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Abstract

Human bodies and movements exhibit inherent symme-

try. However, an important class of everyday movements,

such as walking, does not maintain symmetry at every time

instance. The symmetry in these movements is a spatio-

temporal glide-reflection symmetry. The ability to mea-

sure this type of symmetry will provide us opportunities

for various computer-aided applications including health

monitoring, rehabilitation, and athletic training. In this

paper we propose a method that uses the tools from elas-

tic shape analysis to provide continuous symmetry scores

which measure the degree of glide-reflection symmetry in

movements. These scores can be updated online after each

frame, and easily combined to drive comprehensible feed-

back. Our preliminary experiment demonstrates that our

symmetry scores can well distinguish between a normal gait

and simulated stroke and Parkinsonian gaits. Our results

also suggest that using the Riemannian elastic metric pro-

vides better scores than Euclidean approaches.

1. Introduction

Human bodies are bilaterally symmetric, and this spatial

symmetry is preserved in many everyday postures and ac-

tions. However, there is an important class of movements

in which this spatial symmetry is not maintained through-

out the duration of the whole movement but still commonly

considered as symmetric. Walking, running, crawling, and

certain styles of swimming (front crawl, backstroke) are all

examples of this type. The perceived symmetry in these

movements is not purely spatial but spatio-temporal, and

can also be described as a glide-reflection symmetry, in

which an invariance or approximate invariance exists with

This research was supported by NSF grant 1617999.

Figure 1: An example of spatio-temporal glide-reflection

symmetry in walking between the right leg (red) and the

left leg (blue).

regard to the combination of a temporal glide and a spatial

reflection.

Figure 1 illustrates an example of this spatio-temporal

glide-reflection symmetry (using silhouettes from the Weiz-

mann dataset [4]). The trajectory of the right leg (colored

in red) is spatially symmetric with the left leg (colored in

blue), but only after a temporal glide. The left and right legs

are not in spatially symmetric positions except at certain

time instances, nor are their trajectories reflections of each

other in the same time period (e.g. from t1 to t3). However,

the trajectory of the right leg is approximately the spatial

reflection of that of the left leg in a different time period.

In the example given in Figure 1, the trajectory of the right

leg from t1 to t3 and that of the left leg from t2 to t4 are

symmetric across the median plane. Similar symmetry ex-

ists in the arm movements. This type of symmetry cannot

be found by only looking at spatial or temporal relationships

between different body parts, but has to be considered using

the combination of both.

While a normal, healthy person’s walking usually ex-

hibits a high degree of glide-reflection symmetry, it may

not always be the case when the person’s motor function
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deteriorates. There also exist movements which may be

learned in adulthood and can exhibit varying degrees of

glide-reflection symmetry (e.g. swimming). Therefore, it

is useful to quantify how much such a movement deviates

from perfect glide-reflection symmetry. In this paper, we

propose a method for this purpose, with an aim for obtain-

ing continuous, online, and potentially real-time, symmetry

scores. These scores can then be used in computer systems

for various applications, such as health monitoring, multi-

media rehabilitation, and computer-aided athletic training.

An example of such a feedback system for spatial reflec-

tion symmetry was previously developed [16], inspired by

a rehabilitation program for stroke patients [1]. When using

this feedback system, a spatial symmetry score is computed

based on the locations of selected body joints in each frame,

obtained from a Microsoft Kinect sensor. A continuous au-

ditory feedback is then generated from this symmetry score.

In this particular design, higher symmetry scores generate

more prominent musical feedback, while lower scores do

the opposite. Therefore the user can adjust their posture or

movement (e.g. sit-to-stand) to be more symmetric, based

on the continuous, real-time feedback they receive. This

system however is not useful for movements with glide-

reflection symmetry such as walking, because even with

highly symmetric walking, high spatial symmetry is only

achieved at certain time instances, but not during the whole

movement. The spatial symmetry score will fluctuate cycli-

cally in a wide range, making the resulting fast changing

feedback too difficult for a human user to mentally process

(an example is given in Figure 2). Therefore, it is useful

0 5 10 15 20 25

time (s)

0

0.1

0.2

0.3

0.4

0.5

s
y
m

m
e
tr

y
 s

c
o
re

 (
lo

w
e
r-

b
o
d
y
)

spatial symmetry scores over time

Figure 2: Spatial symmetry scores computed from a normal

walking sequence, using Euclidean distances in each frame,

between the locations of the left knee and foot and those of

the right knee and foot after a reflection through the median

plane.

to have a method that obtains stable symmetry scores for

movements with glide-reflection symmetry, such that the

score itself, not its changing pattern, reflects how symmetric

a movement is. In this paper, we compute these symmetry

scores using the tools from elastic shape analysis [12], and

our preliminary experiment suggests that our method may

provide better symmetry scores than similar approaches us-

ing Euclidean distances.

