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Abstract

Fluorescence microscopy enables one to visualize sub-

cellular structures of living tissue or cells in three dimen-

sions. This is especially true for two-photon microscopy

using near-infrared light which can image deeper into tis-

sue. To characterize and analyze biological structures, nu-

clei segmentation is a prerequisite step. Due to the complex-

ity and size of the image data sets, manual segmentation is

prohibitive. This paper describes a fully 3D nuclei segmen-

tation method using three dimensional convolutional neural

networks. To train the network, synthetic volumes with cor-

responding labeled volumes are automatically generated.

Our results from multiple data sets demonstrate that our

method can successfully segment nuclei in 3D.

1. Introduction

Fluorescence microscopy, a type of an optical mi-

croscopy, enables three dimensional visualization of subcel-

lular structures of living specimens [1]. This is especially

true for two-photon microscopy using near-infrared light

which can image deeper into tissue. Since two-photon mi-

croscopy uses two photons simultaneously with less energy

to excite electrons on fluorescent molecules, living samples

may receive less damage from the data acquisition process

[2, 3]. This allows acquisition of large amount of 3D data.

Manually analyzing large image volumes requires a large

amount of work and can be biased by individuals. Auto-

matic 3D microscopy image analysis methods, particularly

segmentation, are required for efficiency and accuracy to

quantify biological structures.

Several segmentation methods on microscopy images

have been developed in the past years. In [4] the use of ac-

tive contours is described. Active contours has been widely

investigated in microscopy image segmentation because it

can segment structures with various shapes [5]. Contour

initialization is important since final segmentation results

and convergence time are highly depending on the initial

contours. Initialization can be done manually but requires

a large amount of time and effort for 3D image data sets.

In [6], an automatic initialization technique was described

by estimating the external energy field from the Poisson in-

verse gradient to generate better initial contours for noisy

images. With automatic initialization, [7] developed a 3D

active surface method, an extension of the Chan-Vese 2D

region-based active contour model [8], to segment 3D cellu-

lar structures of a rat kidney. In [9] 3D active surfaces with

correct for inhomogeneity is presented. A method known

as Squassh [10, 11] minimizes an energy functional derived

from a generalized linear model to segment and quantify 2D

or 3D subcellular structures. These methods do not separate

overlapping nuclei which may produce poor segmentation

results.

In order to separate overlapping nuclei and count the

number of nuclei in a volume several methods have been

reported. In [12] a fully automatic segmentation method

using coupled active surfaces to separate overlapping cells

by multiple level set functions with a penalty term and a

constraint of conserving volume is described. Here, it is

assumed that volumes of cells are approximately constant.

In [13] an approach which improves on the technique pre-

sented in [12] which used watershed techniques, a non-

PDE-based energy minimization, and the Radon transform

to separate touching cells is presented. Alternatively, [14]

described model-based nuclei segmentation using primi-

tives corresponding to nuclei boundaries and delineating

nuclei using region growing. In [15] a discrete multi-region

competition that can generate multiple labels to count the

number of structures in a volume is described. Recently,

[16] used midpoint analysis, a distance function optimiza-
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tion for shape-fitting, and marked point processes (MPP) to

segment and count nuclei in fluorescence microscopy im-

ages. These techniques have no ability to distinguish nuclei

and other biological structures.

Segmenting nuclei and distinguishing them from differ-

ent subcellular structure may be possible with convolutional

neural networks (CNN) if the networks are trained with

many training images where the nuclei are manually seg-

mented providing ground truth image volumes. Convolu-

tional neural networks have been known for many years

[17, 18]. The first successful application using a CNN

is LeNet [19] for hand-written digits recognition. In [20]

the rectified linear unit (ReLU) is described to achieve

the best results on the ImageNet classification benchmark.

CNNs are widely used in many segmentation problems

such as [21]. To segment neuron membranes for electron

microscopy images, [22] developed a segmentation tech-

nique that uses a CNN structure with a max-pooling oper-

ation. Note that the max-pooling operation preserves fea-

tures while downsampling the feature maps. In [23] the

detection of Tyrosine Hydroxylase-containing cells in ze-

brafish brain images from wide-field microscopy using a

convolutional neural network with a support vector machine

(SVM) [24] to preselect training candidates is investigated.

U-Net from [25] uses two-dimensional convolutional neural

networks with an encoder-decoder architecture to segment

neuronal structures in electron microscopy and cells in light

microscopy. Note that an elastic deformation technique was

used to generate more training images from a limited num-

ber of ground truth images. In [26] nuclei segmentation

method on histopathology images using deep CNN with

selection-based sparse shape model is described. While

producing good results in 2D images, these techniques can-

not utilize the z-directional (or depth) information in a vol-

ume.

