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Abstract

Phase Contrast (PC) and Differential Interference Con-

trast (DIC) microscopy are two popular non-invasive tech-

niques for monitoring live cells. Each of these two image

modalities has its own advantages and disadvantages to

visualize specimens, so biologists need these two comple-

mentary modalities together to analyze specimens. In this

paper, we investigate a conditional Generative Adversar-

ial Network (conditional GAN), which contains one gener-

ator and two discriminators, to transfer microscopy image

modalities. Given a training dataset consisting of pairs of

images (source and destination) captured on the same set of

specimens by DIC and Phase Contrast microscopes, we can

train a conditional GAN, and with this well-trained GAN,

we can generate the corresponding Phase Contrast image

given a new DIC image, vice versa. The preliminary ex-

periments demonstrate that our approach outperforms one

state-of-the-arts method, and can provide biologists a com-

putational way to switch between microscopy image modal-

ities, so biologists can combine the advantages of different

image modalities to better visualize and analyze specimens

over time, without purchasing all types of microscopy image

modalities or switching between imaging systems back-and-

forth during time-lapse experiments.

1. Introduction

Live cells are normally transparent and invisible to hu-

man eyes under bright field microscopes. Though the flu-

orescence microscopy can stain them with chemical dyes

and radiate them with the specific wavelength light, the in-

vasive staining will do harm to the cell viability. Differ-

ential Interference Contrast (DIC) and Phase Contrast (PC)

microscopy, two noninvasive techniques, were invented to

visualize live cells without altering them in the last century

[1][2].

Figure 1. Different microscopy image modalities. (a): Phase Con-

trast microscopy image. (b): Differential interference contrast mi-

croscopy image.

1.1. Motivation

DIC and Phase Contrast microscopy are usually simul-

taneously used to minotor living cells. Some cells imaged

by the Phase Contrast microscope are shown in Fig.1(a).

The Phase Contrast can image many internal cellular details

at a very high resolution. Unfortunately, some shade-off

and halo artifacts degrade the image, especially the halos

surrounding the periphery of the cell membrances, which

obscure the detailed information about intracellular con-

tacts within halo regions dramatically. Fig.1(b) presents the

same set of specimens with DIC optics, it does not suffer

from the halo artifacts, and presents the periphery of the

cellular membranes much more clearly than that with the

Phase Contrast microscope, though the internal cellular de-

tails are less obvious. In short, the DIC image can present

the close proximity of neighboring cells evidently, and the

Phase Contrast image can clearly show the internal details

of the cells, which renders that the DIC images are more

suitable for intercellular studies, such as contact inhibition,

while the Phase Contrast images are more suitable for the

internal cellular details analysis, such as autophagy.

Accordingly, both Phase Contrast and DIC have its own

strength and weaknesses to analyze cells (further thorough
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comparisons can be found from [3] and [4]), and these two

image modalities are complementary to each other. Usu-

ally, both of these two image modalities are used to moni-

tor the same specimens, which helps biologists to study the

specimens from different perspectives. Purchasing both of

these two microscopes in the laboratory is a feasible way to

get these two image modalities, but it is money consuming.

Moreover, when we need to perform high-throughput time-

lapse experiments on live cells over days or even weeks, it is

infeasible to switch the specimen culturing dish back-and-

forth between microscopes since it is too tedious and will

involve some technical challenges such as image registra-

tion between two image modalities.

These problems motivate us to think whether we can

transfer one microscopy image modality to the other by de-

veloping some computational algorithms, when only one

microscopy imaging system is available. In another word,

when only one microscope hardware is available, we aim

to create multi-model imaging capabilities in a software

way by transferring the captured microscopy image to other

modalities. Furthermore, by implementing the image trans-

fer, it is feasible to make a long-term multi-modal observa-

tion on the same specimens by monitoring the specimens

using one microscope system and then transfer the captured

time-lapse image sequence to other image modalities using

an efficient computational algorithm, which means the im-

age transfer can help us avoid swapping microscope imag-

ing systems back-and-forth when perform time-lapse multi-

modal observations on specimens.