2. Related work

The concept of glide-reflection symmetry is not new

[3, 11]. However, though frequently studied by mathemati-

cians and physicists, analyzing glide-reflection symmetry

in computer vision is not common. An early successful ef-

fort was made by Y. Liu et al. [9], which used frieze pat-

terns to analyze parameters from gait sequences. A more

recent study [8] expanded the concept into curved glide-

reflection symmetry and proposed a method to detect the

existence of such symmetry in 2D and 3D images. Most of

the related existing work focused on detecting such symme-

try and locating the symmetry axis/plane, and as far as we

know, the problem of quantifying glide-reflection symme-

try, especially with regard to human movements, has rarely

been investigated.

There was prior work in quantifying spatial symmetry

[10, 15] or temporal symmetry [14] from the entirety of an

object or movement. Elastic shape analysis has also been

used to generate spatially symmetric shapes [10] or tem-

porally symmetric animations [2]. However, as discussed

above, the spatio-temporal glide-reflection symmetry can

only be analyzed when combining the spatial and tempo-

ral domains together.

The movements of walking and running have been ex-

tensively studied by biomedical researchers, and the field

is known as gait analysis. Gait analysis can be qualita-

tively done by visual inspection from clinicians. Quanti-

tatively, gait analysis analyzes the spatio-temporal relation-

ships in gait by measuring parameters from repeated gait

cycles (e.g. [17]). However, these parameters usually only

consider discrete cyclic events (e.g. foot leaving the ground)

and ignore the whole movements between them. The mea-

sures are usually only updated after each gait cycle, and

therefore have significant limitation for the applications we

aspire to develop.

3. Mathematical framework

A human movement can be described by the trajec-

tories of various body parts. Each trajectory exists in

the same 3-dimensional Euclidean space, and is denoted

by p∗ : [T1, T2] → R
3, where “∗” corresponds to

a specific body part (e.g. “right hand”). These trajec-

tories can be obtained from various sources, such as
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motion capture systems, depth sensors, or pose estima-

tion from single or multiple RGB cameras. The move-

ment of the whole body is then described by the set of

all relevant trajectories {
(

pa(t)
)

,
(

pb(t)
)

, . . . }. To mea-

sure glide-reflection symmetry, we need to have trajec-

tories of corresponding body parts on both sides of the

body (e.g. left hand and right hand) in the form of

{
(

pl a(t)
)

,
(

pr a(t)
)

,
(

pl b(t)
)

,
(

pr b(t)
)

, . . . }.

As discussed in the Introduction section, a symmetry

score for glide-reflection symmetry should compare a seg-

ment of trajectory on one side with the spatially reflected

version of a temporally glided segment on the other side.

Since we want to obtain online and potentially real-time

symmetry scores, at time t ∈ [T1, T2], we will have access

to current and history data [T1, t], but not future data (t, T2].
For the current symmetry score A at time t, the segment of

trajectory on that “one side” should be the most current ver-

sion (i.e. from [t−T, t]). Since we can choose both left and

right side as the “one side”, there are two symmetry scores

here, one comparing the latest segment from the left side

with a past segment from the right side, and the other vice

versa. We denote these two scores A(l) and A(r) respec-

tively, and intuitively these two scores should be close to

each other over the course of the whole movement.

For the simplicity of expression, we first pick just one

pair of body parts, whose trajectories are pl(t) and pr(t),
and their symmetry scores are:

A(l)(t) = d

(

(

pl(τ)
)t

τ=t−T
,
(

R∗

(l) ◦G
∗

(l)

(

pr(τ)
)

)t

τ=t−T

)

(1)

A(r)(t) = d

(

(

pr(τ)
)t

τ=t−T
,
(

R∗

(r)◦G
∗

(r)

(

pl(τ)
)

)t

τ=t−T

)

(2)

where R∗ is the optimal spatial reflection, and G∗ is the op-

timal temporal glide (given the parameters t, T , etc.), both

of which will be discussed later in this section, and d is a

distance function between two segments of trajectories. For

the purpose of being concise, below we only discuss further

about A(l)(t), and the reader can easily apply the equations

similarly to A(r)(t).
The choice for proper values of T needs to be consid-

ered. In theory the entirety of history data from T1 to t
are available for use. However, using too much of them

may not be optimal, because it can be both computation-

ally costly and also undesirable in the context of real-time

applications to have scores influenced by signals from the

remote past. Conversely, T values that are too small may

yield noisy scores. Since movements with glide-reflection

symmetry are often also periodic, a natural choice is to use

the fundamental period as T . This value may change over

the course of a movement (e.g. a person can adjust the speed

of their walking), in which case T can be treated as a func-

tion of t and updated frequently. Alternatively, using a fixed

T value, especially in the absence of periodicity, is also a

viable option.

