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Abstract

Breast cancer is one of the most common cancer in

women worldwide. It is typically diagnosed via histopatho-

logical microscopy imaging, for which image analysis can

aid physicians for more effective diagnosis. Given a large

variability in tissue appearance, to better capture discrim-

inative traits, images can be acquired at different optical

magnifications. In this paper, we propose an approach

which utilizes joint colour-texture features and a classi-

fier ensemble for classifying breast histopathology images.

While we demonstrate the effectiveness of the proposed

framework, an important objective of this work is to study

the image classification across different optical magnifi-

cation levels. We provide interesting experimental results

and related discussions, demonstrating a visible classifi-

cation invariance with cross-magnification training-testing.

Along with magnification-specific model, we also evaluate

the magnification independent model, and compare the two

to gain some insights.

1. Introduction

Breast cancer remains one of the major concerns in the

medical field and the fifth most common cause of cancer

mortality among women worldwide [1]. A biopsy followed

by microscopic examination is a vital technique for reliable

detection of breast cancer [2]. In a biopsy, a small sample of

cells or tissue is removed from the body and then dyed with

stain (H & E) that highlights the nuclei by binding DNA

(dark purple colour) and other structures by binding pro-

teins (pink colour) [3]. After the staining, glass slides (tis-

sues) are sent to the lab where microscopic examination of

tissues is carried out by pathologist. Histopathology imag-

ing has been a ‘gold standard’ in diagnosing almost all types

of cancers because it captures a more comprehensive view

of the disease [4].

Due to the increase in the number of cancer patients

day by day, the diagnosis can be tedious and also ham-

pered by observer variability. Thus, there is a pressing need

of computer-aided diagnosis (CADx) system to relieve the

pathologist workload such that attention can be focused on

the most suspicious cases, and to overcome the subjective

interpretation in order to get the reliability of the obtained

results.

The problem of breast cancer histopathology image clas-

sification could be addressed in two ways, one is with seg-

mentation and other without segmentation. While some

segmentation approaches have been reported, the accurate

segmentation is still a challenging problem due to the an

inherent diversity of the appearance of epithelial cancerous

cell or in general, variability of the tissue appearance [3].

Additionally, nuclei may be tightly clumped, overlapped

which makes this task even more difficult.

Thus, various methods that do not rely on segmenta-

tion have also been proposed. These methods directly ex-

tract the features from images and apply the classifica-

tion framework to classify the issues as malignant/benign

[5, 6, 7, 8, 9, 10].

Even for segmentation-free image classification, we as-

sert that there are two factors which may dictate the perfor-

mance of the system:

• The high degree of variability in tissue appearance

mainly due to irregularity in the staining process. Vari-

ability in the appearance may exists depending on dif-

ferences in staining protocol such as differences in

fixation, inconsistency in the staining condition and

reagents, between labs as well as in the same lab. In

other words, we can say that histopathology images ex-

hibits significant inhomogeneity in colour and texture.

• The images can be captured at different optical magni-

fication levels, where each magnification can represent

different information. The lowest magnification cap-

tures the larger region of interest (ROI), while other

magnifications captures the zoomed-in view of tissue

inside the initial ROI. Using different magnifications
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Figure 1. Sample of histopathological images (first row: benign tumor, second row: malignant tumor) from BreakHis dataset at magnifi-

cation factor of 40X.

can potentially yield varying discriminative informa-

tion for the classification task. However, some ques-

tions are yet unanswered. For instance, is there a mag-

nification model which is more useful for classifica-

tion, is it useful to define models which consider all

magnifications, and if so, how ?

Recently, Spanhol et al. [10] released the BreakHis

dataset, thus providing a benchmark data to explore direc-

tions to address the above concerns. The BreakHis dataset

contains 7909 microscopic biopsy images that were col-

lected from 82 patients in four different magnifications

(40x,100x,200x,400x). Figure 1 shows the some sample

images of BreakHis dataset caputed at lowest magnifictaion

(40X). First and second row in figure show the samples of

benign and malignant cases respectively. Figure 2 shows

the images of different magnification captured from single

slide (malignant).

