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Abstract

Performing large scale hypothesis testing on brain

imaging data to identify group-wise differences (e.g.,

between healthy and diseased subjects) typically leads to

a large number of tests (one per voxel). Multiple test-

ing adjustment (or correction) is necessary to control false

positives, which may lead to lower detection power in

detecting true positives. Motivated by the use of so-

called “independent filtering” techniques in statistics (for

genomics applications), this paper investigates the use of

independent filtering for manifold-valued data (e.g., Diffu-

sion Tensor Imaging, Cauchy Deformation Tensors) which

are broadly used in neuroimaging studies. Inspired by the

concept of variance of a Riemannian Gaussian distribution,

a type of non-specific data-dependent Riemannian variance

filter is proposed. In practice, the filter will select a sub-

set of the full set of voxels for performing the statistical

test, leading to a more appropriate multiple testing cor-

rection. Our experiments on synthetic/simulated manifold-

valued data show that the detection power is improved when

the statistical tests are performed on the voxel locations that

“pass” the filter. Given the broadening scope of applica-

tions where manifold-valued data are utilized, the scheme

can serve as a general feature selection scheme.

1. Introduction

Statistical analysis focused on identifying group level

differences (e.g., between healthy controls and individuals

with a clinical condition) is an important task in neuroimag-

ing. For example, given a set of “co-registered” (i.e., in a

common coordinate system) brain images of 100 individ-

uals who are cognitively healthy and 100 individuals who

suffer from dementia, one can perform a statistical test at

each brain voxel to assess if the distribution of the measure-

ments is different across healthy/diseased groups. When

the distributions are different (i.e., the null hypothesis is

rejected), we can obtain a map of (uncorrected) p-values

showing brain regions likely to be affected by the disease.

This voxel-by-voxel analysis is very common across neuro-

science, and widely deployed on both structural and func-

tional brain imaging data.

Multiple testing. An important step that was omitted

in the foregoing discussion is multiple testing. Since the

voxel-specific tests yield a voxel-specific statistic which is

“uncorrected”, we need to take into account the number of

times, say N , that the test was conducted. For instance,

if the test is repeated at 1M different voxels, we must per-

form a correction to control the number of false positives.

For example, many null hypotheses will produce small p-

values purely by chance. As a result, a large number of

false positives (or type-1 error) will occur when repeat-

ing a test 1M times — so the p-values cannot simply be

compared to a conventional threshold, such as p < 0.05
or p < 0.01. Individual p-values, e.g., 0.01, no longer

correspond to significant findings. Therefore, adjusting

the p-value threshold by taking into account the number

of times a test was performed is important before we can

assess the statistical significance of our findings and con-

trol the experiment-wide error. In statistics, there are well-

established procedures for such control, such as Bonferroni

correction [30].

Multiple testing in imaging studies: Problems. Multiple

testing adjustment provides a rigorous control on the extent

to which false positives occur in our experimental analy-

sis. This topic is very well studied. Unfortunately, when

deployed in the analysis of high-dimensional brain imaging

data, we typically encounter a serious practical issue. Ob-

serve that such control comes at the cost of reduced pow-

er of detecting the true positives because we seek to avoid

false positives. The situation will be more severe as the

number of tests increases. For example, in brain imaging, if

we perform millions of tests (the so-called massive multiple

comparisons (MCP) problem [25]), after a conservative cor-
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rection, only a small region (where the group-wise signal is

very strong) will survive. Many other regions that are spe-

cific to the disease may indeed have small p-values — but

not small enough to survive the correction. Therefore, we

will be unable to reject the null hypothesis at these voxels.

When the sample sizes are small or the effect sizes are poor,

the power of detecting the true positives may turn out to be

quite low.

A practical feature selection scheme. The above issue is

ubiquitous in brain imaging. As a result, a practitioner may

often resort to region-of-interest based analysis — essen-

tially, focusing the entire analysis on a few brain regions.

