
End-to-End Driving in a Realistic Racing Game

with Deep Reinforcement Learning

Etienne Perot

Valeo

etienne.perot@valeo.com

Maximilian Jaritz

Valeo/Inria

maximilian.jaritz@valeo.com

Marin Toromanoff

Valeo

marin.toromanoff@valeo.com

Raoul de Charette

Inria

raoul.de-charette@inria.fr

1. Introduction

For autonomous driving the classical paradigm is to use

a chain of perception, planning and control; but recent deep

learning progress lets foresee an end-to-end alternative to

map sensor inputs directly to low-level control of robots [4].

End-to-end driving [5] was showcased in the car racing

game TORCS using Reinforcement Learning but its physics

and graphics lack realism.

We propose a method benefiting from latest asyn-

chronous learning [5] to train an end-to-end agent in the

context of a realistic car racing game - World Rally Champi-

onship 6 (WRC6). We do not rely on the in-game score and

train solely on image and speed to learn the optimal action

while reflecting real driving conditions. Our architecture

was trained simultaneously on tracks with different graph-

ics and road structure (cf. fig. 1 and 3). Compared to previ-

ous use of TORCS [5, 1, 3], the environment exhibits more

realistic physics (grip, drift), graphics (illuminations, ani-

mations, etc.), and a variety of environments (sharp turns,

slopes, cliffs, snow, etc.). The proposed reward function

converges faster than previous ones and offers some gener-

alization capacity. Additionally, the driving style is more

comparable to human driving.

2. Method

We used the asynchronous advantage actor-critic (A3C)

[5] to train an end-to-end neural network. Every time-step,

the algorithm receives the state of the game, acts (accelera-

tion and steering), and gets a reward as supervision signal.

This method optimizes driving policy using only RGB im-

age as input (cf. fig. 1b) in order to maximize the cumulated

reward. The choice of the A3C baseline is justified by its

top performance and because it allows training without any

need of experience replay for decorrelation.

(a) In-game screenshot (b) Training image with

guided backprop

Snow(SE) 11.61km Mountain (CN) 13.34km Coast (UK) 4.59km

C
r
a
s
h
e
s

0%

100%

(c) Performance after training

Figure 1: The racing environment for our end-to-end driv-

ing architecture. (a) The full render in WRC6 game. (b) The

84x84 network input with guided back-propagation (blue

overlay). Note, the narrow field of view and removal of in-

dicators (turns signs, scores, etc.). End-to-end performance

after training is displayed over tracks in (c).

State encoder. Unlike other computer vision tasks a shal-

low CNN is sufficient as car racing relies mostly on road

detection. Our CNN + LSTM architecture is similar to [2]

though using a dense filtering (stride 1). It also uses max

pooling to allow more translational invariance and takes ad-

vantage of speed and previous actions in the LSTM.

Reward shaping. To help the network to converge to the

optimal set of solutions the reward shaping is crucial. The

reason not to use the in-game score as reward is that the

latter is too sparse to train the agents. In Mnih et al. [5] the

reward R is computed with the angle difference θ between

the car’s heading and the road, and the speed v. Though

13



Figure 2: Proposed reward (green) versus reward from [5]

(blue). For each reward the rolling mean (dark) and stan-

dard deviation (light) are shown (rolling uses 200 steps).

Figure 3: Guided back propagation (blue highlights) of

CNN+LSTM architecture after 190 mega steps. Despite the

various scene and road appearances the network learned to

detect road edges and to rely on the later for control.

efficient, it is limited as it does not prevent the car to slide

along the guard rail since the latter follows the road angle.

Instead we chose to add the distance from the middle of the

road d as a penalty, that is: R = v(cos θ − d).

3. Experiments

We ran the algorithm with 15 asynchronous agents.

Each agent communicates via TCP with a WRC6 instance

through a dedicated API specifically developed. It allows

us to retrieve in-game info, compute the reward and send

control back to the game. For computational reasons, costly

graphics effects were removed and the horizontal field of

view reduced. The game engine’s clock runs at 30FPS and

the physical engine is on hold as it waits for the next action.

Reward Comparison To evaluate the proposed reward

against the reward from [5], we trained a network with their

architecture and plot the performance in fig. 2. Compared

to [5] (blue curve), the proposed reward (green) converges

faster (80% track completion after only 15 mega steps)

while driving faster and safer. After 80 mega steps, the

proposed reward drives at 88.0 km/h (i.e. +5.1km/h) and

crashes 0.9 times per km (i.e. -5.3 crashes per km). The

explanation is that with the previous reward the car tends to

slide along the guard rail which slows it down and is more

dangerous. Qualitatively also, the proposed reward leads to

a smoother driving style.

Performance and generalization A deeper network was

trained for 190 mega steps, with three very different tracks

(5 instances of each). The tracks contain sharp curves,

Snow (SE)

Mountain (CN)

Coast (UK)

Figure 4: Performance for the challenging training tracks.

The agent had more difficulty to progress on the mountain

track as it exhibits sharp curves and hairpin bends.

cliffs, snow, etc. Physics also differ, especially road ad-

herence. Guided back propagation is displayed in fig. 3

(i.e only positive inner gradients that lead to the chosen ac-

tion). Despite the various scenes appearance, it learned to

detect and use road edges/curvature as a strong control cue.

This actually mimics classical approaches that also use lane

markings for lateral controls. The training performance is

also shown in fig. 4 and demonstrates that it progressed

well in each track. After 190 mega steps the agent learned

to drive in mountain, snow and coast tracks, to take some

sharp turns and even hairpin bends. This is visible in fig. 1c

that depicts crash locations along the tracks. We also tested

the generalization of this training on unseen test tracks. It

exhibits generalization capabilities as the bot was able to

drive on new tracks to some extent.

An online video illustrates the performance over trained

and new tracks: https://youtu.be/e9jk-lBWFlw

References

[1] C. Chen, A. Seff, A. Kornhauser, and J. Xiao. Deepdriving:

Learning affordance for direct perception in autonomous driv-

ing. In Proceedings of IEEE ICCV, pages 2722–2730, 2015.

[2] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and

W. Jaśkowski. Vizdoom: A doom-based ai research platform

for visual reinforcement learning. arXiv:1605.02097, 2016.

[3] B. Lau. Using Keras and Deep Deterministic Policy Gradient

to play TORCS, 2016.

[4] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end train-

ing of deep visuomotor policies. Journal of Machine Learning

Research, 17(39):1–40, 2016.

[5] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap,

T. Harley, D. Silver, and K. Kavukcuoglu. Asynchronous

methods for deep reinforcement learning. In Proceedings of

ICML, 2016.

24

https://youtu.be/e9jk-lBWFlw