With regards to the first of the above concerns, it is desir-

able that methods should be able to capture the appearance

(colour and texture) variability, which is attempted in the

approaches cited above.

Zhang et al. [5] investigated multiple image descriptors

along with random subspace ensembles and proposed two-

stage cascade framework with a rejection option. In an-

other work [6], an ensembles of one-class classifiers were

assessed by the same authors. Bahlmann et al. [7], colour

transformed the RGB patch into two channels, called H and

E that intensify the hematoxylin (eosin) at the same time

suppressing eosin (hematoxylin) stain. They extracted the

feature vector of dimension 22 and used liner classifier to

diagnose relevant or irrelevant regions. In [8], similar

approach was applied for segmentation and classification.

Linder et al. [9] extracted the local binary pattern combined

with a contrast measure (LBP/C) and evaluated the perfor-

mance using support vector machine (SVM). However, we

note that these methods use independent dataset (not pub-

lic), and not the BreakHis dataset for validation. However,

in the studies associated with the dataset [10], a series of

experiments utilizing six different state-of-art texture de-

scriptors such as Local Binary Pattern (LBP), Completed

Local Binary Pattern (CLBP), Threshold Adjancey Statis-

tics (PFTAS), Grey-Level Co-occurence Matrix (GLM),

Local Phase Quantization (LPQ), Oriented FAST and ro-

tated BRIEF (ORB), and four different classifiers were eval-

uated and showed the accuracy at patient level. In [11],

Alexnet [12] was used for extracting features and classifi-

cation.

We believe that the colour-texture variability can be bet-

ter captured with integrated colour-texture features [13].

Such features intricately connect texture and colour infor-

mation by considering the mutual dependency of colour and

texture information. These features can be defined with in-

dividual colour channels, or with correlated pairs of colour

channels. Such, robust integration of colour and texture fea-

tures can locally adapt to the variation in the image con-

tent [14].

With regards to the magnification related concerns, some

existing approaches have explored different strategies for

classification. In [10, 11], authors reported results on

magnification-specific models. However, it would seem that

one magnification model may not be able to handle images

with other magnifications, and different classifiers are re-

quired at different magnifications. Moreover, decision in

such cases where large variation in patient score exists, may

not be reliable by just considering one magnification level.

To address these concerns, Bayramoglu at el. [15] pro-

posed a magnification independent model utilizing deep

learning to classify the benign and malignant cases. The

magnification independent system is trained with images of

different magnifications, and thus can handle the scale di-

versity in microscopic images.

Considering these two strategies, in this work, we ques-

tion about how much does the variation in magnification

affect the classification performance of the system, and in

this respect, we demonstrate some interesting experimen-
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Figure 2. A ductal carcinoma (malignant tumor) acquired at different magnification factors: 40X, 100X, 200X, and 400X.

tal results. From an academic perspective, we believe that

such a study opens up further directions of inquiry about

features which are largely invariant, or which can be made

so, by some classifiers. From a practical standpoint, such a

question is important from the point of view of deploying

systems in under-developed or developing countries (e.g. in

rural areas), which may have limited microscopy facilities.

More specifically, we train a model at specific magnifica-

tions and test it with the images of different magnifications.

Further, we compare such cross-magnifications studies with

the magnification-independent model, which is trained and

tested with images of all magnifications. Different from

[10, 11] and [15] in this work, we utilize the fusion of

colour-texture features, and an ensemble of heterogeneous

classifiers followed with majority voting. The reason be-

hind using ensemble is that different classifiers can yield

different performance for each magnification.

The rest of the paper is organized as follows: A descrip-

tion of BreakHis dataset is provided in section 2. Section 3

explains the methodology which includes the description of

colour-texture features and classifiers, and majority voting.

The experiments and results are discussed in section 4.

2. Dataset

The BreaKHis dataset [10] consists of 7909 microscopic

biopsy images divided into benign and malignant breast tu-

mor. All the images are collected from 82 different patients

out of which 24 for benign and 58 for malignant. Images of

each patient are provided in four different magnifications.

A detail distribution of images is given in Table 1.

Table 1. Detailed description of BreaKHis dataset.

