stu-

dent learning, a student looking up could be engaged if the

current task is listening to lecture or watching something, or

could be disengaged if the task is to be reading or taking a

test.

2. Related work

The work presented in this paper is related to research

from multiple communities such as context-models in vi-
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sion, web-based intervention methods, trauma recovery, fa-

cial action units and expression analysis, automatic engage-

ment recognition for student learning, deep-network-based

sequence learning methods and others.

Context in vision research: Context-sensitive models

have a wide range of uses in computer vision. Context, in

general, can be grouped into feature level context, seman-

tic relationship level context, and prior/priming information

level context [58]. The feature and semantic levels address

context within the scene/image, i.e., “context” implies spa-

tial or visual context, and often a goal is to estimate that

local/global from the data and to use that to help in pri-

mary vision task, e.g. [44, 63, 68, 55, 2, 33, 42]. There are

also non-visual semantic-relationship level contexts, such

as camera/photo metadata, geographical and temporal in-

formation, event labels, and social relationships pulled from

social media tags [33].

Contextual priors are different as they are inputs to the

system, e.g., using label/attribute priors [20, 46], 3D geom-

etry priors [62], and scene/event priors [61]. In almost all

of these works, using context improved vision-based esti-

mation, and we hypothesize context will improve for en-

gagement evaluation as well. The role of context for user

engagement has been explored in affective computing liter-

ature [34] for designing intelligent user interfaces for office

scenarios. In human-robot interaction [45, 9, 8] have shown

additional knowledge of user context can better predict an

affective state of the user and demonstrating that engage-

ment prediction is contextual and task dependent.

In this work “context” is not a feature or semantic data

in the image; contextual engagement is about the expected

behaviors the system should be observing in engaged sub-

jects. Because the system determines what is displayed and

expects a particular user activity, the “context” is known a

priori, i.e. at a high-level, we have a contextual prior with

probability 0 or 1. Thus, our goal is not to estimate con-

text for engagement or incorporate prior probabilities into a

model, but rather to learn context-specific models and use

them to predict user engagement. Inferring “context” for

engagement may still be possible for the video, but it is be-

yond the scope of this paper and likely unnecessary in web-

based settings.

Web-based trauma recovery: Researchers such as

Bunge et al. [6] and Schueller et al. [48] have explored Be-

havioral Intervention Technologies (BITs) to augment tra-

ditional methods of delivering psychological interventions,

of face-to-face (F2F) in one-to-one psychotherapy sessions,

in order to expand delivery models and/or increase the out-

comes of therapy. Such work has led to the development

of various web-based intervention platforms with an aim

to provide cost-effective, large-scale services and quality

healthcare. Notable among these are works of Macea et

al. [35], Mehta et al. [40] and Strecher et al. [54]. In the

domain of web-based interventions for trauma recovery, the

works of Benight et al. [5] and Shoji et al. [50] explored

the role of engagement using voice analysis. The psychol-

ogy study by Yeager et al. [64] explored in detail the role of

engagement in Web-based trauma recovery. Influenced by

these works, we postulate the need for the development of

computer vision and machine learning-based methods for

automated engagement prediction in the domain of web-

based trauma recovery.

Student learning: The majority of research to predict

automated engagement has been limited to the field of ed-

ucation where learning algorithms are built to determine

student engagement from behavioral cues like facial ex-

pressions, gaze, head-pose, etc. [43, 41, 59, 22]. These

works primarily rely on extracting facial features and de-

veloping machine-learning-based approaches to identify en-

gagement activity of students in classroom performing var-

ious tasks,e.g., reading/writing, etc. The subjects are of-

ten assumed to be co-operative with control over their emo-

tions and monitored by an external actor e.g. the teacher.

One of the notable differences in these works and data col-

lected from trauma subjects is that subject co-operativeness

varies significantly, depending on the severity of mental ill-

ness and the task (self-regulation exercises) that they are as-

signed, leading to multiple challenges in applying methods

from student learning directly [47].

