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Abstract

This paper proposes a new face verification method that

uses multiple deep convolutional neural networks (DCNNs)

and a deep ensemble, that extracts two types of low dimen-

sional but discriminative and high-level abstracted features

from each DCNN, then combines them as a descriptor for

face verification. Our DCNNs are built from stacked multi-

scale convolutional layer blocks to present multi-scale ab-

straction. To train our DCNNs, we use different resolutions

of triplets that consist of reference images, positive images,

and negative images, and triplet-based loss function that

maximize the ratio of distances between negative pairs and

positive pairs and minimize the absolute distances between

positive face images. A deep ensemble is generated from

features extracted by each DCNN, and used as a descriptor

to train the joint Bayesian learning and its transfer learn-

ing method. On the LFW, although we use only 198, 018
images and only four different types of networks, the pro-

posed method with the joint Bayesian learning and its trans-

fer learning method achieved 98.33% accuracy. In addition

to further increase the accuracy, we combine the proposed

method and high dimensional LBP based joint Bayesian

method, and achieved 99.08% accuracy on the LFW. There-

fore, the proposed method helps to improve the accuracy of

face verification when training data is insufficient to train

DCNNs.

1. Introduction

Face recognition in unconstrained environments is a very

challenging problem in computer vision. Faces of the same

identity can look very different when presented in differ-

ent illuminations, facial poses, and facial expressions. Such

variations within the same identity could overwhelm the

variations due to identity differences and make face recog-

nition more challenging, especially in unconstrained en-

vironment; example include Eigen face analysis [24], In-

dependent Component Analysis [2] and their extensions.

These approaches commonly assume that face images are

well aligned and have a similar pose to the face images

in the gallery. However, in wild environments and prac-

tical applications, these assumptions are invalid. There-

fore, reducing the intra-personal variations while enlarging

the inter-personal differences is an important topic in face

recognition, especially in face verification.

Face verification only classifies whether two faces are

the same or not; the process requires reducing intra-personal

variations while enlarging inter-personal variations. To do

this, subspace face verification methods such as Linear Dis-

criminant Analysis (LDA) [3], Bayesian face [15], and uni-

fied subspace [25][26] have been proposed. For example,

LDA approximates intra-personal and inter-personal face

variations by using two linear subspaces, then finds the pro-

jection directions to maximize the ratio between them. Re-

cent studies have also targeted the same goal, either explic-

itly or implicitly. For example, metric learning [7][8][14]

maps faces to some feature representation such that faces

of the same identity are close to each other whereas those

of different identities stay apart. These methods also rely

on feature representation given by handcrafted image de-

scriptors such as Gabor filter [12], Scale Invariant Feature

Transform [13], and Local Binary Patterns [1]. Further ac-

curacy increase has been obtained by combining several of

these descriptors [27]. However, these methods are limited

by their linear nature and shallow structures, whereas intra-

personal and inter-personal variations are complex, highly

nonlinear, and observed in high-dimensional image space.

Rather than spending time attempting to engineer new im-

age descriptors by hand, we instead propose a method to

obtain new representations automatically by supervised fea-

ture learning with deep neural networks (DNNs) and new

types of training set (triplets of faces).

This paper proposes a new face verification method that

1109



uses DCNNs and a set of triplets of faces. The proposed

method uses a triplet-based loss function to directly train its

output to be a compact 1, 024-dimensional embedding. Our

triplets consist of two positive face images and one nega-

tive face image, and the loss aims to separate the positive

pair from the negative pair by the minimum ratio margin

of distances between them, and to minimize the absolute

distance between face images of positive pairs. The pro-

posed method uses two 1, 024-dimension embedding fea-

tures as multi-scale representations, and these representa-

tions are used to generate a deep ensemble. These repre-

sentations with DCNNs and deep ensembles offer higher-

order statistics such as multi-scale corners and multi-scale

contours, and can be more readily adapted to new domains

whereas the handcrafted descriptors may not be appropri-

ate. With these features, we use the joint Bayesian learning

method and its transfer learning method as a classifier. To

further increase the accuracy of face verification, we com-

bine our DCNN based approach and the high-dimensional

LBP based joint Bayesian method.

The rest of this paper is as follows: in section 2 we de-

scribe the proposed face verification method including the

triplet of faces, the triplet-based loss function, the deep en-

semble, the model architecture, and training procedure; in

sections 3 and 4 we present experimental results of the pro-

posed method in comparison with the state-of-the-art and

discussion; in section 5 we draw a conclusion.