This clearly reduces the number of tests that will be per-

formed, thereby reducing how strict the multiple testing

correction is. One difficulty is that this may lead to an

increase in the number of false negatives by inadvertently

leaving out some regions where there is a disease specific

signal. Separate from this “domain-knowledge” based fea-

ture selection, it is not uncommon to find situations where

a heuristic scheme based on feature selection is adopted.

Essentially, in a pre-processing stage, some statistic is cal-

culated and voxels discarded based on a pre-specified crite-

rion. Then, in the next step, the actual analysis is conduct-

ed on a smaller subset of voxels. The pitfall of this proce-

dure is that if the feature selection scheme in the first step

is not independent of the statistical testing in the second

step, this selection can, in fact, change the null distribution

[4]. The interpretation of all subsequent p-value calcula-

tions may turn out to be problematic. An elegant solution

to this problem was presented in [4] (also see references

therein) which shows a mechanism to construct a “filtering”

criteria (i.e., feature selection step) that is provably indepen-

dent of the statistic being calculated in the second step. This

allows avoiding two sub-optimal alternatives: (1) heuristics

that are practically sensible but theoretically flawed and (2)

choosing a conservative multiple testing correction scheme

(with no feature selection) and risking finding no meaning-

ful reportable result from the analysis.

Some related work. This idea of filtering has been

studied in other forms in the literature, but is less widely

used in machine learning and neuroimaging. For exam-

ple, several papers have studied how filtering can reduce

the impact that multiple testing adjustment has on detec-

tion power [4, 17, 35]. Many filtering schemes have been

proposed for bioinformatics applications which suffer the

same massive multiple comparisons issue as in brain imag-

ing. Bourgon et al. proposed a general filtering scheme [4],

in which filter pairs are marginally independent under the

null hypothesis and dependent under the alternative hypoth-

esis. The filtering scheme can increase the detection power

while not losing type-1 error control. In [27], the authors

proposed using principal component based-filtering to im-

prove the detection power for Affymetrix gene expression

arrays. In [14], the authors present an independent spec-

tral enrichment filter for gene set testing. Independent hy-

pothesis weighting [19] can increase power while control-

ling the false discovery rate. Broadly speaking, a “filtering

scheme” should be thought of a two stage approach. In the

first stage, a filter is used to filter out some non-informative

items (or tests). In the second stage, a multiple testing is

performed based only on the number of items that pass the

filter.

Manifold-valued setting. Various scientific disciplines

routinely acquire measurements where data is manifold-

valued. For instance, the response variable may be a prob-

ability distribution function, a parametric family such as a

multinomial, a covariance matrix or samples drawn from

a high dimensional unit sphere. Such data arise routine-

ly in machine learning [22, 18, 6, 32], medical imaging

[5, 24] and computer vision [33, 28, 7, 38]. Even when per-

forming a basic statistical analysis on such datasets, vector-

space operations (such as addition and multiplication) can-

not be applied because the manifold is not a vector space.

Driven by these motivations, there is a rapidly develop-

ing body of theoretical and applied work which generalizes

classical tools from multivariate statistics to the Rieman-

nian manifold setting. Various statistical constructs have

been successfully extended to Riemannian manifolds: these

include regression [39, 21], classification [37], interpola-

tion/convolution/filtering [15], dictionary learning [18, 6],

canonical correlation [20] and principal geodesic analysis

[13, 31]. While these results expand the operating range

of multivariate statistics to the Riemannian manifold set-

ting, simple feature selection schemes (e.g., independent

filtering) to facilitate multiple testing have not been studied

much.

The main contribution of this paper is to investigate the

effectiveness of independent filtering for manifold-valued

data before group-difference analysis (and multiple test-

ing). We show promising preliminary results via synthet-

ic experiments — such a scheme is simple yet can enable

detecting a reasonable group-specific signal in various situ-

ations where standard multiple testing correction is too con-

servative. Our procedure is a two stage hypothesis testing

scheme. In the first stage, some voxels are filtered based

on a novel Riemannian Variance Filter (RVF). The idea of

RVF is inspired by the Riemannian Gaussian distribution.

