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Abstract

In this paper we study the shape space of curves with val-

ues in a homogeneous space M = G/K, where G is a Lie

group and K is a compact Lie subgroup. We generalize the

square root velocity framework to obtain a reparametriza-

tion invariant metric on the space of curves in M . By

identifying curves in M with their horizontal lifts in G,

geodesics then can be computed. We can also mod out by

reparametrizations and by rigid motions of M . In each

of these quotient spaces, we can compute Karcher means,

geodesics, and perform principal component analysis. We

present numerical examples including the analysis of a set

of hurricane paths.

1. Introduction

The field of shape analysis is concerned with the math-

ematical description, comparison and analysis of geometric

shapes. This has applications in a variety of fields in pure

and applied mathematics. Examples include computational

anatomy, medical imaging, computer vision and functional

data analysis. Although the notion of shape varies widely

depending on the specific application, many shape spaces

share two common difficulties: these spaces are usually

non-linear and often infinite-dimensional. To deal with the

resulting challenges the methods of (infinite-dimensional)

Riemannian geometry have proved to be a successful ap-

proach.

The notion of shape space that we adopt for the purpose

of this article is the space of unparametrized curves with

values in a homogeneous space M . Before we describe the

contributions of the current work, we want to summarize

previous work in this area. We start by considering the case

of smooth, open, regular curves with values in some Eu-

clidean space R
d:

Imm([0, 1],Rd) :=
{

c ∈ C∞([0, 1],Rd) : c′ 6= 0
}

. (1)

∗Eric Klassen gratefully acknowledges the support of the Simons Foun-

dation (Grant # 317865).

In the field of shape and functional data analysis one is

usually not interested in the actual parametrization of the

curves, but only in their geometric shape. Mathematically

the space of unparametrized curves (shapes) can be mod-

eled as the quotient space

S([0, 1],Rd) = Imm([0, 1],Rd)/Diff+([0, 1]) , (2)

where Diff+([0, 1]) denotes the group of smooth orientation

preserving diffeomorphisms of the interval [0, 1] onto itself.

For applications in shape analysis we want to define

a distance or similarity measure on the space of un-

parametrized curves. Towards this aim one can equip

the space of all parametrized curves with a Diff+([0, 1])-
invariant metric and induce a Riemannian metric on the

quotient space by requiring the quotient map π to be a Rie-

mannian submersion. By an invariant Riemannian metric

on Imm([0, 1],Rd), we mean a Riemannian metric G with

the property that the re-parametrization group Diff+([0, 1])
acts by isometries, i.e.,

Gc◦ϕ(u◦ϕ, u◦ϕ) = Gc(u, u) . ∀ϕ ∈ Diff+([0, 1]) . (3)

Given an invariant metric G on Imm([0, 1],Rd), the in-

duced metric1 on S([0, 1],Rd) is then defined as

Gπ(c)(u, u) = inf
π∗c(h)=u

Gc(h, h) . (4)

Thus the study of Riemannian metrics on the shape space

S([0, 1],Rd) is reduced to the study of invariant metrics on

the simpler space of parametrized curves.

It came as a big surprise that the simplest such metric –

the reparametrization invariant L2-metric – induces vanish-

ing geodesic distance, which renders it useless for applica-

tions in shape analysis, see [20, 22, 1]. To overcome this de-

generacy several modifications of the L2-metric have been

introduced: Michor and Mumford [22] introduced metrics

1The invariance property is a necessary but not a sufficient condition

to induce a Riemannian metric on the quotient space. In the context of

invariant metrics on spaces of curves, however, it has been shown that they

indeed induce a smooth Riemannian metric on the quotient space.
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that are weighted by the curvature of the foot point curve c
and Shah [28] and Mennucci and Yezzi [33] studied length

weighted L2-metrics. While overcoming the degeneracy

of the geodesic distance, the existence of length minimiz-

ing curves for these metrics remains a delicate problem. It

turned out to be a more promising approach to include (arc-

length) derivatives of the tangent vector in the definition of

the metric, yielding the class of Sobolev metrics. These

metrics have received rigorous theoretical analysis and, in

particular, there exist analytic results on local and global

existence of geodesics [21, 18, 7].

