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Abstract

While face recognition algorithms perform under many

different unconstrained conditions, predicting this perfor-

mance is not possible when a new location is introduced.

Analyzing the impostor distribution of the videos of the

Point-and-Shoot Challenge (PaSC) as well as its relation-

ship to the genuine match distribution, we show that there

is large variation in the false accept rate over the impos-

tor distribution, demonstrate there is a correlation between

changes in the verification and false accept rates over fac-

tor, and using this, present a method for predicting the per-

formance of an algorithm using only unlabeled data for a

new location.

1. Introduction

Face recognition algorithms operate under a variety of

unconstrained conditions, and performance varies substan-

tially across locations, i.e., the physical location. Given

videos in a new location, how well will an algorithm per-

form? Without explicitly testing the new location, a com-

mon method is to use the overall performance of the system

on previously known locations. We present a way to bet-

ter model the performance without needing to identify and

label individuals in the videos.

Are there any locations that are “easy” (high verification

rate and low false accept rate)? It is commonly believed

that there exist locations that are easy as well as ones that

are “hard.” From our analysis, we show that such locations

do not necessarily exist.

On the Point-and-Shoot Face Recognition Challenge

(PaSC) [2], Lee et al. [10] found that verification rate (VR)

varies across locations. The effect of factors on the genuine

match distribution has been studied [1], [7]. However, there

has not been as much research on the impostor distribution.

O’Toole et al. [13] found that performance changes when

the impostor distribution is restricted to people of the same

gender or race. Several researchers have focused on the ef-

fects of pose, expression, and illumination [8], [6].

Extending the work of Lee et al. [10] , we investigate

how the false accept rate (FAR) varies across locations in

the PaSC dataset. The algorithms in this study are from the

Face and Gesture 2015 Person Recognition Evaluation [3].

In our analysis, we include video-based factors which are

automatically computed [10]. We also analyze the relation-

ship between the genuine match distribution and impostor

distribution. Using this analysis, we demonstrate it is pos-

sible to predict the performance of an algorithm in a new

location based solely on unlabeled data acquired from the

new location.

Novel contributions in this paper are:

• We show that when a threshold is set so that the global

FAR is fixed, there is a large variation in the false ac-

cept rates over the locations.

• We show that with this fixed threshold, changes in veri-

fication and face accept are correlated across locations.

• This correlation allows us to predict the verification

rate for new locations using a regression model.

2. PaSC Challenge and Data Set

To investigate the false accept rate across the impostor

distribution, we needed a data set that documented many

factors about the videos themselves, especially with the lo-

cation of videos systematically varied. The Point-and-Shoot

Face Recognition Challenge (PaSC) was designed to ad-

vance the development of face recognition algorithms on

videos taken with digital point and shoot cameras, particu-

larly for handheld cameras found in cell phones; full details

of the protocol can be found in [2]. What follows is a brief

summarization of the relevant details.
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2.1. Data Set

In our analysis, we focus on the effect of location and

sensor. This is possible because videos in the PaSC are

taken from six locations with six sensors, five of those being

handheld.

In the video portion of the PaSC, 2802 videos of 265

subjects were taken over 7 different weeks at the Univer-

sity of Notre Dame in the spring semester of 2011. The

videos show people carrying out tasks rather than looking

into a camera. Collection was carried out according to a

plan–a script–in which generally a person entered a scene,

approached some designated spot, carried out an action, and

then left the scene. The videos typically begin as the per-

son is moving into the scene and terminate as the person is

leaving.

Each subject is present in videos for at least four of the

weeks, implying the differences in weeks’ performances is

not due to the subjects. Video length ranges roughly be-

tween 50 and 400 frames with most videos containing be-

tween 200 and 250 frames, and the resolutions ranged be-

tween 640×480 to 1280×720.

There were six different locations with six different sen-

sors. Five of the sensors were handheld, and these varied by

week. Additionally, data was collected by a tripod-mounted

sensor, and this sensor filmed the same actions at the same

location and time as the handheld sensor of the week.