In the second stage, a standard test is conducted on voxel-

s (each with a manifold-valued measurement) passing the

first stage filter. Our experimental results show the effec-

tiveness of the filtering scheme. The benefit of using filter-

ing is two fold. First, filtering helps to improve the number

of rejections while keeping false positive at a reasonable

level. Second, the filtering makes the multiple testing more

computationally efficient, especially when using the permu-

tation based testing for manifold-valued data.
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1.1. Hypothesis Testing on Manifoldvalued Data

A focus of this work will be conducting statistical tests

on diffusion tensor imaging (DTI) data, and this will serve

as a target application throughout this paper. The litera-

ture on statistical analysis of DTI is sizable, so we simply

describe a few common schemes of performing hypothe-

sis tests on DTI. Diffusion tensor images have a symmetric

positive definite matrix pi � 0 at each voxel location i in

the image. A simple approach is to compute a scalar-valued

summary measure for each tensor pi and then use univariate

tests, such as a standard t-test, or permutation test to com-

pute the desired statistic. For example, fractional anisotropy

or the mean diffusivity of the tensors are typical candidate

voxel-wise summary measures [26, 16]. Such procedures

reduce the runtime complexity of the hypothesis testing,

especially for large brain images. However, compressing

the tensor into a scalar value will lose information which

may lead to poor testing sensitivity.

Instead of using univariate testing with fractional

anisotropy or the mean diffusivity, various alternatives

include applying multivariate hypothesis testing procedure

to the diffusion tensor. Considering the tensor as a multi-

variate variable and using Hotelling’s T 2 test is an option

that has been used successfully [36]. This method does not

consider the manifold property of the tensors. An alterna-

tive method is to use matrix logarithm transformed forms of

the tensors (into Euclidean space), and then use multivariate

Hotelling’s T 2 test [23].

Both the standard t-test and Hotelling T 2 test assume

that the null distribution of variables is a Gaussian or mul-

tivariate Gaussian. However, this normality assumption is

a potential limitation in analysis of diffusion tensor images.

A permutation test is an alternative to the parametric test

methods which makes no distributional assumptions. Vari-

ous papers have used permutation test for manifold-valued

data – for example, mean-based and dispersion-based per-

mutation testing for data on nonlinear manifolds [9].

2. Multiple Testing Adjustment

For a single test, the conventional threshold protects us

with a probability of p < 0.05 from wrongly declaring a

voxel as significantly modulated when there is no disease

effect. However, when dealing with a very large number of

tests simultaneously, the number of wrongly rejected nul-

l hypotheses will become very large, entirely by chance.

We therefore need a multiple testing correction procedure to

adjust our statistical confidence measures based on the num-

ber of tests performed. There are a number of well-known

correction procedures in the literature. The family-wise er-

ror rate (FWER) is the probability of at least one false con-

clusion in a series of hypothesis tests. In other words, it

is the probability of making at least one type 1 error. The

most commonly used method which controls FWER at lev-

el α is called the Bonferroni’s method. The Bonferroni cor-

rection compensates for that increase by testing each indi-

vidual hypothesis at a significance level of α/m, where α
is the desired overall significance level and m is the num-

ber of hypotheses. When we perform a “filtering step” be-

fore the statistical test, the value m accordingly becomes the

expectation of the number of hypotheses passing the filters.

Separately, the false discovery rate (FDR) is another widely

used scheme for controlling the rate of type-1 errors [3].

3. Preliminaries

We first briefly introduce some basic differential geom-

etry notations and basic operations on symmetric positive

definite (SPD) manifolds that we will use. Note that while

the ideas in this paper are generally applicable, to make

the presentation concrete, we will utilize the SPD manifold

as an example. For more details on some of the notations

below, we refer the reader to [10, 8].