1.2. Related Work

Generative Adversarial Nets (GANs) was first proposed

by Ian J. Goodfellow in 2014 [5], and has been attracting in-

creasing interests recently. Wang et al. proposed a style and

structure generative adversarial network, which contains a

style-GAN and a structure-GAN to generate new images

[6]. Dong et al. presented a general approach which based

on deep convolutional and conditional GANs to transform

an image from its original form to some synthetic forms [7].

Yoo et al. introduced an image-conditional image genera-

tion model based on the GANs to transfer an input domain

to a target domain in the semantic level, and generate the

target image in the pixel level [8]. Isola et al. investigated

conditional generative adversarial networks as a general-

purpose solution to image-to-image translation problems

[9].

The success of GANs motivates us to try to transfer the

microscopy image modalities with GANs, however, directly

adopting the previous methods cannot solve our problem

perfect because of some limitations of the DIC images.

Accordingly, we propose a new conditional GANs which

contains two discriminators to solve our microscopy image

modalities transfer problem.

Figure 2. Generator G and discriminator D in the conditional

GANs.

1.3. Research Contributions

We investigate a new conditional Generative Adversarial

Network (conditional GAN) to transfer microscopy image

modalities.

• We improve the structure of the generator in the con-

ditional GAN, which can take more additional information

into consideration to generate better destination images.

• We introduce one more discriminator in the conditional

GAN, which makes the generated images be distinguished

more easily by these two discriminators if the generated im-

ages are not good enough.

• We apply the conditional GAN on the microscopy im-

age area, and prove that this technique can do a very good

job on transferring microscopy image modality.

2. Background

Generative Adversarial Nets (GANs) were introduced as

a novel way to train generative models which can generate

realistic images, while the conditional Generative Adversar-

ial Nets were proposed to extend the GANs to a conditional

version in which the generative models are conditioned on

some aditional information. The biggest difference between

GANs and conditional GANs is the input. GANs aim to

learn a mapping from a latent random noise vector z to out-

put image y, while conditional GANs try to learn a mapping

from a latent random noise vector z and an observed image

x to output image y. Both of these two generative models

contain two submodels: generator G and discriminator D.

In conditional GANs, the generator G is trained to take

latent random noise vector z and observed image x as the in-

put and try to generate realistic images y that cannot be dis-

tinguished from the real images by discriminator D (Fig.2

(a)). The discriminator D is trained to perform binary clas-
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sification to try to differentiate the images generated by G
from the real images (Fig.2 (b)). In another word, generator

G and discriminator D act as two adversaries: generator G
is trained to generate images which will fool discriminator

D to classify the real images and generated images, while

D is trained to avoid being fooled by G.

The objective function of a conditional GAN can be for-

mulated as

LcGAN (G,D) = Ex,y∼pdata(x,y)[logD(x, y)]+

Ex∼pdata(x),z∼pz(z)[log(1−D(x,G(z|x))],

(1)

where x is the real source image (e.g., DIC image), y
is the real objective image (e.g., Phase Contrast image),

G(z|x) is the generated objective image, D(x, y) is the

output of the discriminator when taking image pair (x, y)
as input. G is trained to minimize this objective function

and D is trained to maximize this objective function, i.e.,

(G∗, D∗) = argmin
G

max
D

LcGAN (G,D).

3. Methodology

Conditional GANs can be used to do image to image

translation, so an intrinsic solution of our microscopy im-

age translation problem is using the conditional GANs to

transfer DIC image to Phase Contrast image, or from Phase

Contrast image to DIC image. Some previous studies on

conditional GANs show that it benefits from combining the

GAN objective with a traditional loss function [10], e.g., a

ℓ1 constraint defined as

Lℓ1(G) = Ex1,x2,y∼pdata(x1,x2,y)[‖y −G(z|x1, x2)‖ℓ1 ].
(2)

and the final objective is

(G∗, D∗)=argmin
G

max
D

(

LcGAN (G,D) + µLℓ1(G)
)

,

(3)

where µ is a weight parameter. The reason why we prefer

the ℓ1 distance to the ℓ2 distance is that ℓ1 encourages less

blurring than ℓ2.