From an application point of view, a certain family of

first order Sobolev metrics proved advantageous, as there

exist isometric transformations to flat spaces allowing for

explicit calculations of geodesics and geodesic distance [23,

30, 32]. This family of metrics, also called elastic metrics,

can be written as:

Gc(h, h) =

∫ 1

0

a2|Dsh
N |2 + b2|Dsh

T |2ds; (5)

here Ds and ds denote differentiation and integration with

respect to arc-length and let Dsh
N (resp. Dsh

T ) denote the

components of Dsh which are normal (resp. tangent) to the

tangent vector ċ of the curve. For a = b and curves with val-

ues in R
2, Younes et al. [35] introduced the basic mapping

to represent this metric; for the space of curves with values

in general Euclidean space R
d Srivastava et al. [30] devel-

oped the SRV transform to represent the metric with a = 1
and b = 1

2 . These transformations have been generalized to

arbitrary parameters a, b in [2]. Using the SRV, efficient nu-

merical calculations of geodesics have been developed and

it also has given rise to rigorous results on the metric com-

pletion and the existence of minimizing reparametrizations

[7]. In particular it has been shown that the metric comple-

tion of Imm([0, 1],Rd) is the space of absolutely continu-

ous functions AC([0, 1],Rd) [18] and that in the case of PL

curves [15] and C1 curves [6], optimal reparametrizations

exist, leading to length-minimizing paths in shape space

S([0, 1],Rd).
Recently, there has been an effort to generalize these

metrics (and in particular the SRV transform) for curves

with values in a general Riemannian manifold M . Su et

al. [31] introduced the TSRVF (transported square root ve-

locity function), in which all SRVFs are parallel transported

along geodesics to the tangent space at a single reference

point x ∈ M . This method is computationally effective,

but it has the disadvantage of introducing distortions for

curves that venture far away from x, and the metric depends

on the chosen reference point x. Zhang et al. [36] intro-

duced a different adaptation of the SRV, in which each path

α : [0, 1] → M is represented by a path in the tangent space

at its own initial point α(0); the velocity vectors are parallel

translated along the path α itself to this initial point. The

paths are then compared using a metric on the total space of

the tangent bundle TM . This method avoids the distortion

and arbitrariness of the TSRVF resulting from the choice

of a reference point; however, the computations are much

more difficult. Le Brigant [17] introduced a more intrinsic

metric on curves, defined pointwise along the curve. This

method also avoids the arbitrariness and distortion of the

TSRVF, but at a greater computational cost.

In [8], Celledoni et al. adapted the SRV framework to

the analysis of curves in a Lie group with a right-invariant

metric. The basic idea is to use right translation to identify

all tangent vectors to elements of the Lie algebra. The ap-

proach taken in the current paper is a generalization of this

idea to curves in homogenous spaces.

For the space Imm(N,M) of immersions between two

possibly higher dimensional manifolds much less is known.

Sobolev metrics thereon have been introduced in [5] and in

the case of surfaces in R
d certain generalizations of the SRV

framework have been studied in [27, 9, 13, 14, 12, 11]. For

more details on Riemannian metrics on spaces of curves and

surfaces we refer to [34, 29, 3, 4].

Contributions of this paper: We introduce a new gen-

eralization of the SRV transform for curves with values in

a homogeneous space M = G/K, where G is a Lie group

and K is a compact Lie subgroup. Many of the Riemannian

manifolds that arise in applications can be viewed as ho-

mogeneous spaces, for example Euclidean spaces, spheres,

Grassmannians, hyperbolic spaces, positive definite sym-

metric matrices, as well as all Lie groups. Compared to pre-

vious attempts, our approach has the advantage that it still

yields explicit formulas for geodesics and geodesic distance

– computing a geodesic on the space of parametrized curves

is equivalent to (1) computing a geodesic in G and (2) per-

forming an optimization over the compact group K. Our

construction is based on first defining the SRV for curves

with values in Lie groups [8] and then lifting the curve in

M to a horizontal curve in the Lie group G. We com-

pare our metric with the metric that has been considered

in [36, 17, 16] and show the effectiveness of our algorithms

in numerical examples using hurricane paths, i.e., curves

with values on the homogenous space S2. In future work,

we plan to generalize results on the existence of minimizing

geodesics and optimal reparametrizations that are known to

hold for curves in Euclidean spaces, to curves in homoge-

neous spaces.