Let M be a differentiable (smooth) manifold in arbi-

trary dimensions. A differentiable manifold M is a topo-

logical space that is locally similar to Euclidean space and

has a globally defined differential structure. A Riemannian

manifold (M, g) is a differentiable manifold M equipped

with a smoothly varying inner product g. The family of

inner products on all tangent spaces is known as the Rie-

mannian metric, which defines various geometric notions

on curved manifolds such as the length of a curve etc. A

geodesic curve is a locally shortest path, which is analo-

gous to a straight line in Rd. Unlike the Euclidean space,

note that there may exist multiple geodesic curves between

two points on a curved manifold. So the geodesic distance

between two points on M is defined as the length of the

shortest geodesic curve connecting two points (i.e., SPD

matrices). Formally, the distance between p and q is defined

as

d(p, q) := inf
γ

∫ b

a

√

gγ(t)(γ̇(t), γ̇(t))dt (1)

where γ(a) = p and γ(b) = q. The tangent space at p ∈ M
(denoted by TpM) is the vector space, which consists of

the tangent vectors of all possible curves passing through p.

The geodesic curve from yi to yj is parameterized by a tan-

gent vector in the tangent space anchored at yi with an ex-

ponential map Exp(yi, ·) : Tyi
M → M. The inverse of the

exponential map is the logarithm map, Log(yi, ·) : M →
Tyi

M. The exponential map and its inverse logarithm map

are denoted by Exp(p, x) and Log(p, v) respectively, where

p, x ∈ M and v ∈ TpM. They are usually denoted expp(x)
and logp(v) in most differential geometry books. These two

operations move us back and forth between the manifold

and the tangent space. Separate from the above notations,

matrix exponential (i.e, exp(X) :=
∑

1

k!X
k, where 0! = 1
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and X0 = I) and matrix logarithm are denoted by as exp(·)
and log(·).
Intrinsic mean. Let d(·, ·) define the distance between two
points. The intrinsic (or Karcher) mean is the minimizer to

ȳ = arg min
y∈M

N∑

i=1

d(y, yi)
2
, (2)

which may be an arithmetic, geometric or harmonic mean

depending on d(·, ·). A Karcher mean is a local minimum to

(2) and a global minimum is referred as a Fréchet mean. On

manifolds, the Karcher mean satisfies
∑N

i=1
Logȳyi = 0.

This identity implies the first order necessary condition of

(2), i.e., ȳ is a local minimum with a zero norm gradient.

In general, on manifolds, the existence and uniqueness of

th.e Karcher mean is not guaranteed unless we assume, for

uniqueness, that the data is in a small neighborhood.

3.1. Geometry of SPD Manifolds

Symmetric positive definite matrices are widely used

in neuroimaging, e.g., in diffusion imaging. Let SPD(n)

be a manifold for symmetric positive definite matrices of

size n × n. This forms a quotient space GL(n)/O(n),
where GL(n) denotes the general linear group (the group

of (n × n) nonsingular matrices) and O(n) is the orthogo-

nal group (the group of (n × n) orthogonal matrices). The

inner product of two tangent vectors u, v ∈ TpM is given

by

〈u, v〉p = tr(p−1/2up−1vp−1/2) (3)

This plays the role of the Fisher-Rao metric in the statis-

tical model of multivariate distributions. Here, TpM is a

tangent space at p (which is a vector space) is the space of

symmetric matrices of dimension (n+1)n/2. The geodesic

distance is d(p, q)2 = tr(log2(p−1/2qp−1/2)).
The exponential map and logarithm map are given as

Exp(p, v) = p1/2 exp(p−1/2vp−1/2)p1/2,

Log(p, q) = p1/2 log(p−1/2qp−1/2)p1/2.
(4)

and the geodesic distance w.r.t. the affine invariant metric is

given by

d(p, q)2 = tr(log2(p−1q)). (5)

4. Method

The independent filtering [4] is proposed for univariate

measurements and we extend it for manifold-valued mea-

surements (e.g., diffusion tensors). The independent fil-

tering is a two stage procedure comprised of filtering and

hypothesis test over variables which pass the filter. Depend-

ing on the final hypothesis test, the criterion for filtering

should be properly chosen so that the null distribution after

filtering is still invariant. Such a filtering is called indepen-

dent filtering. In this section, we discuss multiple combina-

tions for group difference analysis. For univariate measure-

ments, the independent filtering [4] suggested filtering by

variance and hypothesis test by Student’s t-test. We adop-

t this idea and develop a similar procedure for manifold-

measurements. At the first stage, we filter voxels by dis-

persion (corresponding to variance) of manifold-valued da-

ta. And then, hypothesis tests are performed by nonpara-

metric tests (e.g., Mean-based permutation test, Cramér’s

test). The two stages will be explained for both fractional

anisotropy and diffusion tensors.