However, when the surrounding medium and the speci-

mens have very similar optical path lengths, and the cells’

optical path length has very small gradient, neither the DIC

image nor the Phase Contrast image can show detailed cell

structure and clear cell edges, which makes it very challeng-

ing to transfer the microscopy image perfectly, as shown in

Fig.7 and Fig.8.

3.1. Cell segmentation

Cell region segmentation can be regarded as the addi-

tional information for the conditional GANs to do image

translation. Jiang and Yin propose a motion-based DIC im-

age segmentation and restoration algorithm [11]. The tiny

Figure 3. Microscopy image cell segmentation. (a): DIC image.

(b): cell mask of the DIC image. (c): Phase Contrast image. (d):

cell mask of the Phase Contrast image

motion of each cell pixel is magnified by filtering a time-

series of gradient signals on the pixel location using an ideal

bandpass filter, while the intensity variation on the back-

ground pixels is attenuated. The motion information of a

target image is further magnified by a weighted sum of a

series of motion images from time-lapse image sequences.

With the motion information of cell pixels, we can estimate

the cells mask of a DIC image, as shown in Fig.3.

3.2. Formulation

With the additional information of cell mask, we can for-

mulate our microscopy image translation problem as a new

conditional GAN

LcGAN (G,D1, D2) =

Ex1,y∼pdata(x1,y)[logD1(x1, y)]+

Ex2,y∼pdata(x2,y)[logD2(x2, y)]+

Ex1∼pdata(x1),z∼pz(z)[log(1−D1(x1, G(z|x1, x2))]+

Ex2∼pdata(x2),z∼pz(z)[log(1−D2(x2, G(z|x1, x2))],

(4)

where x1 is the real source image (e.g, DIC microscopy im-

age), x2 is the beforehand obtained cell mask image with

the method in [11], and y is the real objective image (e.g.,

Phase Contrast microscopy image), G is a generator which

takes the real source image x1, the cell mask image x2, and

a latent random noise vector z as the input, and generate

some objective images which are very similar to the real

ones and cannot be distinguished by the discriminators. D1

and D2 are two discriminators which try to differentiate the

generated objective images from the real ones by perform-

ing binary classification. The input of D1 is an image pair

which is either a pair of real source image and real objective

image or a pair of real source image and generated objec-

tive image, D1 is trained to output 1 when the input is a pair

of real source image and real objective image, and 0 other-

wise. The input of D2 is an image pair which is either a pair

of cell mask image and real objective image or a pair of cell

mask image and generated objective image. D2 is trained

to output 1 when the input is a pair of cell mask image and

real objective image, and 0 otherwise.

Adding the ℓ1 constraint to our formulation and we can
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Figure 4. We take the microscopy image transfer from DIC to Phase Contrast (PC) as an example to illustrate the structure of our conditional

GAN. Given the ground truth DIC image, cell mask image and uniform distributed noise z as input, the generator G is trained to generate

corresponding Phase Contrast image. The discriminator D1 takes image pair of DIC image and generated Phase Contrast image, and image

pair of DIC image and real Phase Contrast image as input, and classify the generated one and real one. The discriminator D2 takes image

pair of cell mask image and generated Phase Contrast image, and image pair of cell mask image and real Phase Contrast image as input,

and classify the generated one and real one.

get our final objective

(G∗, D∗

1 , D
∗

2) =

argmin
G

max
D1,D2

(

LcGAN (G,D1, D2) + µLℓ1(G)
)

,
(5)

The discriminators try to distinguish the realistic images

generated by G from the real ones by performing binary

classification, while the generator tries to generate images

not only fool the discriminators but also similar to the real

ones in an ℓ1 manner. The structure of our conditional

GANs is shown in Fig.4.