2. The SRV for the space of curves with values

in a homogenous space

Let M = G/K be a homogeneous space, where G is a

Lie group and K is a compact Lie subgroup of G. We will

denote the Lie algebras of G and K by g and k respectively.

Assume that G is equipped with a left invariant Rieman-

nian metric that is also bi-invariant with respect to K. This
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metric induces a Riemannian metric on M that is invariant

under the left action by G, see e.g. [25]. Furthermore we

will denote the set of all absolutely continuous curves with

values in a manifold N by AC([0, 1], N) – here N will be

either M or G – and by Γ the group of orientation preserv-

ing reparametrizations, Γ = Diff+([0, 1]).

2.1. Curves with values in a Lie group G

Following the SRVF (introduced by Srivastava et al. in

[30]), we define the map

Q : AC([0, 1], G) → G× L2([0, 1], g)

Q(α) = (α(0), q), (6)

where

q(t) =







Lα(t)−1

α′(t)
√

||α′(t)||
α′(t) 6= 0

0 α′(t) = 0

(7)

In this definition, the notation Lα(t)−1 refers to left transla-

tion applied to elements of G, as well as to tangent vectors.

The q-map here is the same as the q-map defined in [8] (us-

ing right translation instead of left). We have the following

proposition:

Proposition 1. The map Q : AC([0, 1], G) → G ×
L2([0, 1], g), defined above, is a bijection.

Proof. Let α ∈ AC([0, 1], G) denote the preimage under Q
of a given (α0, q) ∈ G × L2([0, 1], g). By definition, α is

the unique solution of the initial value problem α(0) = α0,

and α′(t) = Lα(t)(||q(t)||q(t)). In the case of G = g =
R

n, existence and uniqueness of such an α was proved by

Robinson in [26]. To present a detailed proof of this result

in the case of a Lie group G is outside of the scope of this

contribution, and we postpone it to a future extended journal

version of this article.

Since we have already given G a Riemannian metric, and

L2([0, 1], g) has its own L2 metric, we obtain a product Rie-

mannian metric on G × L2([0, 1], g). Furthermore, as Q is

a bijection, there exists a smooth structure on AC([0, 1], G)
such that Q is in addition a diffeomorphism. We can then

use this diffeomorphism to induce a Riemannian metric

(and thus distance function) on AC([0, 1], G). Note that

it has been shown in [6] that the mapping Q is not a diffeo-

morphism and consequently does not induce a Riemannian

metric on AC([0, 1], G), if the former is equipped with its

natural smooth structure.

Given α1, α2 ∈ AC([0, 1], G), let Q(α1) = (α1(0), q1)
and Q(α2) = (α2(0), q2). The distance function on

AC([0, 1], G) then takes the form:

d(α1, α2) =
(

d2(α1(0), α2(0)) + ||q1 − q2||
2
)1/2

(8)

where the d on the right hand side of this equation is

the geodesic distance on G. Consider the action of the

reparametrization group Γ on AC([0, 1], G) by right com-

position and the action of G on AC([0, 1], G) by left mul-

tiplication. Given γ ∈ Γ and g ∈ G, the corresponding

actions of γ and g on the product space G × L2([0, 1], g)
are as follows:

g • (α0, q) ⋆ γ =
(

gα0, q ◦ γ
√

γ′
)

, (9)

where (α0, q) ∈ G × L2([0, 1], g). G acts by isometries,

since the metric on G was chosen to be left-invariant. The

proof that Γ acts by isometries is the same as in the Rn case

(see [30]) and we omit it. Hence we have the following

proposition.

Proposition 2. The Riemannian metric on AC([0, 1], G)
and the corresponding distance function are preserved by

the action of G and by the action of the reparameterization

group Γ.

We will now derive the formula for the induced Rieman-

nian metric on AC([0, 1], G). Denote by 〈·, ·〉G the metric

on G. Given α ∈ AC([0, 1], G) and u ∈ TαAC([0, 1], G),
one can compute the differential of Q:

Q∗α : TαAC([0, 1], G) → T(α(0),q)(G× L2([0, 1], g))

Q∗αu = (u(0), q∗αu) , (10)

where q∗α : TαAC([0, 1], G) → TqL
2([0, 1], g) and

q∗αu =‖α′‖1/2Ds(u)−
1

2
‖α′‖−3/2〈Dsu, δ

l(α)〉Gδl(α).