Magnifications
Total Patient

40x 100x 200x 400x

Benign 625 644 623 588 2480 24

Malignant 1370 1437 1390 1232 5429 58

Total 1995 2081 2013 1820 7909 82

3. Methodology

In this section, we briefly discuss about the following:

1. Colour-texture image descriptors used in the approach.

2. Classifiers used in the approach

3. Majority voting.

3.1. Colour­texture image descriptors

This subsection discusses about the colour-texture fea-

tures employed for present study. Below, we briefly discuss

the utilized colour-texture features:

1. Normalized colour space representation [16]: This

method calculates the textural (Gabor filter) features

from the matrix of complex numbers of the form

(P1+iP2), where P1 and P2 are the normalized colour

channel values that are chosen based on the range and

average values of the colour channels.

2. Multilayer Coordinate Clusters representa-

tion [17]: This feature describes the textural and

colour content of an image by splitting the original

colour image into a stack of binary images, where each

binary image represents a code based on a predefined

palette (quantized colour space).

3. Gabor features on Gaussian colour model [18]: The

colour-texture feature is calculated in two steps: 1)

colour measurement in a transformed colour space

based on a Gaussian colour model, and 2) texture mea-

surement through Gabor filter bank.

4. Gabor chromatic features [19]: Combination of Ga-

bor features and chromatic features are extracted from

the luminance plane.

5. Complex Wavelet features and chromatic fea-

tures [20]: Dual Tree Complex Wavelet Transform

(DT-CWT) is computed for each colour channel. It has

advantages such as directional selectivity and moder-

ate redundancy over Discrete Wavelet Transform.

6. Opponent Colour Local Binary pattern

(OCLBP) [21]: It computes LBP for each colour

channel (intra channel) separately and for each op-

ponent colour channel ((c1, c2), (c1, c3) and (c2, c3))

jointly.

For more on colour-texture feature please refer [13].
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Figure 3. Overall process of image classification.

3.2. Classifiers

We explore various supervised classifiers, for which we

provide a short description below [22].

1. Support Vector Machine (SVM) [23]: It learns a hy-

perplane that separates a set of positive examples from

a set of negative examples with maximum margin. The

hyperplanes can be learnt in higher dimensional space

using kernels. Based on the kernel and their parame-

ters, a variety of SVMs can be defined.

(a) Linear SVM

(b) Quadratic SVM (Quadratic kernel)

(c) Cubic SVM (Cubic kernel)

(d) Fine Gaussian SVM (Radial Basis Function

(RBF) kernel, kernel scale set to
√
P /4)

(e) Medium Gaussian SVM (Radial Basis Function

(RBF) kernel, kernel scale set to
√
P )

(f) Coarse Gaussian SVM (Radial Basis Function

(RBF) kernel, kernel scale set to 4
√
P )

where P is the number of predictors.

2. Decision Tree [24]: It is a graphical representation of

possible solutions to a decision based on certain condi-

tions. It usually works in top-down manner, by choos-

ing a variable (feature) at each step that best splits the

set into subsets. Various metrics for measuring ”best”

i.e. measure the homogeneity of the target variable

within the subsets are utilized by different algorithms.

Some of the metrics are Gini impurity (GI), Informa-

tion gain (IG) etc. Based on maximum number of

splits used in tree, various trees can be defined.

(a) Simple Tree (maximum number of splits is 4)

(b) Medium Tree (maximum number of splits is 20)

(c) Complex Tree (maximum number of splits is

100)

3. Nearest Neighbors classifier [25] : In this case, test

sample is classified by comparing it to the known sam-

ples (training) according to some distance/similarity

function. Based on number of neighbors and distance

metric used, a variety of k-NN exists.

(a) Fine KNN (number of neighbors is set to 1, eu-

clidean metric)

(b) Medium KNN (number of neighbors is set to 10,

euclidean metric)

(c) Coarse KNN (number of neighbors is set to 100,

euclidean metric)

(d) Cosine KNN (number of neighbors is set to 10,

Cosine distance metric)

(e) Cubic KNN (number of neighbors is set to 10,

cubic distance metric)

(f) Weighted KNN (number of neighbors is set to 10,

distance based weight)

4. Discriminant Analysis [26]: Here, one learns mul-

tivariate distributions (groups) from the training data.