3.3. Network Design

As the generator and discriminators in our conditional

GAN model are all neural networks, we describe their de-

signs in this section.

3.3.1 Generator Architecture

An encoder-decoder network architecture is adapted to de-

sign the generator of the conditional GANs in many previ-

ous works [12, 6, 10, 13]. In an encoder-decoder network,

the input information is sent to pass through a series of pro-

gressively downsampling layers. When the transmitting in-

formation encounters a bottleneck layer, the process will be

reversed, and the transmitting information will pass through

a series of progressively upsampling layers (Fig.5 (a)). As

we can see, the downsampling layers and the upsampling

layers in the encoder-decoder networks are usually symmet-

ric, and the input information will pass through all the lay-

ers, including the bottleneck layer.

In our problem, the source image and objective image

are DIC microscopy image and Phase Contrast microscopy

image that image the same set of specimens, therefore, the

source image and objective image should share the same un-

derlying image structure. Taking this constraint into consid-
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Figure 5. Comparison of Encoder-decoder and “U-Net ”. The only

difference is that there are skip connections between the symmetric

layers in the “U-Net ”architecture.

eration, we add skip connections into the encoder-decoder,

and form a “U-Net”[14] structure for our generator (Fig.5

(b)). More specifically, suppose there are n layers in the

network, between each layer i and layer n− i, an skip con-

nection is added, which concatenates all channels at layer i
with those at layer n−i. The structure of generator is shown

in Fig.6 and Tab.1. After the last layer of the decoder, we

apply a convolution to map to the number of output chan-

nels (3 in our problem), with a Tanh function followed. In

the encoder, all the ReLUs are leaky with a slope of 0.2,

while in the decoder ReLUs are not leaky.

It is worth noting that we do not provide the noise vector

z in the very beginning layers of the generator in addition

to x1 and x2 as it is proved that the generator will simply

learn to ignore the noise. Instead, we add some noise only

to several layers of our generator in the form of dropout.

3.3.2 Discriminator architecture

The discriminators D1 and D2 in our conditional GANs are

multi-layer network architectures, and at the end of each

discriminator is a sigmoid function which converts the out-

put value into a [0, 1] range. We can do binary classification

easily by thresholding the output of the sigmoid function.

In our final objective function, we use an ℓ1 constraint

to force the generated image to be similar to the ground

truth. Unfortunately, the ℓ1 constraint cannot capture high-

frequency correctness perfectly, though it has good ability

to encourage low frequencies. This motivates us to find a

way to force the conditional GAN discriminator to model

the high-frequency structure of the image, based on the fact

that the ℓ1 constraint can capture the low-frequencies.

In order to model the high-frequency information of the

image, we borrow the idea of PatchGAN from [9], in

which the discriminator only penalizes structure at the scale

of image patches. Specifically, the input of the discrimina-

tor is a pair of image patches with size of N × N instead

of a whole image pair. The discriminator convolutionally

runs across a whole image, and all the responses are aver-

aged to provide a final output of this image. The structure

of the discriminator is shown in Tab.2. After the last layer

of each discriminator, we apply a convolution to map to a

one dimensional output, with a Sigmoid function followed.

All ReLUs in the discriminators are leaky with a slope of

0.2.

3.4. Optimization and inference

We follow the iterative, numerical approach from [5] to

optimize our conditional GAN, i.e., we alternate between

one gradient descent step on optimizing D1 and D2, and one

gradient descent step on optimizing G. In our optimization

process, the minibatch Stochastic Gradient Descent (SGD)

is used, and the Adam solver is applied [15]. The optimiza-

tion process is summarized in Alg.1.

After the conditional GAN is trained, we apply the gen-

erator onto the source image (e.g., DIC image) to generate

the objective image (e.g., Phase Contrast image), achieving

our goal of transferring microscopy image modalities.

4. Experiments

To test the effectiveness of our proposed conditional

GAN model, we perform some experiments to transfer the

microscopy image from one image domain (e.g., DIC im-

age) to another image domain (e.g., Phase Contrast image)

on two datasets, and evaluate the quality of the generated

images qualitatively and quantitatively.