Figure 1. Sampled portions of video frames from PaSC videos in-

dicating some of the situations that make recognition challenging.

Courtesy of Beveridge et al. [4].

Figure 1 shows a sample of frames from PaSC videos

from different locations. Characterizing the videos are four

primary factors: location, action being performed, video

camera (sensor), and person in the video (subject).

2.2. Location Factor

One aspect the design of this data set allows us to ana-

lyze is how an algorithm performs when restricted to pairs

of videos from certain locations. During each week, the

videos were collected with a new combination of location

and action taking place, for example picking up a newspa-

per in an office. No combination of location and action was

repeated on subsequent weeks. Table 1 shows a summary of

the location, handheld camera, and action combinations.1

Table 1. Location, camera, and action combinations. The abbrevi-

ations for the location is in the right column.

Sensor Location Action Abbrev.

Flip Mino F360B canopy golf swing Ca

Kodak Zi8 canopy bag toss Ca

Samsung M. CAM office pickup newspaper Pa

Sanyo Xacti lab 1 write on easel Ea

Sanyo Xacti lawn blow bubbles Bu

Nexus Phone hallway ball toss Ba

Kodak Zi8 lab 2 pickup phone Ph

Each location and action combination was captured on

a specific week by two different cameras, one being hand-

held. Consequently, each video depicts a single subject at

a certain location doing a specific action captured by one

particular sensor, e.g. for a specific subject, there is exactly

one video depicting the subject on the lawn blowing bub-

bles captured by a Sanyo Xacti. There is also a video of

the subject blowing bubbles on the lawn captured by the

tripod-mounted sensor, a Panasonic HD700. From Table 1,

it is clear that the handheld sensors are confounded with the

locations and actions.

In the findings below, the influence that location, cam-

era, and action combinations (called the location factor for

simplicity) exert over performance is strong, and the abbre-

viations introduced in Table 1 will be used when reporting

results. Therefore here, briefly, is a bit more information

about each. The canopy (Ca) was a white pop-up mate-

rial structure setup outside in bad weather. Two actions

were carried out on different days. The first was swing-

ing a golf club, and the second was tossing a bean bag. The

office (Pa) was a large well-lit room where a subject picked

up and looked at a newspaper. In Lab 1 (Ea) each sub-

ject wrote on a large floor standing easel set out in a large

open lab space. The lawn (Bu) was an open grassy area in

a plaza with bright sun. Subjects approached a table and

blew bubbles. The hallway (Ba) was an interior space of an

older building with relatively dark stone walls where sub-

jects threw a toy basketball. In lab 2 (Ph) a subject picked

up a phone in a relatively cluttered lab area.

As videos are compared in pairs, the location factor is

defined by location-pairs, i.e. the locations of the videos for

a given pair. In total, there are 22 location-pairs. For 6 pair-

ings the videos are from the same location and collected in

the same week; these only include impostor pairs, i.e. pairs

1The identification of any commercial product or trade name does not

imply endorsement or recommendation by NIST.
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of videos of different people. However, we focus mainly

on cross-week comparisons, i.e. video-pairs in which the

weeks of capture are different. There are 16 cross-week

location-pairs. In 15 of the cross-week location-pairs, the

videos were collected at different locations from different

weeks, but for one pair, the videos were collected at the

same location (canopy) on different weeks.

2.3. Video-Based Factors

Location, action, and sensor are not the only factors ef-

fecting performance. Another class of factors effecting per-

formance comes directly from the videos themselves; that

is, these factors, called video-based factors, are dependent

on the video from which they are estimated. As we show

later in Section 6, video-based factors can encode properties

of a location-pair. For our work, we measure this encod-

ing by looking at aggregate statistics of video-based factors

from all video-pairs of the location-pair.

We consider three video-based factors: face size, face

confidence, and yaw. Estimated by the Pittsburgh Pattern

Recognition (PittPatt) face recognition SDK 5.2.2, face size

is the number of pixels between the eyes, face confidence is

PittPatt’s self-assessment of how certain the algorithm was

in detecting the true face, and yaw is the measurement of

how far the face was turned to the left or right.