There are also various choices for the distance function

d. In our framework, we consider the trajectories (pl(t) and

pr(t)) as open curves on Kendall’s shape manifold [7], i.e.

trajectories form equivalent classes after removing transla-

tion, rotation, and scaling. Following Kendall’s approach,

the geodesic distance on this manifold between the equiv-

alent classes of two normalized and registered trajectories

p1(t) and p2(t), t ∈ [t1, t2] is:

ds([p1], [p2]) = inf
O∈SO(3)

dc(p1, Op2) (3)

where dc is a distance function on the sphere in

L
2([t1, t2],R

3).

dc(p1, p2) =

√

∫ t2

t1

‖p1(t)− p2(t)‖2dt (4)

We further apply the square-root velocity (SRV) repre-

sentation [12] to allow additional invariance to reparame-

terization. The SRV function is defined as q : [t1, t2] → R
3

[12]:

q(t) = ṗ(t)/
√

‖ṗ(t)‖ (5)

The scores in Eqs. (1) and (2) are then calculated with q
functions instead, with the following distance function:

ds([q1], [q2]) = inf
(γ,O)∈Γ×SO(3)

dc
(

q1, O(q2 ◦ γ)
√

γ̇
)

(6)

where Γ = {γ : [t1, t2] → [t1, t2]|γ(t1) = t1, γ(t2) = t2, γ
is a diffeomorphism}, and similar to Eq. (4),

dc(q1, q2) =

√

∫ t2

t1

‖q1(t)− q2(t)‖2dt (7)

Using SRV functions, we rewrite Eq. (1) at time t as:

A(l) = inf
(γ,O)∈Γ×SO(3)

dc

(

ql(τ), O
(

q∗r ◦ γ(τ)
)
√

γ̇
)

(8)

where q∗r (τ) is the q function of R∗ ◦G∗
(

pr(τ)
)

.

A spatial reflection R can be described with a House-

holder transformation [5]: H(u) = I − 2uuT , where u is

a unit vector in R
3. A temporal glide G with parameter ∆

changes p(τ) to p(τ − ∆). It should be noted that ∆ is a

function of t, but not a function of τ , i.e. the optimal ∆∗(t′)
for symmetry score A(t′) can be different from the optimal

∆∗(t) for A(t), but with a given t, the ∆ in the follow-

ing equations is to be considered a constant with regard to

τ . In other words, ∆ only represents the overall temporal

glide between two segments — [t − T , t] on one side, and

[t−∆− T , t−∆] on the other side. The varying temporal
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glide within the segments is covered by the reparameteriza-

tion function γ. Therefore using a constant ∆ (with regard

to τ ) does not imply a constant temporal glide, but simpli-

fies the optimization problem.

It is easy to verify that the action of any H matrix com-

mutes with actions of Γ and those of SO(3). Therefore Eq.

(8) is equivalent to

A(l) = inf
∆∈D

inf
(u,γ,O)∈S2×Γ×SO(3)

a(l)(∆,u,γ,O) (9)

a(l)(∆,u,γ,O) = dc

(

ql(τ), OH(u)qr
(

γ(τ)−∆
)
√

γ̇
)

(10)

where D = [∆min,∆max] is the search range for optimal

∆.

Since H(u) is orthogonal and detH(u) = −1 [5], H(u)
can be decomposed into an arbitrary reflection, e.g. Rx =
[

−1 0 0
0 1 0
0 0 1

]

, and a rotation O′ ∈ SO(3) such that H(u) =

O′Rx. O′ can then be combined with O to simplify Eqs.

(9) and (10) to

A(l) = inf
∆∈D

a(l)(∆) (11)

a(l)(∆) = inf
(γ,O)∈Γ×SO(3)

a(l)(∆,γ,O) (12)

a(l)(∆,γ,O) = dc

(

ql(τ), ORxqr
(

γ(τ)−∆
)
√

γ̇
)

(13)

To find the optimal A(l), we use an approach similar to

[6], in which O is calculated from SVD, and γ is computed

using a dynamic programming (DP) algorithm. The differ-

ence is that here we have an additional parameter ∆. To

find the optimal ∆, a gradient descent approach is used. We

start from ∆0 = T/2, and ∆1 > ∆0. The score a(l)(∆) is

updated using Eqs. (12) and (13) in each iteration, and the

gradient is calculated as

ȧ(l)(∆) =
a(l)(∆i) − a(l)(∆i−1)

∆i −∆i−1
(14)

In practice, this search usually converges within a few

iterations, and gives us an optimal ∆∗ and the symmetry

score A(l) as desired.