Instead of examining two-dimensional segmentation us-

ing a 2D CNN, segmentation techniques using a “2D+

CNN” has been introduced where 2D+ CNN is semi-3D

segmentation using 2D CNN architectures. In [27] a CNN

model that combines three 2D CNNs that were trained in

horizontal, frontal, and sagittal planes independently is used

to segment 3D biological structures. In [28] the method

described in [27] is simplified by using three orthogonal

planes as three channel images. A similar method was in-

troduced in [29] with a refinement process to utilize 3D in-

formation of a volume by a majority voting technique. Al-

though [27, 28, 29] achieved good segmentation results, a

2D+ CNN cannot fully incorporate 3D information. In [30],

a volumetric segmentation method, 3D U-Net, was devel-

oped to generate 3D dense maps by expanding the 2D U-

Net architecture [25]. Although [30] claimed to implement

a 3D CNN architecture, the system was trained with manu-

ally annotated 2D slices, which does not fully use 3D infor-

mation in an image volume. Expanding a 2D CNN to 3D

CNN is not a simple task because 3D ground truth volumes

in biomedical data are extremely limited.

One of the most daunting problems in using CNNs is the

very large amount of training images required. One way

to address this problem is through the use of data augmen-

tation methods where linear and nonlinear transforms are

done on the training data to create “new” training images.

Typical transformations include spatial flipping, warping

and other deformations [25, 29] or contrast transformation

[29]. These methods may help, but there is a still limitation

if there are only a few 3D ground truth image volumes.

In this paper, we present a “fully” 3D CNN architecture

to segment nuclei in fluorescence microscopy volumes. In-

stead of training a CNN with 2D ground truth images or

augmented volumes from limited real 3D ground truth vol-

umes, we generate a set of synthetic microscopy volumes

and synthetic ground truth volumes containing multiple nu-

clei. To evaluate the results of our method, manually gener-

ated ground truth volumes on real fluorescence microscopy

volumes are used. Image volumes as our testing data are

collected using two-photon microscopy from a rat kidney

labeled with Hoechst 33342.

2. Proposed Method

Figure 1. Block diagram of the proposed method for 3D nuclei

segmentation

Figure 1 shows a block diagram of our proposed method

to segment nuclei in three dimension. We denote a 3D

image volume of size X × Y × Z by I and the pth focal

plane image along the z-direction, of size X × Y , by Izp ,

where p ∈ {1, . . . , Z}. For example, Iorigz67
is the 67th orig-

inal image. Also, we denote a sub-volume of I , whose x-

coordinate is qi ≤ x ≤ qf , y-coordinate is ri ≤ y ≤ rf ,

z-coordinate is pi ≤ z ≤ pf , by I(qi:qf ,ri:rf ,pi:pf ), where

qi ∈ {1, . . . , X}, qf ∈ {1, . . . , X}, ri ∈ {1, . . . , Y },

rf ∈ {1, . . . , Y }, pi ∈ {1, . . . , Z}, pf ∈ {1, . . . , Z},

qi ≤ qf , ri ≤ rf , and pi ≤ pf . For example,

I
seg

(241:272,241:272,131:162) is a sub-volume of a segmented

volume, Iseg, where the sub-volume is cropped between

241st slice and 272nd slice in x-direction, between 241st

slice and 272nd slice in y-direction, and between 131st slice

and 162nd slice in z-direction.

Synthetic volumes containing nuclei, Isyn, with their

corresponding labeled volumes (synthetic ground truth vol-
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umes), I label, are first randomly generated as described be-

low. The synthetic volumes and labeled volumes then used

to train a 3D CNN, M . Finally, the 3D CNN is used to seg-

ment nuclei in fluorescence microscopy images volumes,

Iorig. The segmented image volume is denoted by Iseg.

Note that Voxx [31] is used for 3D visualization in this pa-

per.

2.1. Synthetic Volume Generation

Figure 2. Block diagram for Synthetic Volume Generation used

generate synthetic 3D image volumes, I
syn, with their corre-

sponding labeled volumes, Ilabel

Figure 2 is a block diagram of the Synthetic Volume

Generation stage. As we noted earlier, one of the major

challenges in segmentation of biomedical images/volumes

using a CNN is the lack of training images/volumes [18].

Manual segmentation to generate ground truth, especially in

three dimension, is inefficient and laborious. Our approach

is to use synthetic image volumes to train the CNN.