It estimates the distance of each observation to each

group’s multivariate mean (centroid) using Maha-

lanobis distance. A new sample is labelled in that

group for which the distance is minimum. Based on

the boundaries formed between classes, we consider

two types of discriminant analysis,

(a) Linear Discriminant (linear boundaries)

(b) Quadratic Discriminant (non-linear boundaries

such as ellipse, parabola or hyperbola)

5. Ensemble Classifier [27] : It is a process by which

multiple learners such as classifiers or experts, are
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constructed and their output are combined to clas-

sify a new sample. The employment of different base

learner generation processes and/or different combina-

tion schemes leads to different ensemble methods:

(a) Boosted Tree: Each base estimator is grown to

re-weighted versions of the training data (sequen-

tially) in a way that it reduces the bias of the com-

bined estimator. The final classifier will be the

weighted average of classifiers.

(b) Bagged Tree: This is a bootstrap aggregation en-

semble of complex decision trees. These deci-

sion trees are trained on samples which are drawn

with replacement from original data.

(c) Subspace Discriminant Learner(SDL): Creates

an ensemble of discriminant classifies using the

random subspace algorithm where random sub-

sets of features are drawn from the data for train-

ing each classifier.

(d) Subspace KNN: Creates an ensemble of Near-

est Neighbors (NN) using random subspace al-

gorithm.

(e) RUSBoosted Trees: LogitBoost algorithm

(which is derived from adaboost) with Decision

Tree learners.

3.3. Majority voting

Figure 3 shows the overall classification framework. In

proposed framework, we use an ensemble of heterogeneous

classifier. To fuse the output of different classifier major-

ity voting is used. Majority voting is a decision rule where

the class of new sample is decided based on votes (labels)

provided by each classifier to each class. The class which

receives the most votes is used as a final label for a test sam-

ple. As indicated earlier, the majority voting strategy can

be useful in considering classification across magnification

levels, as each classifier may discriminate the features dif-

ferently for each magnifications. Thus, a voting strategy can

help towards generalizing the framework for all magnifica-

tions.

4. Result & Discussion

In this section, we first discuss some aspects of our ex-

perimentation, and then provide and discuss our results.

In our experiments, we have randomly chosen 58 patients

(70%) for training and remaining 25 for testing (30%).

This also enables fair comparison with a state-of-the-art ap-

proach [15]. We train the above mentioned classifiers us-

ing images for the chosen 58 patients, and also used five

trials of random selection of training-testing data. These

trained models are tested using images of the remaining im-

ages 25 patients. In subsequent subsections, we will discuss

the evaluation metrics used to compute our results.

4.1. Evaluation metric

To compare results with existing approach, we also use

patient recognition rate (PRR) as evaluation metric. The

definition of patient recognition rate is given as follows:

PRR =

∑
N

i=1
PSi

N
(1)

where N is the total number of patients (available for test-

ing). The patient score is define as follows,

PS =
Nrec

NP

(2)

where Nrec and NP are the correctly classify and total can-

cer image of patient P respectively.

4.2. Performance of the magnification independent
model, and related comparison

To validate the effectiveness of proposed framework

(the use of colour-texture features and the ensemble-

classifier framework with voting), we first compare the re-

sults obtained from magnification independent model with

the state-of-the-art approach [15], which is based on

deep learning. To our knowledge, this is only work on

BreakHis dataset which considers a magnification indepen-

dent model. The results are provided in Table 2. We can ob-

serve from the table that, proposed method outperforms the

existing approach, when testing at all magnification levels.

Furthermore, one can also observe that the proposed work

yields a lesser variance in scores, in most of the cases. This

experiments validates the effectiveness of our framework.

Table 2. Performance Comparison.