Dataset: We evaluate our algorithm on two datasets. For

each dataset, we collect 1,600 pairs of time-lapse DIC and

Phase Contrast images on the same set of specimens over

time, and obtain the corresponding 1,600 cell mask images

with the method in [11]. 800 triplets consisting with DIC

image, Phase Contrast image, and the corresponding cell

mask image are selected as the training set, another 400

triplets are chosen as the validation set, and the rest 400

triplets are regarded as the testing set. All images are pre-

sented at 256×256 resolution, and the image has pixel value

range [0, 255].
Evaluation Metric: Evaluating the quality of genera-

tive models is known to be very challenging. Here we use

the Normalized Root Mean Square Error (NRMSE) and

Structural Similarity Index (SSIM) [16] to quantitatively

evaluate our generative model. NRMSE is defined as

NRMSE(x, y) =

√

1
mn

∑m
i=1

∑n
j=1(y

∗

ij − yij)2

max−min
(6)

where max and min are the maximum and minimum inten-

sities of the ground truth (yij), respectively. The normaliza-

tion denominators make this error metric insensitive to the
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Figure 6. Structure of the generator in our conditional GAN. ei stands for the ith layer of the encoder of the “U-Net ”, and dj represents

the jth layer of the decoder of the “U-Net ”. In the decoder, two symmetric layers are concatenated together. All convolutions are 4 × 4

spatial filters applied with stride 2. convolutions downsample bu a factor of 2 in the encoder of the “U-Net ”, and upsample by a factor of

2 in the decoder of the “U-Net”. Dropout noise is added to d1, d2, and d3.

Layer fc e1 e2 e3 e4 e5 e6 e7

Module - CR CBR CBR CBR CBR CBR CBR

Kernel Number - 64 128 256 512 512 512 512

Stride - 2d 2d 2d 2d 2d 2d 2d

Layer d1 d2 d3 d4 d5 d6 d7 fc

Module CDBR CDBR CDBR CBR CBR CBR CBR -

Kernel Number 512 512 512 512 256 128 64 -

Stride 2u 2u 2u 2u 2u 2u 2u -

Table 1. Structure of the encoder and decoder in the generator. “fc ”means fully connected layer, ei stands for the ith layer of the encoder,

and dj represents the jth layer of the decoder. “CR ”denotes Convolution-ReLU without BatchNorm, “CBR ”is Convolution-BatchNorm-

ReLU, “CDBR ”denotes Convolution-BatchNorm-ReLU with a dropout rate of 50%. “2d ”means filtering with stride 2 and downsampling,

and “2u ”means filtering with stride 2 and upsampling.

Layer fc D1 D2 D3 D4

Module - CR CBR CBR CBR

Kernel Number - 64 128 256 512

Stride - 2d 2d 2d 1

Table 2. Structure of the discriminators D1 and D2. “fc ”means

fully connected layer, Di stands for the ith layer of the discrim-

inator. “CR ”denotes Convolution-ReLU without BatchNorm,

“CBR ”is Convolution-BatchNorm-ReLU. “2d ”means filtering

with stride 2 and downsampling.

image value scale and image size. SSIM is defined as

SSIM(x, y) = l(x, y) � c(x, y) � s(x, y) (7)

where l(x, y) =
2µxµy+C1

µ2
x+µ2

y+C1

, c(x, y) =
2σxσy+C2

σ2
x+σ2

y+C2

,

s(x, y) =
σxy+C3

σxσy+C3

, C1 = (0.01 ∗ L)2, C2 = (0.03 ∗ L)2,

and C3 = C2/2. µx, µy , σx, σy , and σxy are the local

means, standard deviations, and cross-covariance for im-

ages x and y. L is the specified Dynamic Range value of

the image.