4. Experimental results

To evaluate our proposed method, we collected walking

data from a motion capture system. The actor walked on

a treadmill, with 12 sets of markers on his shoulders, el-

bows, hands, hips, knees, and feet. The actor followed in-

structions on gait abnormalities from Stanford Medicine’s

website [13] to simulate hemiplegic (stroke) and Parkinso-

nian gaits. The detailed descriptions and demonstrations of

these pathological gaits can be seen at [13], and Figure 3

provides simplified illustrations on the foot movements of

normal and pathological gaits. For each gait type, 3 sessions

(a) Normal gait

(b) Stroke (hemiplegic) gait

(c) Parkinsonian gait

Figure 3: Illustrations of normal and pathological gaits

of data were collected, with each session 15 – 30 seconds of

duration, and symmetry scores calculated after the 4th sec-

ond in each session. The data were capture at 120 FPS, and

downsampled to 30 FPS for computation.

First, we examined the usefulness of including temporal

glide in our method. As shown in Figure 2, a major prob-

lem with using only spatial reflection symmetry is that the

scores fluctuate too much so that the generated feedback

is difficult to comprehend. Without introducing temporal

glide, this can however be mitigated by calculating spatial

symmetry with consideration of temporal history — instead

of using only locations in the latest frame, symmetry scores

can be calculated by comparing the left and right trajecto-

ries over a period of time. Nonuniform temporal alignment

between the two trajectories can also be applied (e.g. by

using the SRV functions). Here we call this type of scores

symmetry scores without glide A0, and they were calculated

by similarly using Eqs. (12) and (13) but with ∆ = 0. By

comparison, with our method, we searched for an optimal

temporal glide ∆ in the range of [0, T ].

Second, we compared the results of our method with

those using Euclidean metrics. To account for speed varia-
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tion, the trajectory on either side was first resampled such

that the distances between adjacent sampling points were

the same. The first comparing symmetry scores were calcu-

lated as:

A(l) = inf
∆∈D

inf
O∈SO(3)

dc
(

p̃l(τ), ORxp̃r(τ −∆)
)

(15)

where p̃l, p̃r are the trajectories after equidistant resam-

pling, and dc is defined as in Eq. (4). The second compar-

ing scores were calculated similarly but the distances were

computed after dynamic time warping (DTW). A0 scores

were also calculated using Eq. (15) but with ∆ = 0.

For all scores, the skeleton formed by the 12 sets of

markers was first normalized and registered such that the

centroid was always at the origin and the average arm length

plus leg length was equal to 1. To facilitate comprehen-

sible feedback, the scores from multiple body parts were

combined into two composite symmetry scores, upper-body

score Aub and lower-body score Alb. With our proposed

method,

Aub =
Lua

2Lua + Lla

Aelbow +
Lua + Lla

2Lua + Lla

Ahand (16)

Alb =
Lul

2Lul + Lll

Aknee +
Lul + Lll

2Lul + Lll

Afoot (17)

where Lua, Lla, Lul, Lll were the average lengths of up-

per arm, lower arm, upper leg, lower leg, respectively, mea-

sured from motion capture data. Because q functions were

normalized before distances were calculated, adding these

coefficients in Eqs. (16) and (17) gave hands and feet

more weight proportional to their ranges of motion. With

Euclidean approaches, because the hands and feet already

had larger ranges of motion in pl and pr than the elbows

0 5 10 15 20 25

time (s)

0

0.2

0.4

0.6

0.8

s
y
m

m
e
tr

y
 s

c
o
re

 (
lo

w
e
r-

b
o
d
y
)

symmetry scores without glide A0 over time

A0: normal

A0: stroke

A0: Parkinsonian

Figure 4: Lower-body symmetry scores without glide A0(l)
over one session for each gait type.
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Figure 5: Lower-body symmetry scores A(l) and A(r) over

one session. Higher scores correspond to less amount of

glide-reflection symmetry.
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Figure 6: Symmetry scores without glide A0(l) in walking.

Each dot is the score at one frame. Higher scores corre-

spond to less amount of glide-reflection symmetry.

