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Abstract

We design a new approach that allows robot learning of

new activities from unlabeled human example videos. Given

videos of humans executing an activity from their own view-

point (i.e., first-person videos), our objective is to make the

robot learn the temporal structure of the activity as its fu-

ture regression network, and learn to transfer such model

for its own motor execution. We present a new fully convolu-

tional neural network architecture to regress the intermedi-

ate scene representation corresponding to the future frame,

thereby enabling explicit forecasting of future hand loca-

tions given the current frame. The full version of the paper

is available as [2].

1. Introduction

Recent progress in robotics include new deep learning al-

gorithms for robot manipulation, which directly learn motor

control policies given visual inputs [3, 1]. However, many

of these deep approaches have been limited to relatively

simple actions such as object grasping and pushing. This

is because a large amount of ‘robot’ data is necessary for

the direct training of their models with millions of parame-

ters, and this is a limiting aspect particularly when we want

to teach a robot new (i.e., previously unseen) activities.

In this paper, we present a new convolutional neural

network (CNN)-based approach that enables robot learn-

ing of its activities from ‘human’ example videos. We ex-

tend the state-of-the-art object detection network (SSD [4])

to learn the intermediate scene representation abstracting

object-hand information in an image frame, and newly in-

troduce the concept of using a fully convolutional network

to regress the intermediate representation corresponding to

the future frame (e.g., 1-2 seconds later). Combining these

allows direct prediction of (ideal) future locations of human

hands and objects during the activities. Our robot takes ad-

vantage of such future location forecasts to infer its motor

control. We experimentally confirm that our approach en-
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Figure 1. Overview of our approach: Our perception component

consists of two networks: We have two copies of an identical net-

work in the 1st row and the 3rd row (i.e., an extended version of

SSD [4]), one for the current frame t and the other for the (halluci-

nated) future frame t + ∆. The fully convolutional future regres-

sion network (in the 2nd row) regresses the intermediate scene rep-

resentation of the future frame based on that of the current frame

(256x25x25-D). This regression network does not require activity

labels or hand/object labels in videos for its training. The manip-

ulation network (the last row) generates robot control commands

given current robot joint state, current robot hand locations, and

predicted future robot hand locations.

ables learning of robot activities from unlabeled human in-

teraction videos, and demonstrate that our robot is able to

execute the learned activities in real-time.

2. Approach

Given a sequence of frames, the goal is to (i) predict the

robot’s ideal future hand locations and (ii) generate robot

control commands to move the robot hands to such loca-
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Table 1. Evaluation of predicting 1-sec future hand locations.

Method
Evaluation

Precision Recall F-measure

Hand-crafted features 0.30 ± 0.37 0.15 ± 0.19 0.20 ± 0.25

Hands only 4.78 ± 3.70 5.06 ± 4.06 4.87 ± 3.81

SSD w/ future Annot. 27.53 ± 23.36 9.09 ± 8.96 13.23 ± 12.62

Deep Regressor (ours): K=1 27.04 ± 16.50 21.71 ± 14.71 23.45 ± 14.99

Deep Regressor (ours): K=5 29.97 ± 15.37 23.89 ± 16.45 25.40 ± 15.51

Deep Regressor (ours): K=10 36.58 ± 16.91 28.78 ± 17.96 30.90 ± 17.02

tions. We employ two components for achieving the goal.

The first component is the perception component that con-

sists of two fully convolutional neural networks: (1) an ex-

tended version of the Single Shot MultiBox Detector (SSD)

[4] for human hand detection and (2) a future regression net-

work to predict the intermediate scene representation corre-

sponding to the future frame. The second component is the

manipulation component that maps 2-D hand locations in

the image coordinate to the actual motor control using fully

connected layers. Fig. 1 illustrates our approach.

The key idea of our approach is that our perception com-

ponent can predict the future (1-2 seconds later) hand lo-

cations given current video input. Such future prediction

can be learned based on humans’ first-person activity videos

by using them as training data, with the assumption that

the robot camera has similar viewpoint as the first-person

videos. This allows the robot to infer the ideal future loca-

tions of its hands. The manipulation component generates

robot control commands to move robot’s hand to their de-

sired positions based on the prediction results.

3. Experimental Results

In order to provide quantitative comparisons, we com-

pared our perception component with three different base-

lines: (i) Hand-crafted representation uses a hand-crafted

state representation based on explicit object and hand de-

tection. It encodes relative distances between all interactive

objects in our two scenarios, and uses it to predict the fu-

ture hand location using neural network-based regression.

(ii) Hands only baseline uses frame-based hand detection

results for the future regression. It predicts future hand lo-

cations solely based on hand detection results of the cur-

rent frame. (iii) SSD with future annotations is a baseline

that uses the original SSD model [4] trained based on Ego-

Hands dataset. Instead of training the model to infer the

current hand locations given the input frame, we fine-tuned

this model on EgoHands dataset with “future” locations of

hands as their ground truth labels.

Table 1 shows quantitative results of our future hand pre-

diction. Here, K represents number of frames we used as an

input for our regression network. We can clearly observe

that our approach significantly outperforms all baselines,

including the state-of-the-art object detector SSD modified

Table 2. Mean pixel distance between ground truth and predic-

tions. The video resolution was 1280x960.

Method Mean Pixel Distance

Hand-crafted features 143.85 ± 48.77

Hands only 247.88 ± 121.94

SSD w/ future Annot. 58.58 ± 36.76

Deep Regressor (ours): K=1 51.31 ± 39.10

Deep Regressor (ours): K=5 51.41 ± 38.46

Deep Regressor (ours): K=10 46.66 ± 36.92

Table 3. Experimental results evaluating the success level of our

human-robot collaboration.

Method Task 1 Task 2 Average

Base SSD + Base control 1.25 ± 0.43 2.21 ± 1.41 1.72 ± 0.92

Base SSD + Our control 1.5 ± 0.96 2.33 ± 1.60 1.92 ± 1.28

Our perception + Base control 2.33 ± 1.18 2.25 ± 1.36 2.29 ± 1.27

Ours 3.17 ± 1.40 3.42 ± 1.61 3.29 ± 1.50

for the hand prediction.

In our second evaluation, we measured mean pixel dis-

tance between ground truth locations and the predicted po-

sitions of hands. We measured this only when both the

ground truths and the predictions are present in the same

frame. Table 2 shows the mean pixel distance errors. Once

more, we can confirm that our approaches greatly outper-

form the performances of the baselines.

Finally, we conducted a user study to evaluate the suc-

cess level of robot activities performed based on our pro-

posed approach, with a total of 12 participants. They were

asked to perform two different types of collaborative activ-

ities together with our robot and complete a questionnaire

to evaluate the success level of our human-robot collabora-

tion with scales from 1 (bad) to 5 (good). Table 3 shows the

results.

More experimental results are presented in [2]. Our real-

time robot demonstration video is also available at:

https://youtu.be/OCnp_eduA6Q
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