(11)

Here δl(α) = α−1α′ and Ds(v) = 1
‖α′‖δ

l
∗α(v). For a

proof of this computation we refer to [8]. The metric on

AC([0, 1], G) is then obtained as the pullback of the natural

product metric of G× L2([0, 1], g) under Q:

Proposition 3. Let u, v be smooth tangent vectors with

foot point an immersion α. The pullback metric G on

AC([0, 1], G) at the smooth immersion α is given by

Gα(u, v) = 〈Q∗αu,Q∗αv〉Q(α) = 〈u(0), v(0)〉G (12)

+

∫

〈Dsu
N , Dsv

N 〉G +
1

4
〈Dsu

T , Dsv
T 〉Gds,

where we integrate with respect to arclength ds =

||α′(t)||dt, Dsu
T = 〈Dsu,

δl(α)
‖α′‖ 〉

G
(

δl(α)
‖α′‖

)

and Dsu
N =

Dsu−Dsu
T are the tangential component and the normal

component of Dsu respectively.

For G = R
d the formula for the metric G reduces to (5),

i.e., we obtain the elastic metric as defined in [23]. On Lie
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groups the last two terms form the pullback metric obtained

by Celledoni et al. in [8] (using right instead of left trivial-

ization). However, it is different than the metric introduced

by Le Brigant et al. [17] and Zhang et al. [36] for arbitrary

Riemannian manifolds. In our method the velocities are

transported to the Lie algebra using left translation, while

the metric in the above mentioned work is based on parallel

transport. Thus these metrics will be different if G is not an

abelian Lie group. In Fig. 1 we show examples of geodesics

for curves in hyperbolic space. The resulting geodesics are

very similar to the geodesics obtained in [17, 16]. We plan

to further investigate the similarities between these methods

in future work.

2.2. Curves with values in a homogeneous space M

In this section, we will analyze curves in M = G/K
by relating them to their horizontal lifts in G. Note that

g = k ⊕ k⊥, where k denotes the Lie algebra of K and k⊥

denotes the orthogonal complement of k in g. Denote by

AC⊥([0, 1], G) the set of all absolutely continuous paths in

G which are orthogonal to each coset of K that they meet.

Since the metric on G is left invariant, α ∈ AC⊥([0, 1], G)
is equivalent to Lα−1α′(t) ⊥ k, which is equivalent to

q ∈ L2([0, 1], k⊥), where (α(0), q) = Q(α). There-

fore, Q restricts to a bijection between AC⊥([0, 1], G) and

G× L2([0, 1], k⊥).
Now consider the right action of K on G×L2([0, 1], k⊥)

given by:

(α0, q) ∗ y = (α0y, y
−1qy), (13)

where y ∈ K,α0 ∈ G and q ∈ L2([0, 1], k⊥). Note that K
acts by isometries, where we put the standard L2 metric on

L2([0, 1], k⊥) and the product metric on G×L2([0, 1], k⊥).
Denote by π : G → M the quotient map, Vp = kerπ∗p the

vertical distribution for p ∈ G and Hp the orthogonal com-

plement of Vp in TpG. For every p ∈ G, TpG = Hp ⊕ Vp

and π∗p induces an isomorphism between Hp and Tπ(p)M .

Thus, given β ∈ AC([0, 1],M) and α0 ∈ π−1(β(0)), there

is a unique lift α ∈ AC⊥([0, 1], G) such that α(0) = α0

and β(t) = π(α(t)). Note that the horizontal lift of β to

α ∈ AC⊥([0, 1], G) depends only on the choice of the lift

α0 of the initial point β(0):

G

π

��
I

α

::

β
// M = G/K

(14)

Let α0, α̃0 be two lifts of β(0) and α, α̃ be the lifts of β
in AC⊥([0, 1], G) starting at α0 and α̃0 respectively. Then

α̃ = αy, where y = α−1
0 α̃0 ∈ K; also

(α̃0, q̃) = (α0, q) ∗ y, (15)

where (α0, q) = Q(α) and (α̃0, q̃) = Q(α̃). It follows that

Q induces a bijection

(G× L2([0, 1], k⊥))/K → AC([0, 1],M). (16)

Since K is compact and acts freely on G×L2([0, 1], k⊥),
there is an inherited Riemannian metric on (G ×
L2([0, 1], k⊥))/K. A minimal geodesic in the quotient

corresponds to a shortest geodesic between two orbits in

G× L2(I, k⊥) under the action of K. We use this bijection

to transfer the smooth structure and the Riemannian metric

on (G×L2(I, k⊥))/K to AC([0, 1],M), making the latter

into a Riemannian manifold.