2. Proposed Methods for Face Verification

2.1. Facial database to train DNNs

Training of a deep learning model for face recognition

requires a large-scale facial database. Because hundreds

of thousands of parameters must be optimized in DNNs, a

large-scale facial database is required to train them.

Therefore, we first built a large-scale facial database by

using web crawling and the available public face database

such as CASIA WebFace [28]. After collecting, we post-

processed to convert original facial images to canonical fa-

cial images: First, we used a face detector [11] to find face

regions in a given image. Second, we used a facial feature

detector [19] to find facial fiducial points in the detected fa-

cial regions. Third, we aligned the face images into a prede-

fined 95× 95 resolution of template region to transfer their

canonical facial images. Finally, we construct a pyramid

canonical facial image by down-sampling the canonical fa-

cial image that has a resolution of 95 × 95 to facial images

that have resolutions of 67× 67 and 47× 47. We use these

pyramid canonical facial images to train each DCNN.

2.2. Multiscale Convolution Layer Block

To make multi-scale abstracted features and increase in-

variance to translation of the input, we design our networks

Figure 1: The multi-scale convolution layer block consists

of 1× 1 convolution, 3× 3 convolution, 5× 5 convolution,

and 3× 3 max pooling layers. The function of 1× 1 convo-

lution is the dimension reduction; the 3× 3 and 5× 5 con-

volutions process at different scales to achieve multi-scale

feature abstraction; the 3×3 max pooling is used to be able

to learn translation-invariant features. The detailed config-

uration is described in section 2.5 and Table 1.

with Multi-scale Convolution Layer Blocks (MCLBs). An

MCLB is a convolution layer block that consists of 1 × 1
convolution, 3×3 convolution, 5×5 convolution, and 3×3
max pooling layers (Figure 1).

Because computation time is important in vision tasks,

we use 1 × 1 convolution as dimension reduction, which

makes our DNNs possible to train fast enough. The out-

put of 1 × 1 convolution, 1 × 1 convolution followed by

3 × 3 convolution, 1 × 1 convolution followed by 5 × 5
convolution, and 3× 3 max polling followed by 1× 1 con-

volution are concatenated as one output vector. Compared

to the output of a sequence of simple convolution layers,

the level of abstraction in this output vector increase as the

level of the layer increases. All convolution layers in the

MCLB used Batch Normalization (BN) [9] and ReLU [16]

as an activation function. We use this MCLB to construct

shared networks for learning features for face verification.

The detailed configuration is described in section 2.5 and

Table 1.

2.3. Triplet of Faces

Triplet T of faces is a set of data in the form of

(IR, IP , IN ). IR is a given referenced facial image, IP is

a positive facial image which is similar to IR, and IN is a

negative facial image which is not similar to IR. Although
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Figure 2: Triplet of faces in the form of (IR, IP , IN ) that

consists of a positive face image IP that is similar to the

given face image IR, and negative face image IN that is not

similar to IR.

triplet T can be easily generated using similarities calcu-

lated for each of pairs of faces, we randomly select positive

and negative subject images from within a collected training

dataset (Figure 2); i.e., IP is another image of the person in

IR, and IN is an image of a different person than the one in

IR. We generated 4 × 106 triplets of faces as training data

for use in training and optimizing the deep networks of the

proposed face verification method.

2.4. Loss function

DNNs are trained and optimized to minimize a defined

loss function. This function must be defined well.

To learn the proposed DCNNs, we use triplet loss and

pairwise loss to minimize distances between faces that have

the same identity and to maximize distances between faces

that are of different identity. To consider identity properties,

use softmax loss, which classifies each face image into one

of n different identities (Eq. 1). The proposed loss function

reduces the distance between IR and IP , and increase the

distance between IR and IN (Figure 3(b)).

Ltotal = Ltirplet + Lpairs + Lsoftmax. (1)

We believe that our defined loss function is more suit-

able for face verification than the Siamese metric learning

method [6], DeepID2 [21], and DeepID3 [29] which use

pairs of positive faces and negative faces only.