Emotion recognition: The popularity of interactive so-

cial networking, and the exhaustive use of webcams has

facilitated the understanding of human affect or emotions

by analyzing responses to internet videos [56, 39, 19] and

video-based learning[37, 67]. However, these methods are

primarily geared towards developing methods to identify

spontaneous emotions (e.g.“happy’, “sad” etc.). Due to

their relevance to digital advertising and the availability of

advanced learning techniques that are capable of exploring

temporal dependencies, facial expression analysis to recog-

nize emotional states is emerging as a new area of explo-

ration [38]. Our research is also a step towards understand-

ing the interpretation and use of “engagement” for real-

world applications.

Facial features: Extracting facial features for expres-

sion analysis, facial action unit coding, face recognition,

and face tracking has a rich history with some notable works

[14, 29, 13]. Automatic detection of facial action units has

proved to be an important building block for multiple non-

verbal and emotion analysis systems [31]. For this work,

we rely on leading facial landmark and action unit detection

work, OpenFace, proposed by Baltrusaitis et al. [1]. Open-

Face is the first open source tool capable of facial landmark

detection, head pose estimation, facial action unit recogni-

tion, and eye-gaze estimation. Some other representations,

such as raw pixels, Gabor filters or LBP features could also

have been considered for this work [52]. However, the work
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of [52, 59] in affective computing suggests AUs are a better

choice for an intermediate representation of facial data.

Deep Learning for Affect Detection: In recent years,

significant advances in deep learning have lead to the devel-

opment of various affect detection methods based on deep

learning. More specifically, researchers have applied deep

learning techniques to problem such as continuous emotion

detection [52], facial expression analysis [57], facial action

unit detection [10] and others. Deep learning methods have

used video data, sensor data or multi-modal data [60]. As

noted earlier, engagement is a rational response unlike the

spontaneity of emotions and, hence, we model context and

temporal variations in the input feature representation with

AUs. Such problems are often modeled as sequence learn-

ing problems.

Sequence learning has a rich history in signal process-

ing, machine learning and video classification with a num-

ber of notable techniques such as Hidden Markov Mod-

els (HMM), Dynamic Time Warping (DTW) and Condi-

tional Random Field (CRF)-based approaches being com-

mon place [30]. Recurrent neural networks initially gained

prominence in computer vision and deep learning areas

since they take into account both the observation at the

current time step and the representation in the previous

one. More recently, in order to address the gradient van-

ishing problem of vanilla-RNNs when dealing with longer

sequences, LSTMs [27] and Gated Recurrent Units (GRU)

were proposed [26].

Most existing face-based engagement prediction meth-

ods make little use of the temporal information of the video

sequence. Unlike more ephemeral emotion, which can be

elicited from short stimuli, engagement while doing web-

based treatment/education is a long-term process, requiring

long-term integration of information. Our proposed pre-

diction model includes context as well as a temporal se-

quence of facial Action Units (AUs). Using AUs for en-

gagement prediction is a relatively nascent area of research.

In this paper, we advocate the use of deep-learning tech-

niques adapted for sequential data [65, 10, 24]. In particu-

lar we explore using Long Short-Term Memory (LSTM), a

specialized form of recurrent neural networks, that are well

suited for sequence learning problems and have emerged as

a leading method for number of similar tasks such as video

classification [65], video-affect recognition [60], as well

as non-visual tasks such as speech, handwriting and mu-

sic analysis [26]. Relative insensitivity to gap length gives

an advantage to LSTMs over alternatives such as RNNs,

HMMs and other sequence learning methods.

3. EASE dataset

In this section, we present details of the data used for our

analysis of engagement prediction and the collection pro-

cedure. The dataset we use is called EASE (Engagement

Webcam 
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subject interac8ons 

Wearable Bio‐sensors 

Microphone 

(Voice Data) 

Engagement Self‐Report Scale 
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Figure 2. Experimental setup for data collection: Subjects inter-

acted with the website while performing self-regulation exercises.