The real-valued factors are converted to levels by order-

ing video-pairs from smallest to largest factor value and

then dividing them into n equal sized bins. The result is

n levels ranging from smallest to largest factor value. The

PittPatt SDK 5.2.2 software estimated these factors for the

frames of the videos, and the generalizations to videos and

video-pairs follow the methods of Lee et al. [10].

3. Algorithms

Our analysis is performed on the four top performers

in the Face and Gesture 2015 Person Recognition Evalu-

ation [3]. The algorithms were developed independently by

four different research groups from four different countries

on four different continents. Each algorithm is very dif-

ferent in how it computes a similarity score (the degree of

similarity between two faces in two videos). This indepen-

dence provides evidence that our conclusion will generalize

to algorithms not included in this study.

The Chinese Academy of Science (CAS) algorithm uses

two convolutional neural networks, one for larger and one

for smaller faces [9].

The Stevens Institute of Technology (SIT) algorithm

combines scale-invariant feature transform (SIFT) features

with a probabilistic modeling procedures and principal

component analysis based dimensionality reduction pro-

cess [11], [12].

The University of Ljubljana (Ljub) algorithm combines

four feature types with a probabilistic principal component

analysis [15].

The Univeristy of Technology, Sydney, (UTS) algorithm

uses three-dimensional face pose normalization and face de-

scriptors [5].

4. Measuring Performance

Our results are reported on participants in the Face and

Gesture 2015 Person Recognition Evaluation [3], and in

this competition, the participants followed the PaSC pro-

tocol. In the protocol for the PaSC, algorithms are given

two videos and then return a number measuring the de-

gree of similarity between the subjects in the pair of videos.

Hence, in calculating and predicting performance, we com-

pare videos in pairs.

In measuring performance, we are observing how often

an algorithm correctly declares the same person to be in

two videos. We are also interested in how often the algo-

rithm incorrectly believes two different people from videos

are the same person. However, we are not interested in the

overall performance of the algorithm. Instead, we are more

interested in how the performance changes over levels of

a factor. Later in this paper, for a set of videos of a factor-

level, we are predicting how well an algorithm will correctly

match videos of the same person (marginal VR). In our pre-

diction, we use how often the algorithm incorrectly declared

different people to be the same (marginal FAR). We then

compare our predicted performance to the actual observed

performance.

The focus of analysis in this paper is on performance

when comparing videos for a factor-level. Presented with

two faces from videos x and y, an algorithm A returns a

similarity score, sA(x, y), for video-pair (x, y). The simi-

larity score denotes how similar the faces are estimated to

be; a higher similarity score indicates a higher likelihood of

the two faces belonging to the same subject.

To make a decision, a threshold τg is set so that every

video-pair score at least as large τg is declared a match

and every score below the threshold is considered a non-

match. We divide the set of videos into two sets: the set of

video-pairs that are genuine matches and the set of video-

pairs that are impostors. With the threshold τg , we calculate

the verification rate VR(τg) as the ratio of genuine matched

video-pairs correctly identified as a match and the false ac-

cept rate FAR(τg) as the ratio of impostor video-pairs in-

correctly identified as a match.

Generally, the threshold τg is set to specify the FAR at

a certain instance. In our paper, we select τg for each al-

gorithm so that globally FAR(τg) = 0.10. For PaSC, the

standard for reporting VR is FAR = 0.01. However, we

shifted the threshold to have enough false matches for anal-

ysis.

Nonetheless, the analysis in this paper is not focused

on the overall performance over the set of all video-pairs.
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Rather, for this paper, as previously mentioned, the analy-

sis is centered on performance when comparing video-pairs

of factor levels such as locations. For the marginal verifi-

cation and false accept rates for factor Fi, a threshold τg is

set so that globally FAR(τg) = 0.10, and with this thresh-

old, the verification rate VR(Fi, τg) and false accept rate

FAR(Fi, τg) are then calculated only on the video-pairs in

Fi.