Suppose β1, β2 are two paths in AC([0, 1],M); let α1

and α2 be lifts of β1, β2 in AC⊥([0, 1], G). Let

Q(α1) = (α1(0), q1), Q(α2) = (α2(0), q2). (17)

The distance between β1 and β2 induced from the distance

function on AC([0, 1], G) is given by:

d(β1, β2)

= inf
y∈K

(

d2(α1(0), α2(0)y) + ||q1 − y−1q2y||
2
)1/2

. (18)

Consider now the right action of Γ and the left action

of G on G × L2([0, 1], k⊥). Similar as in the case of

AC([0, 1], G), we have the following proposition:

Proposition 4. The Riemannian metric on AC([0, 1],M)
and the corresponding distance function are preserved by

the action of G and by the action of the reparameterization

group Γ.

The formula for the induced pull back metric on

AC([0, 1],M) is then simply given by restricting the metric

G to horizontal vector fields.

3. Computing Geodesics

3.1. Comparing Curves in M

To compute the geodesic between β1 and β2 in

AC([0, 1],M), we need to compute the geodesic of mini-

mal length between the orbits of Q(α1) and Q(α2) under

the action of K. To do this, we need to find y ∈ K that

minimizes

d2(α1(0), α2(0)y) + ||q1 − y−1q2y||
2. (19)

Then the geodesic between (α1(0), q1) and

(α2(0)y, y
−1q2y) will project to a geodesic between

β1 and β2, see [24, 19] for more details regarding

Riemannian submersions.

In practice we will search for the optimal y using a gra-

dient descent method. Towards this aim we define the func-

tional F : K → R by

F (y) = d2(α1(0), α2(0)y) + ||q1 − y−1q2y||
2, (20)
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Figure 1. Examples of geodesics between parametrized curves in 2-dimensional hyperbolic space. We show selected particle paths of the

geodesic connecting the boundary curves.

which is the square of the distance function between

(α1(0), q1) and (α2(0)y, y
−1q2y). Since K acts transitively

on (α2(0), q2) ∗ K, we can just calculate the gradient at

y = I .

To simplify the presentation, we assume that G is a ma-

trix group and that the inner product on the Lie algebra g is

given by 〈x, y〉 = tr(xty), where xt means the transpose

of x. We will calculate the gradient of the two terms of F
separately. The first term of F can be extended to a func-

tion F1 : G → R, defined by the same formula: F1(y) =
d2 (α1(0), α2(0)y). By left invariance of the metric on G,

we can rewrite this as F1(y) = d2
(

α2(0)
−1α1(0), y

)

. It is

a well-known fact that the gradient of this function at y = I
is given by ∇IF1 = −2LogI(α2(0)

−1α1(0)) ∈ g, where

Log denotes the inverse Riemannian exponential function at

I ∈ G. If Log is multivalued, we will take the value with

the smallest norm. Now, if we restrict F1 to K, then the

gradient in k will simply be the projection of the above ex-

pression from g to k. Thus the gradient of the first term of

F (y) is given by −2Proj
k

(

LogI(α2(0)
−1α1(0))

)

.