Face data was captured using an external webcam; voice data

was captured using a microphone. Additional data such as skin-

conductance, respiration, and ECG signals were also recorded us-

ing wearable sensors. All the interactions were recorded using

an external camera. Finally, while the subjects were viewing the

trauma-recovery website, the system asks them about their en-

gagement level, with self-report on a scale of 1-5 (top right corner)

where 1 is “Very Disengaged” and 5 “Very Engaged”

Arousal Self-Efficacy) 1.

Data collection procedure: The web-intervention used

to collect the data was based on the findings of Social Cog-

nitive Theory [3] and consisted of subjects undergoing six

tasks (modules) namely: social-support, self-talk, relax-

ation, unhelpful coping, professional help and triggers. The

broader study was divided into three sessions/visits in the

form of a Randomized Control Trial (RCT). Each partici-

pant was assigned 2 out of the six modules in each visit. The

first two visits were restricted to ”Relaxation” and ”Trig-

gers” modules only, and in the third visit, the participants

were free to choose from the remaining four modules. Each

visit lasted for approx. 30 minutes - 1.5 hours. In the first

visit, subjects were randomly allocated Relaxation or Trig-

gers as the first module and a reverse order during the sec-

ond visit and second module. At the beginning of each visit,

the subjects listened to a neutral introductory video. Dur-

ing these sessions, a Logitech webcam with a resolution of

640x480 at 30 fps was placed on top of the monitor record-

ing the participants face video along with audio. Physio-

logical data was also recorded for the entire session. The

participants could freely interact with the trauma recovery

website, and their interactions were recorded in the form

of Picture in Picture video using a Camtasia recorder (with

screen and webcam recording simultaneously). During the

module, participants provided self-reports about their en-

gagement level. The recorded videos are being annotated

by psychologists currently for behavioral arousal and en-

gagement.

Although the EASE data is significantly rich in terms of

its multi-modal nature, for this work we focus our attention

1We have IRB approval to release only unidentifiable data including

AUs extracted from facial videos. We cannot display identifiable data,

include video frames from the dataset.
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primarily on facial video data captured by webcam placed

on monitor, engagement self-reports and POMS responses

provided by the participants.

Participants and demographics: Subjects were re-

cruited from three health service providers: the TESSA

domestic violence center, Peak Vista Community Health

Partners, that has 21 centers for seniors, the homeless, a

women’s health center and six family health centers, student

online research system (SONA), and the Veterans Health

and Trauma Clinic, a clinic that provides services to the vet-

erans, active duty service members, and their families who

are struggling with combat trauma. Subject inclusion crite-

ria were determined by the work of Benight et al. [5].

Dataset details: Fig 3 shows the details about the data.

As mentioned earlier, each participant came in for three ses-

sions/visits. The first two (controlled) visits are used for

experiments in this paper. In each visit, the subjects un-

dergo relaxation and trigger tasks. The relaxation module

presents the user with video demonstrations of various ex-

ercises like breathing, muscle relaxation, etc. The triggers

module educates the user about trauma symptoms and pre-

vention. Since few subjects dropped out during the study,

for the first session, we have data from 95 subjects and from

the second session we use data from 80 subjects. Some of

the collected data was unusable due to either system issues,

data corruption or lack of engagement self-reports. The par-

ticipants provided self-reports about their engagement level

with the task on a scale of 1 to 5, where 1 is “Very Dis-

engaged” and 5 “Very Engaged” (see Fig 2). Fig 3 shows

the total number of video frames available for each session

and each module. Each video of the subject consisted of

three self-reports (at the start, in middle and at the end of

the segment).

Profile of Mood States (POMS): The Profiles of Mood

States-Short Form (POMS-SF) [49, 17]) are used to mea-

sure reactive changes in the mood of a person. It is a list

of 37 questions related to depression, vigor, tension, anger,

fatigue, and confusion. Participants rate items for how they

feel right now on a 5-point scale, ranging from 1 (not at all)

to 5 (extremely). In the EASE dataset, POMS data was col-

lected from a reduced load using only the first 24 questions.