5. Imposter-Pair Analysis For Location-Pairs

In this section, we picked the threshold τg so that the

global FAR = 0.10 and then investigated the impostor dis-

tribution over the different location-pairs, calculating the

marginal false accept rates over the location-pairs using the

threshold τg . We showed that there is large variation in the

false accept rate. Then we showed that, keeping the thresh-

old τg constant, the changes in the verification and false ac-

cept rates over the location-pairs are correlated.

5.1. Range of Marginal FARs over Location-Pairs

It is well known that location significantly effects algo-

rithm performance. The design of the PaSC data set enabled

us to characterize the impact of location on performance.

Previous studies have investigated the effect of location on

verification rates [1], [10]. We proceed by examining the ef-

fect of location on the FAR and then look at the relationship

between FAR and VR.

Since comparisons are between two videos, we look at

performance for location-pairs. For the four algorithms in

our study, we computed the FAR for the 22 location-pairs

as described in Section 4. Figure 2 demonstrates how lo-

cation factors effect FAR (upper graph) and VR (lower)

for the four algorithms on handheld video-pairs when the

global FAR is set to 0.10. Along the horizontal axes are

the pairs of locations described in Section 2.2. All 22 pairs

are present in the upper graph, but only the 16 cross-week

pairs are present in the lower graph because the same-week

comparisons only contain impostor pairs. The vertical axes

show the marginal FAR and VR values, respectively, using

a τg that corresponds to a global FAR of 0.10. The location

pairs are ordered by the mean rate over all the algorithms for

both graphs. In the top graph, all location pairs to the left

of the vertical line (from pairs Ba-Ca to CaDW-CaDW) are

cross-week pairs; CaDW signifies canopy videos taken in

different weeks. All pairs to the right consist of video-pairs

taken in the same week.

The principal finding is that location exerts a dramatic

influence over the impostor distribution and hence the

marginal FAR. For handheld video-pairs, Algorithm Ljub

has the greatest range in FAR from 0.01 to 0.42, and CAS

has the smallest range from 0.05 to 0.27; for tripod video-

pairs, Ljub still has the greatest range in FAR from 0.02 to

0.39, and CAS has the smallest range from 0.03 to 0.22.

Table 2 shows the ranges for the cross-week location-pairs

over both sets of video-pairs. For the handheld video-pairs,

the FAR for the four algorithms CAS, UTS, Ljub, and SIT

varies by a factor of 3.6, 7.33, 21, and 11.5, respectively.

For the tripod video-pairs, the FAR for the algorithms CAS,

UTS, Ljub, and SIT varies by a factor of 4.33, 7.67, 9, and

7, respectively. Prior work has already suggested the impor-

tance of location [1], [10]; this is the first clear evidence of

how significantly it effects the impostor distribution.

Table 2. The cross-week ranges of location-pair marginal

FAR(Li, τg) location-pairs over both sets of video-pairs with a

threshold τg set so that global FAR = 0.10.

Algorithm Handheld Tripod

CAS 0.05− 0.18 0.03− 0.13
UTS 0.03− 0.22 0.03− 0.23
Ljub 0.01− 0.21 0.02− 0.18
SIT 0.02− 0.23 0.03− 0.21

A related finding is the importance of the cross-week

versus same-week distinction. For both sets of video-pairs,

the mean cross-week marginal FAR averaged over the algo-

rithms was 0.09 compared to 0.21 for same-week pairs. A

recent related result on still face image by Sgori et al. [14]

also showed higher FAR values for same day image-pairs

compared to different day image-pairs. One important con-

clusion is that the presence of impostor pairs in a data set

taken at the same time biases upward the expected FAR for

the data set as a whole.

5.2. Do VR and FAR Track Together?

We will now look at the relationship between the

location-pair FARs and VRs for the cross-week pairs. Scat-

terplots in Figure 3 relate marginal VR to marginal FAR,

described in Section 4, for the 16 cross-week location-pairs

over the different sensor-pairs. The horizontal axis is the

FAR on a log-scale, and the vertical axis is the VR on a

linear scale. The points represent location-pairs over dif-

ferent sensor-pairs, and the line is a linear regressor. For

all four algorithms, the regression line suggests a linear re-

lationship between log(FAR) and VR. In other words, a

location-pair that has a higher marginal VR will likely have

a higher marginal FAR. Unfortunately, this linear relation-

ship suggests that finding a location-pair that is easier than

others is unlikely. We say a location-pair is easier if it has

both a higher VR and a lower FAR than other pairs.