Parameter Setup: In our experiments, we set batch size

to 1, noting little difference between experimental results

with different batch sizes as long as enough training iter-

ations. The number of training iterations is 300. We use

the Adam optimizer in our experiments, the learning rate

for Adam is 2e−4, and the exponential decay rate for the

moment estimate is 0.5. As we use PatchGAN, the size of

the input patch for the two discriminators is 70 × 70. We

use 5-fold cross validation on the validation set to select the
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Algorithm 1 Training of conditional GAN

Require: Training set, weight parameter µ.

for number of training iterations do

• Sample minibatch of one noise sample {z} from noise prior pz(z).
• Randomly sample minibatch of one example {x1, x2, y} from training set.

• Update the discriminator D1 by ascending its stochastic gradient with Adam optimizer:

∇θD1
[logD1(x1, y) + log(1−D1(x1, G(z|x1, x2))]

• Update the discriminator D2 by ascending its stochastic gradient with Adam optimizer:

∇θD2
[logD2(x2, y) + log(1−D2(x2, G(z|x1, x2))]

• Update the generator G by descending its stochastic gradient with Adam optimizer:

∇θG [log(1−D1(x1, G(z|x1, x2)) + log(1−D2(x2, G(z|x1, x2))]

end for

Ensure: Trained generator G, discriminators D1 and D2.

weight paramater µ in our final objective function as 100.

Evaluation and Discussion: Fig.7 shows the results of

transferring microscopy image modalities from DIC im-

age to Phase Contrast image, and Fig.8 presents the results

of transferring from Phase Contrast image to DIC image.

These two figures qualitatively evaluate the performance of

our conditional GAN compared with a previous state-of-

the-art method [9]. Fig.8 shows that our method generates

the comparable results with the method from [9]. We can

hardly distinguish which one is better. In Fig.7, it is easy to

see that our method outperforms the previous method from

[9], especially in the area marked by the red circles.

The quantitative evaluations of the proposed conditional

GAN and the one in [9] with NRMSD and SSIM are

summarized in Tab.3 and Tab.4, respectively. From these

two tables, we also can find that our method beats the previ-

ous one when transferring microscopy image from DIC to

Phase Contrast, and achieves almost the same performance

when transferring image from Phase Contrast to DIC.

The reason that our method cannot outperform the pre-

vous conditional GAN when transferring microscopy image

from Phase Contrast to DIC is that most of the Phase Con-

trast images in our dataset have very clear cell edges and the

cells can easily be segmented out of the background, which

means that the cell mask image cannot offer much useful

additional information to determine the cell region. When

transferring microscopy image from DIC to Phase Contrast,

some cell edges in the DIC images are not easy to be de-

tected, and some cell region cannot be segmented from the

background well. In this case, the cell mask images offer us

very useful additional information to detect the cell region,

and as a result, our conditional GAN based on one genera-

tor and two discriminators can benefit from these additional

Direction DIC → PC PC → DIC

Method of [9] 0.0420 0.0942

Our method 0.0371 0.0912

Table 3. Quantitative evaluation with NRMSD.

Direction DIC → PC PC → DIC

Method of [9] 0.8686 0.8709

Our method 0.9056 0.8705

Table 4. Quantitative evaluation with SSIM .

information and generate better Phase Contrast images.

5. Conclusions

In this paper, we present a conditional GAN, which

contains one generator and two discriminators to do mi-

croscopy image modality transfer. The generator in the pro-

posed GAN can take additional object segmentation infor-

mation into consideration which helps to train the genera-

tor better. Two discriminators in the GAN can distinguish

the generated image from the real one with higher possi-

bility, which means the GAN is forced to generate images

much more similar to the real ones. It is worth noting that

our model can be generally extended to include more dis-

criminators, which will further help to train a better gener-

ator. We both qualitatively and quantitatively evaluate our

method on two datasets, and the preliminary experimental

results show that the proposed approach can do very well

on transferring the microscopy image modality.
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Figure 7. Qualitative evaluation of transferring microscopy image from DIC to Phase Contrast.

Figure 8. Qualitative evaluation of transferring microscopy image from Phase Contrast to DIC.
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