This self-report is given to the subjects at baseline and im-

mediately before and after each module.

Contextual engagement data: The total number of en-

gagement self-reports available for each session and task

are shown in Fig 3. Due to a large number of video frames

and sparse labels, we consider 30-second segments before

each self-report for learning. For RX, we have 372 engage-

ment self-reports leading to 372 segments of 900 samples

(30 seconds@ 30 fps), totaling to 334800 frames of data
2. With 20 AUs per frame and 900 frames per engagement

2Some segments shown in data in Fig 3 are not used due to synchro-

nization issues.

Task
Number+

of+Videos

Number+of+

Frames

Number+

of+Self+

Reports

Task
Number+

of+Videos

Number+of+

Frames

Number+

of+Self7

Reports

Trigger+Task+

followed+by+

Relaxation+Task

Trigger 52 806855 166 Relaxation 52 1579927 122

Relaxation+Task+

followed+by+

Trigger+Task

Relaxation 43 1391803 91 Trigger 43 590953 98

Task
Number+

of+Videos

Number+of+

Frames

Number+

of+Self+

Reports

Task
Number+

of+Videos

Number+of+

Frames

Number+

of+Self+

Reports

Trigger+Task+

followed+by+

Relaxation+Task

Trigger 33 454510 94 Relaxation 33 1553409 63

Relaxation+Task+

followed+by+

Trigger+Task

Relaxation 47 1139996 105 Trigger 47 544298 149

SESSION++1

MODULE+1 MODULE+2

SESSION+2

MODULE+1 MODULE+2

Figure 3. This figure displays information about participants and

the distribution of modules taken by them in each session consid-

ered for engagement analysis in this work. Participants consisted

of total 110 subjects with 88 Female, 17 Male, 5 did not specify in

the age group of 18-79 years, with 80% being under the age of 46.

sample, we have an 18000-dimensional feature vector. We

use 334 segments for training and 38 segments for testing.

Similarly, for TR we have 485 segments of 900 samples (30

seconds@30fps) totaling to 436500 frames of data. We use

437 segments for training and 48 segments for testing. The

training/testing labels are a discrete set of engagement lev-

els 1 (very disengaged) through 5 (very engaged). By doing

this, each engagement level is treated as a separate and mu-

tually exclusive output.

4. LSTM for engagement prediction

Due to the advantages of Long Short-Term Memory

(LSTM)s to preserve information over time and the ability

to handle longer sequences, for this work we use LSTMs

to model long-term dependencies of AUs for engagement

prediction. We model the problem of engagement predic-

tion as a sequence learning problem where input consists of

sequence xi of AUs computed from facial video data of a

particular length. Each sequence is associated with a label

yi which relates to the engagement self-reports provided by

trauma subjects. Our implementation is based on Tensor-

Flow which is turn is based on [23, 66], and we follow their

notation.

We let subscripts denote timesteps and superscripts de-

note layers. All our states are n-dimensional equal to the

number of AUs tracked, currently 20. Let hl
t ∈ R

n be a hid-

den state in layer l at time-step t. Let Tn,m : Rn → R
m be

an affine transform from n to m dimensions, i.e. Tn,mx =
Wx + b for some W and b). Let ⊙ be element-wise mul-

tiplication and let h0

t be an input data vector at time-step

t. We use the activations hL
t to predict yt, since L is the

number of layers in our deep LSTM.