6. Imposter-Pair Analysis For Video-Based

Factors

In this section, we investigated the impostor distribu-

tion over the different video-based factors and showed that

there is large variation in the false accept rate. Then we
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Figure 3. Scatterplots of VR(Li, τg) vs log(FAR(Li, τg)) of location-pairs over different sensor-pairs with a threshold τg set to that global

FAR = 0.10.

showed that changes in the verification and false accept

rates over the location-pairs are correlated and interact with

the location-pairs.

The impact of image- and video-based factors on veri-

fication rates has been extensively studied; however, their

impact on the FAR has not been examined. We first look

at the relationship between FAR and VR for three video-

based factors and then investigate if there is an interaction

between location-pairs and the video-based factors.

Figure 4 shows the trade-off between FAR and VR for

face size. The procedure described at the end of Section 2.3

for creating factor levels through sorting and binning was
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used to create 10 face size factor levels: smallest faces to

largest faces. Each point in Figure 4 is plotted according to

the average marginal VR and FAR for all those video-pairs

at one face size level. A trend similar to that seen for loca-

tion factors is evident, changes in face size associated with

higher marginal VR correlate with higher marginal FAR.

There is a similar relationship for yaw and face size.

Figure 5 highlights the interactions between location and

video factors for Algorithm Ljub. Like the scatterplots

in Figure 3, each point corresponds to a location-pair and

sensor-pair. Unlike in Figure 3, in Figure 5 circle size varies

and is proportional the mean video factor for a location-pair.

For the yaw-factor, all the circles are about the same size,

which means that yaw does not interact with the location-

pair. In contrast, a clear interaction effect between location

and face size is evident: location-pairs with smaller VR and

FAR tend to have small circle sizes and hence smaller mean

face sizes. Figure 5 also suggests some interaction between

location and face confidence.

This analysis was repeated for Algorithms SIT, UTS, and

CAS, and the conclusions were the same. Across all four al-

gorithms for all three video factors, we saw a trade-off be-

tween VR and FAR for different levels of each factor. Fur-

ther analysis suggested an interaction between location and

both face size and face confidence with face size having a

larger interaction.

7. Predicting Performance

7.1. Models

With a new, previously unseen, location being compared

to a known location, how well can performance (marginal

VR) be predicted? We know that there is a wide range of po-

tential marginal VR. Figure 3 illustrates this, showing scat-

terplots of VR vs log(FAR) of location-pairs over different

sensor-pairs. Recall that additionally, a linear regressor is fit

to the points for each algorithm. Observe the ranges of the

marginal VR for the location-pairs of the four algorithms.

For the algorithm SIT, the range is from 0.32 to 0.99 when

the threshold τg is picked to set the global FAR to 0.10, de-

scribed in Section 4.

What if, instead of one new location, two locations are

new and compared against each other? How well can we

accurately predict performance of this entirely new pair? Is

it even possible to predict the performance with the same

technique used when only one location is new? Which fac-

tors should be included in a model?

We started with a very simple model. As explained be-

low, Linear Model 1 uses only the FAR of a location-pair

to predict what the observed VR will be. Simply know-

ing how many false positives are in the set of video-pairs

for a location-pair can indicate how well the algorithm will

perform for those video-pairs. Additionally knowing some

more information on the video-pairs, i.e. the video-based

factors from Section 2.3, a better prediction can be made

using Linear Model 2.

In Figure 3, a simple linear regressor is fit solely to the

marginal verification and false accept rates of the location-

pairs. The linear regressor is given by

VR = α+ β log(FAR). (1)

This is Linear Model 1.

Video-based factors are not incorporated into Linear

Model 1. However, as we noted earlier, there is interac-

tion between location and two video-based factors. There

is interaction between location and face size, there is less

interaction between location and face confidence, but there

is no interaction seen between location and yaw.