2.4.1 Triplet Loss

Triplet loss Ltriplet is a type of loss that uses triplets of faces

to train the proposed DCNNs. The output of the network

is represented by F (I) ∈ Rd, where I is the input image

which is embedded into a d-dimensional space. Ltriplet is

defined as:

Ltriplet =
∑

∀T

max

(

0, 1−
∥F (IR)− F (IN )∥2

∥F (IR)− F (IP )∥2 +m

)

,

(2)

where F (IR) is the output of the proposed DCNN for

IR, F (IP ) is the output of the proposed DCNN for

IP , F (IN ) is the output of the proposed DCNN, and m is a

margin that defines a minimum ratio between the negative

pairs of faces and the positive pairs of faces in Euclidean

space. Ltriplet is optimized in the training procedure to

maximize the ratio of distances between the positive pairs

and the negative pairs. This means that the Euclidean dis-

tance of positive pair faces is minimized and the Euclidean

distance of negative pair faces is maximized (Figure 3(a)).

After first training using only Ltriplet, we observed an

unbalanced range of distance measured between the pairs

of data; this result means that although the ratio of the dis-

tances is bounded in a certain range of values, the range of

the absolute distances is not. Therefore, we also considered

differences within pairs.

2.4.2 Pairwise Loss

Pairwise loss Lpairs is the sum of the squared Euclidean

distances between the descriptor of the given facial image

IR and descriptor of the positive facial image IP . These

positive pairs IR and IP are selected in the triplets T .

Lpairs =
∑

(IR,IP )∈T

∥F (IR)− F (IP )∥
2
2. (3)

The training with Lpairs minimizes the absolute distance

between data of a given pair. We consider this loss to limit

the range of absolute distance between them (Figure 3(a)).

2.5. Shared Network to Train DNNs with Triplet of
Faces

Shared networks include the network for IR, the net-

work for IP , and the network for IN . The sub-network

can be constructed by stacking MCLBs (Figure 4, Table

1). The pooling layer is always 3 × 3 max-pooling. If

pooling reduces dimensionality, it is denoted with p. Fi-

nally, in MCLB, the results of 1 × 1, 3 × 3, 5 × 5, and

pooling are concatenated to get the final output. The shared

network is 24 layers deep (20 layers if we count only lay-

ers with parameters). All convolution layers and fully con-

nected layers use the ReLU non-linear activation [16] and

Batch-Normalization [9]. Dropout [20] only is applied to

the last fully connected layer for regularization method dur-

ing training. The average pooling takes the average vector

of each feature map and sums out the spatial information.

Because the spatial information is summed out, it is also in-

variant to translation of the input. To prevent the gradient-

vanishing problem during training, we add an auxiliary clas-

sifier (loss) to the intermediate layer MCLB (5a) (Figure 4).

Networks can be widened by making an ensemble of

output features of several networks trained with facial im-

ages with different resolutions (such as facial images with

95× 95, 67× 67, and 47× 47 resolutions). The input to the

each sub-network is one of the triplet of faces, i.e., IR, IP ,

or IN . The shared networks encode the input triplet of faces

to intermediate features, which are used to generate en-

sembles of DCNNs, and used later in joint Bayesian learn-

ing and its transfer learning. All sub-networks in shared
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(a) triplet loss and pairwise loss (b) The effect of the proposed loss function

Figure 3: The effect of the proposed loss function. The DCNN using the proposed loss is trained to minimize the distance

between the given face image IR and the positive face image IP both of which have the same identity, and maximize the

distance between IR and the negative face image IN of the different identity.

Figure 4: Sub-networks in shared networks. Sub-networks are constructed by stacking MCLBs.

networks are shared during training with T . This means

that the sub-networks share all weight parameters with each

other. Weight sharing can significantly reduce the number

of weight parameters that must be optimized during train-

ing.

2.6. Features for Ensemble of DNNs and Face Veri
fication

From each network, we extract two 1, 024-dimensional

vectors (f1 and f2) from the fully-connected layer (fc1)

and the last 2nd fully-connected layer in the auxiliary clas-

sifier that is connected to intermediate layer MCLB (5a)

(Figure 4, Table 1). After obtaining features of each net-

work, these features are concatenated to one vector fea-

ture and the total length of concatenated features is 8, 192
(1, 024 × 4). PCA then reduces the dimensionality of the

features from 8, 192 to 1, 024. Then, the reduced features

are used to train the joint Bayesian model and its transfer

learning models [4] on the LFW dataset.