In synthetic image volumes, voxels belonging to nuclei

which we are interested in segmenting are defined as fore-

ground and other voxels are defined as background. We

assume that nuclei can be modeled as an ellipsoid. Let N

be the number of nucleus candidates. The jth nucleus candi-

date, Ican,j , is first generated where 1 ≤ j ≤ N , with ran-

domly generated lengths of the semi-axes, translation, rota-

tion, and intensity of the ellipsoid. Then for each j, Ican,j is

included in the nuclei synthetic image volume, Inuc. Here,

Inuc is initialized to a volume with all voxel intensities to

zero, unless it overlaps with other nucleus candidates. Note

that Inuc is composed of non-overlapping nuclei with ran-

domly assigned nonzero intensities and voxel intensities in

background are zero. From Inuc, a labeled volume, I label,

is generated as a binary volume where foreground voxels

(non-overlapping nuclei) are 1 and background voxels are

0. Fluorescence microscopy volumes are blurred and noisy

due to the point spread function from microscope and noise

from the detector [32, 12, 33]. We observe that the back-

ground in florescence microscopy volumes are not com-

pletely dark. To make our synthetic image volume resem-

ble a fluorescence microscopy volume, we first increase the

voxel values in the background to a randomly generated

non-zero value. The volume is then filtered using a Gaus-

sian filter with standard deviation, σb is blur it and then

Gaussian noise with standard deviation, σn, and a Poisson

noise with mean, λ, are added to generate the final synthetic

image volume, Isyn.

The synthetic image volumes will be used to train our 3D

CNN. If the volumes are too small, not enough information

can be learned. If the volumes are too big, the training time

will take long. Therefore, we select the size of the synthetic

volumes to be 64× 64× 64. More detail is provided below.

2.1.1 Nucleus Candidate Generation

In order to generate a synthetic volume with multiple nu-

clei, we first generate a single nucleus which can be poten-

tially included in the synthetic volume. We first assume that

nuclei are ellipsoidal shape. To train our CNN with var-

ious synthetic nuclei, we generate nuclei which have ran-

dom size, are located in random positions, are oriented in

random directions, and have random intensity. In this step,

N nucleus candidates are generated in a volume of size

64× 64× 64.

To generate the jth nucleus candidate, where 1 ≤ j ≤
N , we first find the translated and rotation coordinates,

(x̃, ỹ, z̃), from the original coordinates, (x, y, z) with a ran-

dom translation vector, t = (tx, ty, tz), and a random ro-

tation vector, r = (rx, ry, rz). Here, tx, ty , tz , rx, ry , rz
are the translations in x, y, and z-direction and the rotations

around x, y, and z-axes, respectively.





x̃

ỹ

z̃



 = Rz(rz)Ry(ry)Rx(rx)





x− tx
y − ty
z − tz



 (1)

Here, Rx(θ), Ry(θ), Rz(θ) are rotation matrices around the

x, y, z-axes, respectively, with an angle θ.

Rx(θ) =





1 0 0
0 cos(−θ) − sin(−θ)
0 sin(−θ) cos(−θ)



 (2)

Ry(θ) =





cos(−θ) 0 sin(−θ)
0 1 0

− sin(−θ) 0 cos(−θ)



 (3)

Rz(θ) =





cos(−θ) − sin(−θ) 0
sin(−θ) cos(−θ) 0

0 0 1



 (4)

The jth nucleus candidate, Ican,j , is then generated with

random length of semi-axes, a = (ax, ay, az) and random

intensity, i:

Ican,j =

{

i, if x̃2

ax
+ ỹ2

ay
+ z̃2

az
< 1

0, otherwise
(5)
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In this paper, N is set to be 100. For each j, with uniform

distribution, a is randomly selected between 4 and 6, t is

randomly selected between 1 and 64, r is randomly selected

between 1 and 360, and i is randomly selected between 200

and 255. Those parameters are set based on nuclei in origi-

nal microscopy volumes.

2.1.2 Overlapping Nuclei Removal

A synthetic volume with multiple nuclei, Inuc, can now be

generated by adding N nuclei candidate volumes, Ican,j ,

generated in the previous step. However, in a biological

structure, no nuclei are physically overlapping. So it is nec-

essary to remove nuclei overlapping with other nuclei.

First of all, Inuc is initialized to zeros with the size of

64 × 64 × 64. Note that Inuc is initialized to be all back-

ground (non-nuclei region). For 1 ≤ j ≤ N , in a sequen-

tial order, the jth single nucleus candidate, Ican,j , would be

added in the synthetic volume, Inuc, if there is no intersec-

tion between foreground region in Ican,j and foreground

region in Inuc. However, Ican,j would not be added in

Inuc if Ican,j have intersection between foreground region

in Ican,j and foreground region in Inuc. After this step, no

nuclei will overlap to other nuclei in Inuc.