To find a second model that utilizes video-based factors,

we removed each location and partitioned the subjects into

training and testing sets. On the remaining video-pairs that

had both subjects in the training set, we fit models on the

marginal VR using marginal FAR as well video-based fac-

tors from Section 2.3 and any relevant two-way interaction

terms for each location-pair; we only kept terms that were

significant (p < 0.05).

Many models resulted, and they performed robustly

the same across the algorithms indicating that specifically

which terms are in the model is not highly significant. With

a set of second models being robustly the same in terms of

prediction performance, we chose for Linear Model 2 to be

given by

VR = α+β1 log(FAR)+β2 Yaw+β3 FC+β4 Yaw ∗ log(FAR)
(2)

where Yaw is the mean yaw and FC stands for the mean

face confidence for the video-pairs of the location-pair. We

use these models in the method described below in Sec-

tion 7.2 for predicting performance.

7.2. Prediction Procedure

In order to predict how well a set of videos of a location-

pair might perform, we do the following. There are six-

teen cross-week location-pairs over different sensor-pairs.

For each location-pair Li, one of the locations is randomly

dropped. There will be no location-pair (no video) contain-

ing the dropped location; this location will be new. On the

video-pairs of the remaining cross-week location-pairs, the

subjects are partitioned into two sets: training and testing.

Only video-pairs with both subjects in the training set are

used.

With the video-pairs of the training set subjects, the

global threshold τg is set so that the global FAR is 0.10. The

global VR is calculated over all video-pairs in the training

set using τg; this is denoted as VRg . For the extant location-

pairs, none of which use the new location, the marginal val-
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ues are calculated over the different sensor-pairs, and these

are used to fit the regression models from Section 7.1.

Using τg and the method described in Section 4, the ob-

served marginal VRs of the location-pair Li are calculated

over sensor-pairs; we denote this by vri. Furthermore, the

marginal FARs, fari, are also calculated. With the marginal

values, a regression line can predict the observed verifica-

tion rate. This predicted VR is bvri = f(fari) where the

function f is Linear Model 1 (eq. 1) or Linear Model 2

(eq. 2).

The root mean square error (RMSE) is used to determine

the standard deviation between the predicted VR and the

observed VR (vri). When using the global rate, VRg , to

predict the observed VR, the RMSE is denoted by G. When

using the VR predicted by a regression line, bvri, the RMSE

is denoted by E . Equations 3 and 4 formally express the

definitions, respectively.

G =

rPn

i=1
(VRg − vri)2

n
(3)

E =

rPn

i=1
( bvri − vri)2

n
(4)

8. Results of Prediction

Are these models better than using the global VR? In

order to test the models from Section 7.1, we implemented

the procedure from Section 7.2 100 times with one location

being new for each location-pair. Then, in order to test if the

method was valid for two new, unseen locations, we ran the

procedure another 100 times, but this time, both locations

of a location-pair were new.

After 100 iterations of the Section 7.2 process, Fig-

ure 6(a) displays the mean RMSEs, equations 3 and 4, of

predicting the observed VR with the previous global VR,

with the VR produced from Linear Model 1, and with the

VR produced from Linear Model 2 over all location-pairs

and sensor-pairs. The bars extend one standard deviation.