4.1. Filtering

In general, filtering means that some meta test will be

set up according to a pre-specified criterion, and (ideal-

ly) will reduce the number of tests in the follow-up step.

For univariate data, the overall mean and overall variance -

computed across all arrays, are generally used in genomics

research [4]. It is easy to rank the overall mean or over-

all variance (scalar value) and take a threshold to perform

“filtering”. For multivariate data, the situation may become

a bit more complex. Various strategies have been proposed

as briefly described above, for instance, the principal com-

ponents of the covariance matrix as a filter [27]. For ten-

sors (in diffusion imaging), we usually need to consider its

intrinsic structure, which makes the problem more difficult.

As described below, we find that an analogous criterion for

manifold-valued data can be obtained from a generalization

of Gaussian distribution on manifolds.

Let µ ∈ M and σ ∈ R+. One generalization of the

Gaussian distribution on Riemannian manifolds is given by

f(X;µ, σ) =
1

ζ(σ)
exp

(

−
d(X,µ)2

2σ2

)

where

ζ(σ) =

∫

M

exp

(

−
d(X,µ)2

2σ2

)

dX.

(6)

d(·, ·) denotes the geodesic distance between two manifold-

valued data points. On SPD(n), we use the affine-invariant

Riemannian metric for d(·, ·). µ ∈ M and σ ∈ R+ cor-

responds to the mean and variance. We call σ dispersion,

which is used to perform filtering on manifold-valued vari-

ables. Multiple generalizations of Gaussian distributions

are discussed in [1, 12]. ζ(σ) is the normalization factor

to make the integration of the PDF in the space of SPD(n)

work. It is known that ζ(σ) is not functionally dependent on

µ in Riemannian symmetric spaces [12]. However, it is dif-

ficult to calculate the normalization factor in practice [29].

This results in a non-trivial maximum likelihood estimation

(MLE) of dispersion (σ).
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MM

Filter out cases in which are less 
likely to reject the null

Keep promising voxels

Figure 1. Our framework is a two-stage method. The figure shows the first stage. At the first stage, we filter out voxels which are less likely

to reject null hypothesis in the left figure whereas the right figure shows that the filtering lets voxels pass where they may have significant

group diffenrence. Note that the filtering step does not use any group informtion. Further the filtering criterion should be independent from

conditional test statistics.

The empirical mean will be denoted by X and its MLE

can be obtained by the least squares estimation w.r.t. the

geodesic distance on SPD(n) by minimizing the energy

function (En) given as

En(X) ≡
1

n

n
∑

i=1

d(X,Xi)
2. (7)

The MLE of the dispersion parameter σ can also be esti-

mated by maximizing the log-likelihood function. The first

order necessary condition w.r.t. σ given by

σ3 d

dσ
log ζ(σ) = En(X). (8)

The solution to (8) can be written as

⌢

σ = φ(En(X)) = φ(
1

n

n
∑

i=1

d2(X,Xi)), (9)

where φ : R+ → R+ is a strictly increasing function.

The estimation of
⌢

σ involves φ. Note that we filter voxels

by rankings based on a criterion. So, as long as it keeps the

order of variables unchanged, we can use a much simpler

φ for our procedure. In this work, we replace φ(·) with the

identity function and use it as our criterion, which is En(X)
and the voxels which have a relatively larger En(X) pass

the filter, e.g., top 10% of voxels. We call the filtering by

En(X) the Riemannian Variance Filter (RVF). This filter

is used for diffusion tensors in the experiment section.

4.2. Hypothesis Tests for Group Difference Analysis

Hypothesis test for group difference can be performed

using various test statistics and null distributions. In [4],

Student’s t-test is used. We discuss nonparametric hypoth-

esis tests: mean-based permutation test and Cramér’s test.