The LSTM has complicated dynamics that allow it to

easily “memorize” information for an extended number of

time-steps using memory cells clt ∈ R
n. Although many
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LSTM architectures that differ in their connectivity struc-

ture and activation functions, all LSTM architectures have

explicit memory cells for storing information for long peri-

ods of time, with weights for how to updated the memory

cell, retrieve it, or keep it for the next time step. The LSTM

architecture used in our experiments is given by the follow-

ing equations [25], as implemented in TensorFlow basic cell

LSTM:








i

f

o

g









=









sigm
sigm
sigm
tanh









T2n,4n

(

hl−1

t

hl
t−1

)

clt = f ⊙ clt−1
+ i⊙ g

hl
t = o⊙ tanh(clt)

where sigm is the sigmoid function, sigm and tanh are

applied element-wise, i, f, o, c, h are the input gate, forget

gate, output gate, cell activation vector and hidden vectors,

respectively. In this work, we assume the length of the se-

quence is known apriori and hence use LSTMs with static

RNN cells. In particular, as described in section 3 above, we

use 900 temporal samples of 20 AUs, so n = 20, and we

used Tensorflow’s basicLSTMCell that comprises of 900

units in sequence t = 1..900. We optimize the LSTMs to

predict the discrete set of engagement levels by computing

the cross-entropy of the result after applying softmax func-

tion. Each engagement level is treated as a separate and

mutually exclusive output.

5. Experiments

We now describe the AU computation procedure to ex-

tract intermediate feature representation, followed by the

methodology for sequence learning using LSTMs. Finally,

we discuss in detail the results obtained for engagement pre-

diction across a variety of tasks and its task specificity.

Facial action units extraction: As noted in earlier sec-

tion 3, the collected dataset consisted of a large number of

facial video and engagement self-reports. While there are

number of software available for extracting facial landmark

points and facial action units (e.g. [14, 29]) we use the re-

cent work on OpenFace [1] proposed by Baltrušaitis et al.

It is an open-source tool which has shown state-of-the-art

performance on multiple tasks such as head-pose, eye-gaze,

and AU detection. For our work, we primarily focus on

facial action units. The AUs extracted consisted of both

intensity-based and presence-based AUs. Presence based

AUs had a value of 1 if AU is visible in the face and 0 oth-

erwise, intensity based AUs ranged from 0 through 5 (not

present to present with maximum intensity). The list of AUs

used in this paper are as follows: Inner Brow Raiser, Outer

Brow Raiser, Brow Lowerer (intensity), Upper Lid Raiser,

Cheek Raiser, Nose Wrinkler, Upper Lip Raiser, Lip Corner

RX TR

Chance 32.8% 38.3%

SVC 31.4 ± 7% 35.2 ± 9%

LSTM 39.1 ± 8.8% 50.7 ± 11%

Table 1. The table above shows the enhanced engagement predic-

tion accuracy by using LSTMs over a Support Vector Classifier,

highlighting the importance of a deep-learning model for this task.

Puller (intensity), Dimpler, Lip Corner Depressor (inten-

sity), Chin Raiser, Lip Stretched, Lips Part, Jaw Drop, Brow

Lowerer (presence), Lip Corner Puller (presence), Lip Cor-

ner Depressor (presence), Lip Tightner, Lip Suck, Blink.

SVC model: As a baseline for engagement prediction,

we Support Vector Classifier (SVC). Linear SVCs were

trained using the 18000-dimensional feature vector (20 AUs

for each of 900-time samples) for the hundreds of training

segments for RX and TR. For training/testing, we used 10-

fold cross-validation, and Table 1 reports average engage-

ment prediction accuracy on 10-folds of test data. The ta-

ble also shows ”chance,” but since the five engagement lev-

els do not have uniform probability, we consider random

chance the algorithm that guesses based on per context per

engagement level priors. Hence chance is different for RX

and TR. The SVC performance is not significantly differ-

ent from chance, probably because the number of training

samples (334/437) is much smaller than the dimensionality

(18000).

LSTM model and tuning: We train the LSTM using

the same data, by minimizing the cross-entropy loss of the

predicted and actual class after applying softmax function.

During the training process, we use Adam optimizer with

a learning rate of 0.1. Since Adam optimizer uses larger

effective step size, and our data has relatively sparse labels,

we found that Adam optimizer performs better compared to

gradient descent optimizer. We fix training at 15 epochs,

which is after validation error stabilized. For the first test,

we use the same 10-fold modeling. As seen in Table 1 the

improvement in accuracy of LSTM over SVM supports the

need of LSTMs for engagement prediction. Henceforth, for

all further experiments and analysis in this paper, we use

LSTM models only.