0 0.1 0.2 0.3 0.4 0.5 0.6

lower-body score

0

0.2

0.4

0.6

0.8

u
p

p
e

r-
b

o
d

y
 s

c
o

re

glide-reflection symmetry scores A, SRV

normal

stroke

Parkinson's

(a) Scores from SRV functions

0 0.1 0.2 0.3 0.4 0.5 0.6

lower-body score

0

0.2

0.4

0.6

0.8

u
p

p
e

r-
b

o
d

y
 s

c
o

re

glide-reflection symmetry scores A, Euclidean (equidistant)

normal

stroke

Parkinson's

(b) Scores from trajectories in Euclidean space and equidistant

resampling

0 0.1 0.2 0.3 0.4 0.5 0.6

lower-body score

0

0.2

0.4

0.6

0.8

u
p

p
e

r-
b

o
d

y
 s

c
o

re

glide-reflection symmetry scores A, Euclidean (DTW)

normal

stroke

Parkinson's

(c) Scores from trajectories in Euclidean space and DTW

Figure 7: Symmetry scores A(l) in walking. Each dot is the

score at one frame. Higher scores correspond to less amount

of glide-reflection symmetry.
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and knees, these additional weights were not used, and

Aub = Aelbow+Ahand, and Alb = Aknee+Afoot. For eas-

ier comparison, the Euclidean symmetry scores were multi-

plied by a constant for each approach, such that the average

upper-body and lower-body scores for normal gait are the

same for all three methods.

The results are shown in Figures 4–7. For clarity, only

A(l) or lower-body scores were illustrated. In Figure 4,

adding temporal history in spatial symmetry calculation did

help “stabilize” the scores, which did not oscillate as much

as those in Figure 2. However, without including tempo-

ral glide, the lower-body scores for normal and patholog-

ical gaits appeared at the same level. Although different

movements do not necessarily have to exhibit different de-

grees of symmetry, from human observation it was obvious

that at least the stroke gait was much more asymmetric than

the normal gait, both in upper and lower bodies, and the

A0 scores were not consistent with this observation. By

comparison, the glide-reflection symmetry scores in Fig-

ure 5 were both stable and more discriminative in a way

that was consistent with human perception. It can also be

seen that the scores calculated from the left and right sides

were closely correlated, as expected.

To compare the scores of different gaits, both upper- and

lower-body scores from all 3 sessions were plotted together

in Figures 6–7. Each subfigure shows the result from a dif-

ferent method. Once again, the A0 scores without glide in

Figure 6 did not separate different gait types well. We ap-

plied a linear support vector machine (SVM) classifier using

leave-one-out cross-validation to predict gait type with just

the two composite scores, and the average accuracies were

only 85.7%, 88.0%, and 95.2%, respectively.

The glide-reflection symmetry scores we proposed per-

formed much better. It can be seen in Figure 7 that with

either our proposed method or the Euclidean approaches,

the three different types of gaits were separated quite well

just by the two composite scores. The same SVM classi-

fier gave average accuracies of 99.7%, 99.5%, and 100%,

respectively. However, it should be emphasized that the

symmetry scores are not designed for classification tasks.

The main purpose is that a lower score should be obtained

when a movement is more symmetric, and the scores should

be stable to facilitate smooth feedback. From the results

shown in Figure 7, our proposed method provided scores

that were more consistent with human perceptions (e.g. nor-

mal gait has the highest degrees of symmetry in both upper

and lower bodies), and exhibited less variance (see Table 1)

so that they could generate smoother feedback. This sug-

gested that our proposed method could potentially provide

better symmetry scores for the intended applications than

Euclidean approaches.

Gait type Normal Stroke Parkinsonian

Aub

Proposed 0.10 ± 0.02 0.40 ± 0.05 0.48 ± 0.12

Equidistant 0.10 ± 0.03 0.25 ± 0.04 0.48 ± 0.09

DTW 0.10 ± 0.02 0.35 ± 0.06 0.63 ± 0.12

Alb

Proposed 0.12 ± 0.06 0.32 ± 0.04 0.13 ± 0.02

Equidistant 0.12 ± 0.08 0.30 ± 0.05 0.12 ± 0.03

DTW 0.12 ± 0.10 0.35 ± 0.06 0.12 ± 0.03

Table 1: Comparison of glide-reflection symmetry scores

A(l) (mean ± standard deviation) from three different met-

rics.

5. Summary

In this paper we proposed a method to continuously

measure the degree of glide-reflection symmetry in human

movements, using differential geometric tools from elastic

shape analysis. Our preliminary experiment showed that

our proposed method worked well to distinguish between

normal gait and simulated pathological gaits, and could

generate stable outputs to drive feedback systems. How-

ever, the current implementation of the method was online

but not real-time. Our future work will be focused on ap-

plying fast approximate methods to increase the speed of

the method and aim for building real-time systems with it.
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