For verification, we use joint Bayesian learning model

and its transfer learning. Joint Bayesian learning is a con-

ventional face-verification learning method. It has been suc-

cessfully used to model the joint probability of given two

face images, i.e., whether they depict the same or differ-

ent persons. This model learns the feature representation

f of a given face image as the sum of inter-personal vari-

ations and intra-personal variations which are modeled as

Gaussian distributions and are estimated from the training

data. Face verification is achieved using the log-likelihood

ratio log p(f1,f2,|HI)
p(f1,f2,|HE) , where the numerator and denomina-

tor are joint probabilities of two face images given the intra-

personal variation hypothesis HI and inter-personal vari-

ation hypothesis HE , respectively. We learned the joint

Bayesian learning model for face verification based on the

ensemble features of DCNNs of the collected training facial

database.

Transfer learning is useful when analyzing plentiful

source-domain data with limited samples from some tar-

get domain of interest. In face-verification evaluation on

the LFW, the number of images in the LFW is less than
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Table 1: Configuration of the proposed sub-network for face verification.

type output size 1×1 3×3 reduce 3×3 5×5 reduce 5×5 pool proj (p)

conv1 (5× 5× 3, 2) 97× 97× 64 - - - - - -

max pool (3× 3, 2) 48× 48× 64 - - - - - -

conv2 (1× 1) 48× 48× 64 - - - - - -

conv3 (3× 3) 48× 48× 192 - - - - - -

max pool (3× 3, 2) 24× 24× 192 - - - - - -

MCLB (4a) 24× 24× 256 64 96 128 16 32 m, 32p

MCLB (4b) 24× 24× 320 64 96 128 32 64 m, 64p

MCLB (4c) 12× 12× 384 - 128 256, 2 32 64 m, 2, 64p

max pool (3× 3, 2) 6× 6× 384 - - - - - -

MCLB (5a) 6× 6× 640 256 96 192 32 64 m, 128p

MCLB (5b) 6× 6× 640 224 112 224 32 64 m, 128p

MCLB (5c) 6× 6× 640 192 128 256 32 64 m, 128p

MCLB (5d) 3× 3× 480 - 144 288, 2 32 64 m, 2, 128p

avg pool 1× 1× 480 - - - - - -

conv6 (1x1) 1× 1× 200 - - - - - -

fc1 1× 1× 1024 - - - - - -

fc2 1× 1× 4048 - - - - - -

L2 normalize 1× 1× 1024 - - - - - -

Figure 5: Hybridization with high-dimensional LBP based

joint Bayesian method in the manner of the score-level fu-

sion.

the number of images used for training DCNN. Therefore,

we also use transfer learning based on the joint Bayesian

learning model to increase the accuracy of face verification

results.

2.7. Hybridization with High dimensional LBP

To further increase the accuracy, we combine our DCNN

based method and the high-dimensional LBP based method

[5] in the manner of the score-level fusion. We calcu-

late scores based on log likelihood ratios of joint Bayesian

method from each method. Then, we obtain six different

types of scores which are transformed to scores of squared

root and log-scale. With six different types of scores, we

used support vector machine as a final classifier (Figure 5).

3. Experiment

We evaluated the proposed method on the LFW, which

reveals the state-of-the-art of face verification in the wild.

Although the LFW contains 5, 749 people, only 85 have

> 15 images, 4, 069 people have only one image, and the

total number of images is 13, 233, so this database is not

suitable to train our proposed DCNNs. Instead, we used

our collected face image set which contains 4, 048 people

with > 10 images. The total number of collected face im-

ages is 198, 018. People in the LFW and our collected face

image set are mutually exclusive. For data augmentation,

each image in the collected image set is flipped horizontally

(198, 018 × 2 = 396, 036). For feature learning, we gen-

erated 4 × 106 triplets of faces with 340, 289 face images

in our collected image set and used the remaining 55, 747
images as a validation set during training.

We implemented the proposed method based on the GPU

version of the Caffe deep learning framework [10]. We

used standard back-propagation on the feed-forward net by

stochastic gradient descent optimization with momentum

[17] set to 0.9 and learning rate set to 0.25 to train the pro-

posed DCNNs. The size of mini-batch is set to 48. We

initialized weights in each layer from a zero-mean Gaus-

sian distribution with s.d. = 0.01, and biases set to 0.5. We

trained the proposed DCNNs for roughly 1× 106 iterations

over the whole set of triplets of faces; this process took three

weeks.