We would like to note that we only make standard assump-

tions (such as pixel independence) and do not make any

additional assumptions not common in neuroimage analy-

sis [2]. Furthermore, each subject is assumed to be inde-

pendent, so the use of permutation testing is sensible.

Mean-based permutation test: The mean-based permuta-

tion test uses the distance between means of two groups,

i.e., ∆ = d(X,Y ). Using permutation tests, we simulate

the null distribution of ∆. The iterative procedure for com-

puting the Fréchet mean of diffusion tensors is computa-

tionally expensive for a large number of permutation tests.

For faster estimation, log-Euclidean metric [1] can be used

as

X ≈ exp(
1

n

n
∑

i=1

logXi). (10)

There are also some other choices to compute the mean

through the spectral decomposition of the tensors [8], which

may provide better decoupling between orientation and

anisotropy but these strategies were not utilized here.

Cramér’s test: We use a two sample Cramér’s test as a

unified hypothesis test for group difference analysis. It

requires only pairwise distances and group label informa-

tion. The distance can be either Euclidean distance or

geodesic distance. So, this test is directly applicable for

univariate, multivariate and even manifold-valued variables.

Also, the null distribution is simulated by the sampling dis-

tribution of test statistic when the null hypothesis is true.

The test statistic is given by

δn1,n2
=

n1n2

n1 + n2





1

n1n2

n1
∑

i=1

n2
∑

j=1

d(Xi, Yj) (11)

−
1

2n2
1

n1
∑

i=1

n1
∑

i′=1

d(Xi, Xi′)−
1

2n2
2

n2
∑

j=1

n2
∑

j′=1

d(Yj , Yj′)





where d(·, ·) is a distance metric for samples.
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5. Experimental Evaluations

In our experiments, we use two different sets of synthetic

experiments using simulated normal (healthy) and the ab-

normal (diseased) brain image population, where each DTI

image was composed of 3×3 DTI tensors at each voxel. The

two groups are generated from a set of reference tensors and

a set of transformed tensors. Given a reference tensor, the

following three different geometric transformation methods

are studied in our experiments: (1) change the eigenvalues

(2) change the orientations (3) change both eigenvalues and

orientations. We assume that these changes are associated

with the clinical phenomena under study. The size of the

transformed patches (i.e., where the disease specific signal

is assumed to be localized) is 10× 10, 15× 15 and 15× 15
respectively.

Each group (diseased, healthy) is assumed to be com-

prised of 15 subjects. To keep the experiments simple (since

the computation time for permutation testing can be signifi-

cant), we assume that the images are of size 50× 50, which

means there are 2500 voxels for each subject. This corre-

sponds to a total of 2500 hypothesis tests where we perform

the statistical test at each voxel seeking to identify if there

are group-wise differences (induced as a result of the class

membership). A normal and a diseased subject are shown

using a glyphviewer in DTITK in Fig. 2.

Figure 2. Each image is a representative of the “mean” healthy

control and diseased subject. The disease effect has been simulat-

ed to be restricted to the region indicated in a yellow box. In re-

gions outside the yellow box, there are no group-wise differences.

In our experiments, we use the true positives (TP) and

false positives (FP) to evaluate the effectiveness of our

algorithm. Our motivation is to investigate the effectiveness

of adding a filtering step in hypothesis testing for manifold-

valued data. We specifically evaluate whether there is a per-

formance gain when compared to the no filtering scheme.

What is also important to evaluate is whether this scheme

improves TP while controlling FP (type-1 error).

For filtering, we consider the overall RVF of a set of ten-

sors at a voxel, which means that we do not consider the

class label in the filtering step (else, the evaluations will be

meaningless). The locations where RVF are in the lowest

portion θ ∈ [0, 1] are filtered out. In stage 2, both a stan-

dard two sample t-test and a permutation test are used for

hypothesis testing. The FDR is used for multiple testing

correction, in the standard way. The significance level is set

as a standard value α = 0.05.