Recognition Rate based on patient score (%)

Methods/Magnification 40X 100X 200X 400X Average

Bayramoglu et al. [15] 83.08±2.08 83.17±3.51 84.63±2.72 82.10±4.42 83.25

Proposed Method 87.2±3.74 88.22±3.28 88.89±2.51 85.82±3.81 87.53

Table 3. Inter-magnification classification performance with the

magnification-specific models

Training Magnification Average testing

performance

over all magnifications

Training

Magnification
40X 100X 200X 400X

40X 84.89 83.24 81.15 70.47 79.93

100X 87.38 86.19 86.22 88.69 87.12

200X 86.38 86.44 86.48 84.8 86.53

400X 85.05 84.37 86.37 82.92 84.68

4.3. Performance of magnification specific models

Having established the experimental validity of our clas-

sification approach, we next illustrate in Table 3 the av-

erage results (over 5 random trials) obtained for inter-

magnification classification for magnification-specific mod-

els. From the Table 3, we can observe that extreme magni-

fication (40X, 400x) has relatively lower accuracy and also
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relatively larger variation in accuracy, as compared to the

mid-range magnifications (100x, 200x), which have more

consistent results. The reason could be the large difference

in texture properties of image patterns.

For example, 40X specific model gives inferior perfor-

mance when tested with images of 400X due to the large

variation in patterns on which model was trained and tested.

It can also be expected that the mid-range magnifications

(100X, 200X) may have lesser variability among features

with other magnifications. Interestingly, the average accu-

racy for the (100X, 200X) specific models across all magni-

fications (Table 3), is similar to the average accuracy of the

magnification independent case (Table 2).

However, there are also some unexpected results. For

instance, the performance drop observed in the 40X specific

model for the 400X testing images, is not reciprocated in the

400X specific model. Also, in some cases, the testing with

images with the same magnification as the training model,

does not yield the highest results.

4.4. Performance across classifiers

To further gain some more insight about the inter-

magnification classification, we provide in Table 4 and Ta-

ble 5, some quantitative results across the various classifiers

used in this work. One can note that, the mean accuracy

over the various classifiers for magnification-specific mod-

els is not too high. However, the majority voting results

are much higher. Hence, clearly the framework of using

an ensemble-classification with a voting scheme seems to

be playing a role in achieving the good performance across

magnifications.

In this case to we note that for 100X and 200X magnifi-

cations, the mean across classifiers is consistently high, and

the standard deviation low. This observation further sup-

ports the earlier one that the 100x and 200x models, seem

to yield better magnification invariant performance (with

100X being somewhat better and consistent than 200X).

We also report the number of high performing classifiers

for each model. We define these are the classifiers which

have the accuracy ≥ 80%. Even in this case, we notice that

the 100X and 200X models have a large number of high

performing classifiers (again with 100x better than 200X).

When comparing such quantities for magnification spe-

cific models (Table 4) with those of magnification indepen-

dent model Table 5, we note that the latter has a higher

mean, lesser standard deviation, and a large number of high-

performing classifiers. Thus, as expected, in terms of indi-

vidual classifiers, the magnification independent model is

certainly more consistent than training with just one mag-

nification. However, with an ensemble classification, the

overall performance of the magnification specific models

comes close to that of the magnification independent one,

especially for 100X and 200X cases.

Finally, we note that the highest classification perfor-

mance in Table 4 and Table 5 is often higher than the ma-

jority voting performance. However, there are some differ-

ences in the classifiers which yield this highest classifica-

tion performance. Thus, no single classifier is the best for

all cases (although, we have observed that there are a few

who are better than many). This further suggests the case in

support of an ensemble classifier framework.

4.5. Conclusion

In this work, we proposed the use of colour-texture fea-

tures and an ensemble classifier framework for classifica-

tion of breast cancer histopathology images. While we

demonstrated the effectiveness of using such features and

classification, importantly, we provided various experimen-

tal studies which indicates some interesting aspects about

the role of optical magnification in classification. From our

experiments, it is apparent that with suitable features within

an ensemble classification framework, the classification can

be made largely magnification invariant, more so for mag-

nification factors than others. The magnification models

learnt in this manner yield performance similar to the mag-

nification independent model. We believe that this is an

interesting study which raises some questions about scale-

invariance properties of feature-classifier combination, role

of ensemble classification, considering that the magnifica-

tion specific model requires relatively less training than the

magnification independent model, considering certain ob-

served asymmetries in the results etc. It can also have im-

portant practical implications for breast cancer histopathol-

ogy diagnosis systems.
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