3.1. Loss function

We evaluated different design choices of loss function

in terms of the accuracy of classification on the validation

set. This validated the necessity of using a loss function.
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Using the proposed network (Figure 4), we constructed a

network DNN + LT using Ltriplet and Lsoftmax, and a

network DNN + LT + LP using Ltriplet, Lpairs, and

Lsoftmax. We achieved 91.32% accuracy for DNN + LT

and 93.45% accuracy for DNN + LT + LP . From this

evaluation, when using DNN + LT , we observed the un-

balanced range of distance measured between the pairs of

data. This result means that although the ratio of the dis-

tances is bounded in a certain range of values, the range

of the absolute distances is not. Therefore, we also con-

sidered differences within pairs. In contrast, we observed

that the distances are bounded in a certain range of val-

ues when using DNN + LT + LP . Therefore, we used

DNN + LT + LP in all experiments.

3.2. Ensemble of DNNs

We combine multiple networks trained by feeding dif-

ferent resolutions of inputs to the DNN: 1) The network

DNN-95-a for face images with 95 × 95 resolution; 2)

The network DNN-67 for face images with 67 × 67 res-

olution; 3) The network DNN-47 using for images with

47 × 47 resolution; 4) The network DNN-95-b for face

images 95 × 95 resolution and a different margin value,

0.5, in Ltriplet (2). We extracted two 1, 024-dimensional

features from the output f1 of the fully-connected layer

(fc1) and the output f2 of the 2nd last fully-connected layer

in the auxiliary classifier connected to intermediate layer

MCLB (5a) on each network (Figure 4). To make an ensem-

ble, we generated different combinations of those features:

EN1 := F95-a + F95-b + F67 + F47; EN2 := F95-

b + F95-a + F67 + F47; EN3 := F47 + F67 + F95-

a + F95-b; EN4 := F47 + F67 + F95-b + F95-a. The

dimensionality of each ensemble was reduced from 8, 192
to 1, 204.

We evaluated different types of ensembles in terms of

the accuracy of the verification on the LFW. We used the

joint Bayesian method as a classifier. We achieved 96.23%
accuracy of verification for EN1, 96.01% accuracy of the

verification for EN2, 95.23% accuracy of the verification

for EN3, and 95.01% accuracy of the verification for EN4.

Therefore, we used EN1 to evaluate the accuracy of the pro-

posed method on the LFW.

3.3. Results on the LFW

We evaluated the proposed method in terms of the accu-

racy of the face the verification on the LFW. We used the

transfer learning method based on the joint Bayesian learn-

ing method as a classifier. We followed the unrestricted

protocol with labeled outside data for the verification. We

trained the classifier on 5, 400 pair labels per split, and used

the other 600 pair labels as the test set. We used 10-fold

cross validation and averaged the accuracy over 10 trials.

We achieved 96.23% accuracy of the proposed method

with only the joint Bayesian learning method as a classi-

fier on the LFW, 98.33% accuracy of the proposed method

with both joint Bayesian learning and its transfer learning

method as a classifier, and achieved 99.08% accuracy of

the proposed score-level fusion method. Although the ac-

curacy of the proposed method is less than that of the state-

of-the-art (Google’s FaceNet), we used only 198, 018 face

images to train the proposed DCNNs; this is much fewer

than required by DeepFace (4 × 106 images), and FaceNet

(2 × 109 - 4 × 109 images). We used only four different

types of networks to generate the ensemble of DCNNs. In

contrast, DeepFace uses nine different types of networks,

DeepID used 120 different types of networks, and DeepID3

used 50 different types of networks (Table 2). Therefore,

the proposed face recognition method is useful when the

training data is limited to train DCNN models.

4. Discussion

4.1. Loss function

Design of the loss function to train DNNs affects the

accuracy of classification. Accuracy was 93.45% when

DNN + LT + LP loss function was used, and 91.32%4
when DNN+LT loss function was used. Especially, when

DNN +LT +LP was used, the distances and the ratios of

distances were bounded in a certain range of values. How-

ever, when DNN + LT was used, the distances were not

bounded in a certain range, but the ratio of distances was

bounded in a certain range. These results demonstrate that

multi-task learning has the potential to improve the accu-

racy of classification in face verification because the tasks

influence each other through a shared representation (or

shared DNN layers) during training. Therefore, these re-

sults are important to design the loss function and to train

DNN models. Because face verification is a classification

problem, the proposed loss function (multi-task learning)

may be also widely applicable to other classification prob-

lems such as general object classification.