Results for standard t-test: The results of standard two

sample t-test for the tensors generated by methods 3 and

method 1 are given in Fig. 3 and Fig. 4 respectively. The t-
test shows the results when we use the standard two sample

t-test without filtering. The scalar variance filter (“SVF”)

shows the result from using a scalar variance filter (θ = 0.7)

before two sample t-test while the “RVF” shows the results

from using Riemannian variance filter (θ = 0.7) in stage

1. We can see from the result that filtering increases the TP

while controlling the type-1 error (false positives). From

the TP and FP sub-figures, we can see that using the RVF

filter, the false positives (type-1 error) are controlled while

the detection of the true positives are not reduced. In fact,

filtering increases the true positive in many situations. Both

SVF and RVF based t-tests fail in detecting any true posi-

tives when changing the orientation with 2◦ (disease effect)

while keeping the eigenvalues unchanged.

Results for permutation testing approach: Fig. 6

shows the results of permutation testing for the three tensor

generating methods. In the filtering stage, our RVF filtering

scheme is used. In the multiple testing stage, we used four

methods as shown in Table. 1 including FA, MFA, Cramér

and LeMean. The “no filter” corresponds to the 0 filtering

for each method. When changing the orientation by 2◦ (dis-

ease effect), both FA and MFA methods fail in detecting

any true positives, so we only show the results of Cramér

and LeMean permutations in Fig. 5(c).

Table 1. notations in permutation testing

FA , SVF + FA

MFA , RVF + FA

Cramér , RVF + Cramér test

LeMean , RVF + Log-Euclidean Mean

Results for synthetic brain imaged data: We used both

standard t-test and permutations testing methods including

MFA, Cramér and LeMean. For standard t-test, we used

both scalar variance and Riemannian variance based filter-

ing methods, which are shown in Fig. 6(a) and Fig. 6(b).

The results of permutation tests including MFA, Cramér and

LeMean are respectively given in Fig. 6(c), Fig. 6(d) and

Fig. 6(e). We can see from the results that the standard

t-test using the scalar variance filter only detects a very

small number of true positives. The other methods includ-

ing permutation methods and t-test achieve a comparable

performance or more true positives while largely reducing
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(a) t-test (b) SVF + t-test (c) RVF + t-test

TP FP

0

15

25
no filter

SVF

RVF

(d) TP and TP

Figure 3. The results of standard t-test for scalar variance and Riemannian variance filter on simulated data sets generated by method 3. (a)

only using the t-test (b) using scalar variance filter and t-test (c) using Riemannian variance filter and t-test (d) the TP and FP performance

of all the three methods.

(a) t-test (b) SVF + t-test (c) RVF + t-test
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Figure 4. Similar to Fig. 3, but on simulated data sets generated by method 1. (a)only using the t-test (b) using scalar variance filter and

t-test (c) using Riemannian variance filter and t-test (d) the TP and FP performance of all the three methods.

the false positives.

6. Additional Analysis of Experiments

SVF vs. RVF: Fractional anisotropy is a popular scalar

summary measure used in diffusion imaging. When us-

ing this measure for multiple testing, it is easy to perform

filtering before the second stage testing. According to [4],

the overall variance and standard t-test pair will be an ide-

al choice. However, fractional anisotropy does not directly

use the orientation information of the tensors, which may

lead to poor testing power even using an independent filter-

ing strategy. The experiment results in Fig. 3(b) and Fig

.4(b) also support this statement empirically.

However, the testing power of fractional anisotropy will

be improved when using the Riemannian variance filter in

the first stage, which may due to the fact that the filter con-

siders the nonlinear nature of the tensors. For the standard

t-test, RVF improves TP while controlling FP when com-

pared with SVF and the zero filtering setup. This statement

is supported by sub-figures from Fig. 3 and Fig. 4. For per-

mutation test, we can get a similar conclusion from Fig. 6.

In some situations, the scalar variance filter does not reduce

the testing power, even slightly improves the testing power,

see Fig. 5(b). But it has a lower increase in rejections.