Now we turn our attention to the second term of F . By

the bi-invariance of the metric under multiplication by ele-

ments of K, we have

F2(y) = ||q1 − y−1q2y||
2

= ||q1||
2 + ||y−1q2y||

2 − 2〈q1, y
−1q2y〉

= ||q1||
2 + ||q2||

2 − 2〈q1, y
−1q2y〉. (21)

Since the first two terms do not depend on y, we just need

to calculate the gradient of 〈q1, y
−1q2y〉. We will use the

first order approximation y ∼ I + tV and y−1 ∼ I − tV ,

where V ∈ k. Then we have the directional derivative of

〈q1, y
−1q2y〉 at I in the direction V :

d

dt t=0
〈q1,(I − tV )q2(I + tV )〉 = 〈q1, q2V 〉 − 〈q1, V q2〉

=

∫ 1

0

tr(qt1q2V )dt−

∫ 1

0

tr(qt1V q2)dt

=

∫ 1

0

tr(qt1q2V )dt−

∫ 1

0

tr(q2q
t
1V )dt

= tr(

∫ 1

0

(qt1q2 − q2q
t
1)dtV )

= 〈

∫ 1

0

(qt2q1 − q1q
t
2)dt, V 〉 (22)

So we get the gradient of the second term at y = I

2Proj
k

(∫ 1

0

(q1q
t
2 − qt2q1)dt

)

. (23)

Hence the gradient of F at y = I is

∇IF =2Proj
k
(−LogI(α2(0)

−1α1(0))

+

∫ 1

0

(q1q
t
2 − qt2q1)dt). (24)

This yields the following algorithm to obtain the

geodesic of minimal length between the orbits of

(α1(0), q1) and (α2(0), q2):

(1) For (α1(0), q1), (α2(0), q2) ∈ G × L2([0, 1], k⊥), set

the step size ǫ and calculate the gradient at y = I .

(2) Update (α2(0), q2) to (α2(0)y, y
−1q2y), where y =

ExpI(−ǫ∇F ).

(3) If the norm of ∇F is small enough, then stop. Other-

wise go back to step (1).

Using this algorithm, we obtain a geodesic which locally

minimizes the distance between the orbits of (α1(0), q1)
and (α2(0), q2). If we start with a different orbit represen-

tative α̃2(0) ∈ G, the algorithm may converge to a different

geodesic. To increase our chance of finding the minimal

geodesic, we act on (α2(0), q2) by several different ele-

ments in K, and use the resulting points as initializations

for the gradient algorithm.

3.2. Comparing Curves in M up to Reparameteri-
zation

In the following, we are interested in comparing the

shape of unparameterized curves. To mathematically for-

mulate our matching problem we define an equivalence re-

lation on AC([0, 1],M) as follows: Given elements β0
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Figure 2. Examples of geodesics between two curves in AC([0, 1], S2), S
AC([0, 1], S2), AC([0, 1], S2)/ SO(3),

S
AC([0, 1], S2)/ SO(3). Starting points of the curves are marked with a ⋆.

and β1 of AC([0, 1],M), define β0 ∼ β1 if and only if

their orbits β0Γ and β1Γ have the same closure with re-

spect to the geodesic distance metric on AC([0, 1],M) we

defined before, see [15]. We then define the shape space

SAC([0, 1],M) to be the set of equivalence classes under

∼ and we refer to the “shape” of a curve as its equivalence

class in SAC([0, 1],M). The space SAC([0, 1],M) is not a

manifold, but we can endow SAC([0, 1],M) with a metric

so that it becomes a metric space [15, 6].

By proposition 4, the distance function d on

AC([0, 1],M) is reparametrization invariant. We

now consider the quotient space SAC([0, 1],M) =
AC([0, 1],M)/Γ. The induced distance is defined to be

d([β1], [β2])

= inf
y∈K
γ∈Γ

(

d2(α1(0), α2(0)y) + ||q1 − y−1(q2, γ)y||
2
)1/2

.

(25)

To compute the geodesic between [β1] and [β2], we need to

find the optimal y ∈ K and γ ∈ Γ to minimize this distance.

Since the action of K and the action of Γ on G×L2(I, k⊥)
commute with each other, we use the gradient method and

the dynamic programming algorithm [29] to obtain a satis-

factory convergence of both y and γ.

For curves in values in R
d, the existence of optimal

reparametrizations has been shown for PL curves [15] and

C1 curves [6]. In future work we plan to generalize these

results to curves with values in homogenous spaces.

3.3. Comparing Curves in M up to Rigid Motions

The group G acts on M as its group of rigid motions. For

certain applications, we might want to calculate distances

and geodesics in the quotient space AC([0, 1],M)/G. By

proposition 4, the distance function on AC([0, 1],M) is in-

variant under the left action of G. On the quotient space

AC([0, 1],M)/G, the distance function is then defined by

d([β1], [β2])

= inf
y∈K
g∈G

(

d2(α1(0), gα2(0)y) + ||q1 − y−1q2y||
2
)1/2

.