4.2. Ensembles of DNNs

Use of an ensemble of DNNs trained by feeding different

resolutions of input facial images improved the accuracy of

face verification. Among the different types of ensembles,

our best result was 96.23% accuracy of verification for EN1

by using the joint Bayesian method as a classifier. The deep

representation generated from the proposed ensemble has

more-powerful abstracted features than the other ensembles

including EN2, EN3, and EN4; i.e., this result indicates

that the combination order of features to generate an ensem-

ble is important to improve the accuracy of face verification,

and also indicates that if the resolution of the facial images

used in DNNs is increased, the amount of useful informa-

tion that DNN models can obtain also increases.
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Table 2: Comparison of the number of DCNNs, the number of images, the dimensionality of feature, and the accuracy of the

proposed method with the state-of-the-art on the LFW

Method No. of DNNs No. of images Feature dimension Accuracy (%)

Human - - - 97.53

Joint Bayesian - 99, 773 8, 000 92.42

Fisher vector faces - N/A 256 93.03

Tom-vs-Pete classifiers - 20, 639 5, 000 93.30

High-dim. LBP - 99, 773 2, 000 95.17

TL-Joint Bayesian - 99, 773 2, 000 96.23

DeepFace 9 4M 4, 096× 4 97.25

DeepID 120 202, 599 150× 120 97.45

DeepID3 50 300, 000 300× 100 99.52

FaceNet 1 200− 400M 128 99.63

Learning from Scratch 2 494, 414 160× 2 97.73

Proposed Method (+Joint Bayesian) 4 198, 018 1, 024 96.23

Proposed Method (+TL-Joint Bayesian) 4 198, 018 1, 024 98.33

Proposed Method (Hybridization) 4 198, 018 6 99.08

4.3. Comparison with stateoftheart

The proposed method with only the joint Bayesian learn-

ing method on the LFW achieved 96.23% accuracy, the

method with both the joint Bayesian learning and its trans-

fer learning method on the LFW achieved 98.33% accu-

racy, and the method based on the score-level fusion on

the LFW achieved 99.08% accuracy. Although the accu-

racy of the proposed method is less than that of the state-

of-the-art (Google’s FaceNet [18]: 99.63%), we used only

198, 018 facial images to train the proposed DCNNs; this

is much fewer than required by DeepFace (4 × 106 im-

ages) [23], Learning from Scratch (494, 414 images) [28],

and FaceNet (2 × 109 - 4 × 109 images). We used only

four different types of networks to generate the ensemble

of DCNNs. In contrast, DeepFace uses nine different types

of networks, DeepID [22] uses 120 different types of net-

works, and DeepID3 [29] uses 50 different types of net-

works. Therefore, when the training data is not enough to

train DNN models, the proposed loss function (multi-task

learning) and ensemble can help to improve the accuracy of

face verification.

5. Conclusion

This paper presents a face recognition method that uses

MCLBs to construct deep and wide networks, and uses an

ensemble EN1 generated from different types of DCNN

features trained by using a set of triplets and the proposed

loss function Ltotal (multi-task learning). On the LFW,

the proposed method with only the joint Bayesian learning

method achieved 96.23% accuracy, the proposed method

with both the joint Bayesian learning and its transfer learn-

ing method achieved 98.33% accuracy, and the proposed

method based on the score-level fusion achieved 99.08%
accuracy. Although the accuracy of the proposed method

is less than that of the state-of-the-art (Google’s FaceNet:

99.63%), the proposed method has two contributions: 1) the

proposed method used only 198, 018 facial images to train

the DCNNs; this is much fewer than required by DeepFace

(4×106 images), Learning from Scratch (494, 414 images),

and FaceNet (2 × 109-4 × 109 images), 2) the proposed

method used only four different types of networks to gen-

erate the ensemble of DCNNs. In contrast, DeepFace uses

nine different types of networks, DeepID uses 120 different

types of networks, and DeepID3 uses 50 different types of

networks. Therefore, the proposed method including EN1,

and Ltotal helps to improve the accuracy of face recogni-

tion when the amount of training data is insufficient to train

DCNN models.
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