Filtering increase discoveries: The motivation to intro-

duce filtering in the first stage is to reduce the impact of

multiple testing adjustment on detection power. Filtering

can reduce the number of hypothesis tests, which has an

effect on how conservative the correction is at the subse-

quent stage. Compared to scalar variance filtering method,

Riemannian variance filter increases the “rejections” for

both standard t-test and permutation test improving our a-

bility to see disease specific effects. From Fig. 6, we can

see that all four second stage testing methods improve the

number of rejections compared with 0 filtering at the 0 point

in the x-axis. Even using the simple scalar variance (frac-

tional anisotropy), there are some small improvements in

the number of rejections.

Type I error: In the previous section, we show that

using nonspecific variance filter RVF will increase the num-

ber of true positives (rejections). However, this increase will

be meaningless if the false positive control is compromised.

Therefore, the ideal situation is when filtering improves the

detection power but also when the type-1 error (false pos-

itive) is controlled. From both simulated data and brain

image data, we can see from the Fig. 3(d), Fig. 4(d) and

Fig. 6 that the false positives (type-1 error) are appropriate-

ly controlled.

RVF vs. random filtering: A random filter, which arbi-

trarily selects and removes a proportion of ‘locations’, was

also considered in our experiments. The random filtering

can reduce the number of hypothesis, however, this filter

will also reduce a lot of voxels that are specific to te dis-

ease effect. This issue will become more severe as the num-

ber of voxels filtered out increases. In fact, the normal and

diseased voxels have a theoretically equal chance of being

filtered out. This may or may not help the second stage to
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Figure 5. The x-axis cooresponds to fraction of locations filtered out, the y-axis is the TP and FP rate. TP-FA, TP-MFA, TP-Cramér and

TP-LeMean are TP rate of using FA, MFA, Cramér and LeMean as permutation testing. FP-FA, FP-MFA, FP-Cramér and FP-LeMean are

FP rate of using FA, MFA, Cramér and LeMean as permutation testing. 0 in x-axis corresponds to the “no filter” in the stage 1. FA uses

the scalar variance filter in the first stage while all other schemes use Riemannian variance filter.

(a) SVF + t-test (b) RVF + t-test (c) RVF + MFA (d) RFV + Cramér (e) RVF + LeMean

Figure 6. Brain image experiments on filter followed by test statistics.

improve the testing power. Our experiments also show that

random filtering does not help to improve the testing pow-

er consistently. In fact, randomly filtering usually performs

poorly. Therefore, we see that only a carefully chosen filter

can improve the detection power.

7. Discussion

Multiple testing adjustment provides control on false

positives, but such control comes at the the cost of reduced

power to detect true positives. In particular, the situation

become more severe when the number of hypothesis in-

creases. For univariate and multivariate data, various pa-

pers have proposed effective filtering schemes to reduce the

impact of multiple testing adjustments on detection pow-

er. But for manifold-valued data, there is no such filtering

scheme currently available. As the manifold-valued data

have a nonlinear intrinsic structure, it is relatively difficult

to rank and filter without changing the true null distribution.

In this paper, we propose to use RVF as a filter based on

the Riemannian Gaussian distribution. The filter is a mecha-

nism to measure the mean-based dispersion of the data sam-

ples, which is similar to the notion of variance or covariance

matrix used in univariate and multivariate filters. The pro-

posed scheme is tested on a set of synthetic tensors. Accord-

ing to our preliminary experimental results, the scheme can

improve the rejections while controlling the type-1 error.

Finally, we want to note a few caveats. First, as with

most statistical analysis methods on neuroimaging data, our

procedure is only designed to infer if the groups are differ-

ent. Confounding variables are not considered in our proce-

dure. Second, our use of permutation testing is justified with

two-group comparisons when the subjects are exchange-

able on the null hypothesis; This is a typical assumption

in statistical testing [11]. The potentially more complex

dependencies between voxels typically do not invalidate

voxel-specific p-values computed from exchangeable sub-

jects [34]. Going forward, advances in filtering methodolo-

gy may further improve the power to detect subtle distribu-

tional changes [19].
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