(26)

Since g appears only in the first summand in this formula,

the minimum value of this distance can be achieved as fol-

lows: First choose y ∈ K to minimize the second term,

and then choose g = α2(0)yα
−1
1 (0), which will result in

d(α1(0), gα2(0)y) = 0 and the simplified distance formula:

d([β1], [β2]) = inf
y∈K

||q1 − y−1q2y||. (27)

As a result, the gradient calculation is much simpler in this

case.

3.4. Comparing Curves in AC([0, 1],M) up to Rigid
Motions and Reparametrizations

Now we consider both the action of Γ and of G on

AC([0, 1],M) simultanously. We want to mod out both of

these actions and focus on the quotient AC([0, 1],M)/(G×
Γ). The distance function is defined to be

d([β1], [β2])
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= inf
y∈K

γ∈Γ,g∈G

(

d2(α1(0), gα2(0)y) + ||q1 − y−1(q2, γ)y||
2
)1/2

.

(28)

Similar as in section 3.3, the distance function can be sim-

plified to

d([β1], [β2]) = inf
y∈K
γ∈Γ

||q1 − y−1(q2, γ)y||. (29)

The optimal y ∈ K and γ ∈ Γ can now be found using the

gradient and the dynamic programming algorithm, and we

then set g = α2(0)yα
−1
1 (0).

4. Curves with values on S
n

In this section we want to describe the important special

case of curves with values on Sn in more detail. To view the

sphere as a homogenous space we consider the Lie group

SO(n) = {A ∈ GL(n,R)|AtA = AAt = I, det(A) = 1}
(30)

with corresponding Lie algebra

so(n) = {X ∈ M(n,R)|X +Xt = 0}. (31)

It is well known that Sn ∼= SO(n + 1)/ SO(n), where we

identify SO(n) as a subgroup of SO(n + 1) using the in-

clusion A →

(

A 0
0 1

)

. Let n = (0, ...0, 1) ∈ Sn be the

north pole. Then the quotient map π : SO(n+ 1) → Sn is

defined by π(α) = αn.

To use the previously developed theory we need to de-

fine a Riemannian metric on SO(n + 1) that is bi-invariant

with respect to SO(n): for any pair of tangent vectors u and

v in Tg SO(n+1) with g ∈ SO(n+1), we define the inner

product 〈u, v〉g = tr(utv). It is straightforward to check

that this metric is indeed bi-invariant under multiplication

by elements of SO(n + 1) and thus in particular by mul-

tiplication with elements of SO(n) ⊂ SO(n + 1). Using

the bi-invariance of the metric, the Riemannian exponential

map at the identity is equal to the Lie group exponential

[25] and is thus of the form v → ev . The inverse Rieman-

nian exponential map at identity is simply the log function

g → log(g).
The following well-known lemma will be useful in cal-

culating the lift of paths in Sn to paths in SO(n+ 1):

Lemma 1. Let p, q ∈ Sn and p 6= −q, then the most effi-

cient rotation that takes p → q can be expressed as

Rp,q =

(

I −
2

|p+ q|2
(p+ q)(pt + qt)

)

(I − 2ppt).

(32)

By most efficient, we mean the rotation closest to I with

respect to the bi-invariant metric on SO(n+ 1).

This formula is only valid if p 6= −q, since if p = −q
there is no unique shortest rotation taking p to q. Us-

ing the above lemma we obtain the following algorithm

for lifting paths: Let β ∈ AC([0, 1], Sn). Then a lift

α ∈ AC([0, 1], SO(n + 1)) of β can be computed as fol-

lows:

(1) If β(0) = −n, set

α(0) =





−1 0 0
0 In−1 0
0 0 −1



 , (33)

where In−1 is the (n−1)× (n−1) identity matrix. For

β(0) 6= −n, set α(0) = R
n,β(0).

(2) Given α(t), set α(t + ∆t) = Rβ(t),β(t+∆t)α(t) for a

chosen step size ∆t.