For Algorithms Ljub and SIT, the mean RMSEs from fore-

casting using Linear Model 1 are much lower than using the

global VR, which are over 0.21. For the algorithms CAS

61



CAS UTS Ljub SIT

Global

Linear Model 1

Linear Model 2

Algorithms

R
o

o
t 
M

e
a

n
 S

q
u

a
re

 E
rr

o
rs

 +
/-

 S
td

 D
e

v

0
.0
0

0
.0
5

0
.1
0

0
.1
5

0
.2
0

0
.2
5

CAS UTS Ljub SIT

Global

Linear Model 1

Linear Model 2

Algorithms

R
o

o
t 
M

e
a

n
 S

q
u

a
re

 E
rr

o
rs

 +
/-

 S
td

 D
e

v

0
.0
0

0
.0
5

0
.1
0

0
.1
5

0
.2
0

0
.2
5

CAS UTS Ljub SIT

Global

Linear Model 1

Linear Model 2

Algorithms

R
o

o
t 
M

e
a

n
 S

q
u

a
re

 E
rr

o
rs

 +
/-

 S
td

 D
e

v

0
.0
0

0
.0
5

0
.1
0

0
.1
5

0
.2
0

0
.2
5

CAS UTS Ljub SIT

Global

Linear Model 1

Linear Model 2

Algorithms

R
o

o
t 
M

e
a

n
 S

q
u

a
re

 E
rr

o
rs

 +
/-

 S
td

 D
e

v

0
.0
0

0
.0
5

0
.1
0

0
.1
5

0
.2
0

0
.2
5

(a) (b)
Figure 6. Bar plots of the mean RMSEs with standard deviation bars. In (a), one location is new. In (b), two locations are new.

and UTS, using Linear Model 1 is still better than using the

global VR, which have mean RMSEs over 0.12, but the gap

is not as large as it is for the other two algorithms.

The second linear model predicts the observed VR even

better than the first linear model. The RMSEs from Linear

Model 2 are much smaller than those from Linear Model 1

and definitely from those using the global VR. In fact, the

means from Linear Model 2 are below 0.05 across three of

the algorithms: CAS, Ljub, and SIT. The mean RMSE of

Algorithm UTS is under 0.09, which is much smaller than

it was from using the global VR or Linear Model 1 VR.

After 100 iterations, Figure 6(b) displays the mean RM-

SEs of predicting the observed VR with the global VR, with

the VR produced from Linear Model 1, and with the VR

produced from Linear Model 2 as in Figure 6(a), but in Fig-

ure 6(b), instead of one location being new, now both lo-

cations are new. Again, in general forecasting with Linear

Model 1 is better than simply using the global VR. Using

the global VR, Algorithm CAS has a mean RMSE of 0.15,

and UTS has a mean RMSE of over 0.20. Algorithms Ljub

and SIT have mean RMSEs over 0.25. For the algorithm

SIT, the mean RMSE of Linear Model 1 less than half the

mean RMSE of the global VR prediction. For Algorithms

CAS, UTS, and Ljub, Linear Model 1 is still better than the

previous global VR, but the differences are not as large as it

is for SIT.

The second linear model still does even better than the

first. There is a little more variability than before, but that

is not surprising as now both locations are new. The mean

RMSEs are under 0.12 for Algorithms UTS and Ljub, and

the mean RMSEs are below 0.08 for Algorithms CAS and

SIT.

9. Conclusion

We have shown that it is possible to predict the perfor-

mance of an algorithm on unseen videos at a new location.

We demonstrated that using the previously-known global

VR is not a very good estimate; there is a lot of variability in

marginal VR across location-pairs. We presented two mod-

els for predicting the marginal VR of a new location. The

first model uses only the marginal FAR, and the second uses

the marginal FAR as well as two video-based factors: yaw

and face confidence. Both methods are better than simply

using the previous global VR, but the second model came

the closest to predicting the observed VR. Given two new

locations, the second model is much better than using the

global VR. The algorithms on which we tested were from

four different groups on four different continents, implying

that our results will generalize well.

To develop these models, we looked at the effect of

location-camera-action (simply called location) and video

factors on the FAR. Surprisingly, for location and video-

based factors there was a clear relationship between VR and

FAR. For these factors, one level is not better than another;

there is a trade-off between VR and FAR. An increase (resp.

decrease) in the FAR results in an increase (resp. decrease)

in the VR. Our results illuminate a path for better under-

standing the performance of face recognition algorithms in

unconstrained scenarios. The results underscore a need to

better control a tendency of current algorithms to increase

impostor scores in favorable settings as defined by higher

genuine match scores. These results also establish a foun-

dation for better modeling of distributional changes condi-

tioned on measurable, knowable, attributes of target appli-

cation locations, and thus bring us closer to the goal of pre-

dicting performance on unseen videos at new locations.
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