Contextual engagement prediction: We use AU data

from subjects performing “Trigger” task to create Trigger

(TR) model, and similarly, AU data from subjects perform-

ing “Relaxation” task is used to create Relaxation (RX)

model. Once the model is trained, to study the effect of

context, we test these models using context-specific (test-

ing with the same task) and cross-context technique (testing

with the opposite task).

We train context specific LSTMs i.e. we train AU data

from subjects performing “Trigger” task to create Trigger

(TR) model and similarly AU data from subjects perform-

ing “Relaxation” task is used to create Relaxation (RX)

model. Table 2 shows the contextual engagement predic-
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RX - Test TR - Test

RX - Train 39.1 ± 8.8 % 38.1 ± 4.4%

TR - Train 36.7 ± 3.3% 50.7 ± 11%

(RX + TR) - Train 39.5 ± 6.1% 49.1 ± 7.6%

Table 2. The first two rows above show contextual and cross-

contextual engagement prediction results on EASE data obtained

using LSTM in terms of prediction accuracy. If engagement was

not contextual, the models to perform equally well in both cross-

contexts, e.g. when the model is trained on Triggers (TR) and

tested with Relaxation (RX) data. In the case of TR, context-

specific and cross-context models show significant performance

differences with the best accuracy being when training and testing

are TR. Thus we can reject the hypothesis that context does not

matter; it is formally rejected using a two-tailed paired t-test at the

.01 level. Furthermore, combined-model (train RX+TR) had the

highest amount of data for training and was still outperformed by

the contextual models, showing again the importance of contextual

modeling.

tion results. We note interesting trends in prediction results.

Training on RX and testing on RX yields 39.1% predic-

tion accuracy, and training on RX and testing on TR yields

similar accuracy at 38.1%; these are not statistically differ-

ent (p=.44). When trained on TR data and tested on TR

data, results obtained 50.7% prediction accuracy, however,

when the same model was tested on RX data, the accuracy

dropped to 36.7%. This difference is statically significant

(using two-sided heterostatic test p=.006) allowing us to re-

ject the hypothesis that context does not matter. We also find

that the two different contexts RX and TR have slightly

significant differences (p=.02) in performance. This sug-

gests that engagement models benefit when the context is

known and modeled and that tasks differ in difficulty.

Since our experiments demonstrate that engagement pre-

diction models are contextual, we take this a step further

and ask the question: “Does using current mood as con-

text improve engagement prediction for a given task?”. In

order to answer this question, we use POMS data (see sec

3) that was collected before and after the session from each

subject. Our POMS questionnaire has 24 questions, which

are clustered into five negative sentiments (tension: 5 ques-

tions, depression: 6 questions, anger: 5 questions, fatigue:

2 questions, confusion: 2 questions) and one posiive senti-

ments vigor: 4 questions. The final POMStmd (total mood

disturbance) level is computed as difference of sum of neg-

ative n(x) and positive p(x) sentiments:

POMStmd =
1

21.1

∑

x∈neg. sentiments

n(x)−
∑

x∈pos. sentiment

p(x)

here we scaled the POMStmd scores by the observed value,

so that the range is between [0,1].

The POMStmd score is then used to condition each

AU input to obtain POMS-aware engagement prediction

results. We precondition the basic engagement multi-

RX TR

LSTM Baseline 0.9989 0.7653

POMS-aware LSTM 0.9493 0.6786

Table 3. The effect of POMS on contextual engagement predic-

tion using Leave-One-Subject-Out (LOSO) validation. Augment-

ing AUs with POMS data shows clear reduction in RMSE; the dif-

ference for TR is statistically significant with a two-sided paired

t-test at p=.01.