Proposition 5. Given β ∈ AC([0, 1], Sn), by us-

ing the lift algorithm described above, the lift α is in

AC⊥([0, 1], SO(n + 1)), that is, it satisfies the two prop-

erties:

1. β(t) = π(α(t)) for all t ∈ I ,

2. α̇(t) ⊥ α(t)TI SO(n) for all t ∈ I .

Proof. Obviously, the first property holds. And the discrete

form of second also holds, that is, the geodesic between

α(t) and α(t + ∆t) is perpendicular to the orbits with re-

spect to these two points. Assume that α(t +∆t) = yα(t)
for y ∈ SO(n + 1). By the bi-invariance of the metric, we

have the distance d(α(t), α(t + ∆t)) = d(α(t), yα(t)) =
d(I, y). It is easy to see that y left translates the orbit α(t)
to the orbit α(t + ∆t), which is equivalent to left trans-

lating β(t) to β(t + ∆t), that is, yβ(t) = β(t + ∆t).
Rβ(t),β(t+∆t) ∈ SO(n + 1) is the most efficient rotation

such that d(α(t), Rβ(t),β(t+∆t)α(t)) = d(I, Rβ(t),β(t+∆t))
is smallest, which means the distance between α(t) and

Rβ(t),β(t+∆t)α(t) realizes the shortest possible distance be-

tween all pairs of representatives of these two orbits.

5. Applications to hurricane tracks

Finally we want to demonstrate the effectiveness of the

proposed framework using real data. We consider 75 hur-

ricane tracks from the Atlantic hurricane database and 75

hurricane tracks from the Northeast and North Central Pa-

cific hurricane database (HURDAT2)2. The data under con-

sideration is depicted in Fig. 3. Each hurricane path is rep-

resented as a curve in S2, and is discretized as a piecewise-

geodesic polygon. Our first step is to calculate the matrix of

all pairwise distances. For unparametrized curves using an

2The data was obtained from the National Hurricane Center website:

http://www.nhc.noaa.gov/data/.
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Figure 3. In S
AC([0, 1], S2) (first row) and in S

AC([0, 1], S2)/ SO(3) (second row): the Karcher mean (black) of 75 hurricane tracks in

Atlantic database, of 75 hurricane tracks in North Central Pacific hurricane database and of the combined 150 hurricane tracks (from left

to right).

Intel Core i7-4510U (2.00GHz) machine, the computation

of these 11175 boundary value problems took less than two

minutes 3. We note that our algorithms are orders of mag-

nitudes faster than the algorithms developed in [36, 17, 16],

while at the same time overcoming the disadvantages of the

methods used in [31].
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Figure 4. The distance matrix of 150 hurricane tracks visualized

using multi-dimensional scaling in two dimensions. Left: dis-

tances calculated in S
AC([0, 1], S2). Right: distances calculated

in S
AC([0, 1], S2)/SO(3). Data points representing hurricanes

from the Atlantic are marked with a ⋆; hurricanes from the Pacific

region with a ◦.

In Figure 4 we visualized the distance matrices us-

ing multi-dimensional scaling [10]. As one might expect

there is clear clustering between the hurricane tracks from

the Atlantic region and those of the Northeast and North

Central Pacific region if we regard them as elements of

SAC([0, 1], S2). However if, in addition, we mod out by

rigid motions, then the obtained distance matrix does not

3In the implementation we made use of the one-dimensionality of K =
SO(2), which allowed us to solve the minimization over K without the

gradient method.

seem to capture this information anymore. This suggests

that the clustering in the previous experiment was mainly

based on location and that the shape of a hurricane path

does not possess enough information to allow for a signifi-

cant statement on its region of origin. Finally we calculate

the Karcher mean of all hurricanes and of each of the groups

separately as well. These results are depicted in Fig. 3. Us-

ing the Karcher means as a charts, this potentially allows

to linearize the shape space using the corresponding tan-

gent spaces. As an example, we show geodesics from the

Karcher mean in the direction of the first two principal di-

rections in Fig. 5. It seems that the first principal direction

encodes the variety in shape, whereas the second direction

seems to mainly reflect the change in the length of the hur-

ricanes.

Figure 5. The first two principal directions starting from the

Karcher mean (black) of 150 hurricane tracks in S
AC([0, 1], S2)

(first row) and in S
AC([0, 1], S2)/ SO(3) (second row).
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