class LSTM with POMStmd values obtained using self-

reports by adding the normalized to the AU representa-

tion. Since the engagement scores are ordinal, not cate-

gorical, for testing of POMS-aware modeling we use the

more traditional Leave-One-Subject-Out (LOSO) method-

ology, reporting root-mean-squared-error. The performance

of POMS-aware engagement predictions are summarized in

Table 3. The engagement LSTM baseline was re-calibrated

to include subjects with valid POMS self-reports. Even

though the LSTM model was optimized for categorical cor-

rectness, we notice a significant improvement in perfor-

mance by augmenting AUs with POMS data. POMS-aware

engagement model for TR (POMS-TR) showed a signifi-

cant reduction in error (p=.0007) at 95% confidence inter-

vals. Due to contextual nature of engagement prediction (as

shown earlier), we do not create POMS-aware models for

RX+TR (mixed) models.

6. Conclusion and Future Work

In this work, we used data from subjects diagnosed

with DSM-V level PTSD, performing self-regulation exer-

cises during the trauma-recovery process. We presented en-

gagement prediction as a sequence learning problem using

AUs and LSTM-based deep-learning methods. We showed

that user engagement is highly contextual and LSTM-based

models can be used to study task specific facial behaviors

and predict engagement. Further, we showed that aug-

menting AUs with data about subject’s mood (POMS data)

demonstrated a clear improvement in engagement predic-

tion performance.

The primary goal of this work was to explore contextual

engagement, rather than create best deep-learning-based

classifiers. The work presented in this paper is the first step

towards building contextual models for engagement predic-

tion; we expect others will be able to further improve on the

models herein. It is impractical to expect uniform sampling

across engagement levels from PTSD subjects, so an issue

that will need to be addressed in future efforts is to build

machine-learning models that are aware of the data imbal-

ances. The most natural way of building better classifiers is

training with an even larger dataset and performing param-

eter optimization of LSTMs. Sophisticated methods like

feature (AUs) pooling over space and time, jointly using ad-

ditional tracking data such as head-pose, gaze, expressions
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Figure 4. The figure above shows confusion matrices for results presented in Table 2. The top row represents confusion matrices for RX

testing and bottom row represents TR testing. The first column is within-context, the second colums is cross-context and right column

is within contex with POMS. Notice the cross-context results of Train-TR : Test-RX, with respect to the contextual model of Train-TR :

Test-TR shows visible confusion for the “Engaged” class level-4 with the “Neutral” class level-3.

and other emotional states would also likely improve accu-

racy. The work can be further extended by exploring so-

phisticated deep learning models, multi-stream LSTM and

exploring multiple modalities by taking advantage of recent

advances in the field [51, 21].

In our dataset, we collected 15-50 minutes of data from

each subject in a given module/session with 3-4 self-reports.

In our experiments, for simplicity, we utilized 30-second

segments of data before each engagement response. An im-

portant direction of research to pursue would be to study the

effect of segment length on contextual engagement. Fur-

ther, if continuous annotations are available, there is huge

potential to learn LSTMs directly from annotated behav-

ioral data instead of AUs for engagement prediction.

Finally, we presented first step towards exploring the re-

lationship of subject’s mood and his/her engagement level

for a given task. This nascent area of research requires fur-

ther exploration, e.g., can specific elements (anger, fatigue,

rigor, etc.) from POMS data be more useful. In EASE

dataset, the subjects were presented RX task followed by

TR (or vice-versa). We did not consider the importance

of presentation order. In actuality, subjects do not change

their mood as an on/off switch; module order and interac-

tion should be explored for web-based trauma recovery.

One of the potential applications of engagement predic-

tion is in e-health through interned-based weight loss pro-

grams [32], web-based smoking cessation programs [54],

PTSD recovery etc. Although these applications are fo-

cused on increasing user engagement, engagement predic-

tion techniques using non-verbal cues have never been ap-

plied to them. Owing to the simplicity of Web-based inter-

ventions and availability of facial expressions coding soft-

ware, we have stepped outside the realm of student learn-

ing for engagement prediction by considering a web-based

intervention technique targeted at trauma recovery to un-

derstand contextual engagement and towards task-specific

engagement.
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