A labeled volume (a synthetic ground truth volume),

I label, corresponding to the synthetic volume is generated

by assigning 1 to foreground voxels and 0 to background

voxels:

I label(x, y, z) =

{

1, if Inuc(x, y, z) 6= 0

0, otherwise
(6)

2.1.3 Blur and Noise

When images of specimens are acquired from fluorescence

microscope, images are degraded by blurring and noise.

First of all, the point spread function (PSF) from micro-

scope causes blurring [32]. Additionally, fluorescence mi-

croscopy images contain a combination of Gaussian noise

and Poisson noise because only a limited number of pho-

tons are detected in the detector of microscope due to pho-

tobleaching, low fluorophore concentration, and short expo-

sure time [12, 33]. Therefore, it is necessary to include blur

and noise in our generate synthetic image volumes.

First, background voxel intensities of Inuc are set to b

because voxel intensities of the background region for real

fluorescence microscopy images are not completely zero.

We let b be randomly selected between 50 and 100 with an

uniform distribution. We then use a simple synthetic PSF to

blur the volumes where we assume the PSF is a normalized

Gaussian filter with window size of 5× 5× 5 and standard

deviation of σn = 20. Lastly, zero-mean Gaussian noise

with σn = 5 and Poisson noise with λ = 5 are added to the

blurred volume to generate Isyn. Figure 3 shows three ex-

amples of synthetic image volumes with their correspond-

ing labeled volumes. Figure 4 compares two original image

volumes at various depths and a synthetic image volume

with the size of 64× 64× 64. The size of the nuclei, the in-

tensity of the nuclei, and the background noise of synthetic

image volumes are close to original image volumes.

(a) (b) (c)

(d) (e) (f)

Figure 3. Examples of synthetic image volumes and their labeled

volume with one sub-volume of real data (a) Isyn,1, (b) Isyn,2, (c)

I
syn,3, (d) Igt,1, (e) Igt,2, (f) Igt,3

(a) (b) (c)

Figure 4. Comparison between original volumes and a synthetic

volume (a) I
orig

(225:288,225:288,71:134), (b) I
orig

(225:288,225:288,171:234),

(c) Isyn,1

2.2. 3D CNN Training

Figure 5. Architecture of our 3D CNN

Figure 5 shows our architecture of a 3D CNN with an

encoder-decoder structure. Each 3D convolutional layer

consists of a convolutional operation with a 5 × 5 × 3 ker-

nel with 2 × 2 × 1 voxel padding followed by 3D batch

normalization [34] and a rectified-linear unit (ReLU) acti-

vation function. The kernel size is chosen accordingly be-
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cause the resolution along the z-direction is smaller than

along the x and y-directions. Voxel padding is used to main-

tain the same volume size during the convolutional opera-

tion. A 3D max-pooling layer uses 2× 2× 2 window with

stride of 2 to preserve feature information while proceed-

ing to the deep of the architecture. In the decoder, a 3D

max-unpooling layer is used to retrieve feature information

according to the indices that saved in the corresponding 3D

max-pooling layer. An input volume to the network is a

single channel volume with size of 64 × 64 × 64 and a 3D

voxelwise classification with size of 64 × 64 × 64 is gen-

erated as an output volume of the network. Our architec-

ture, M , is implemented in Torch [35]. To train our model,

M , stochastic gradient descent (SGD) with a fixed learning

rate of 10−6 and a momentum of 0.9 is used. 100 pairs of

synthetic image volumes, Isyn, and labeled image volumes

(ground truth volumes for synthetic image volumes), I label,

are used to train the model. For each iteration, a randomly-

selected training volume is used to train M .

2.3. 3D CNN Inference

Figure 6. Inference

Our 3D CNN, M , segments a sub-volume of size of

64×64×64. While cropping the sub-volume from the origi-

nal volume, some nuclei on the boundary of the sub-volume

may be partially included and lose their shape information.

This may lead to incomplete segmentation near the bound-

ary of the sub-volume. To avoid this, we use the central

sub-volume of the output volume with size of 32× 32× 32
to make sure nuclei in the output volume are completely

segmented using their entire information. Additionally, if

X , Y , or Z of Iorig is greater than 64, it is necessary to

slide a 3D window with size of 64× 64× 64 to segment the

entire Iorig .

Figure 6 describes our method for 3D CNN inference.

In order to have Iseg the same size as Iorig , we zero-pad

Iorig by 16 voxels on boundaries, denoted as Izeropad. In

this case, the size of Izeropad would be (X + 32) × (Y +
32) × (Z + 32). Placing a 3D window on the top, left,

frontal corner of Izeropad (see blue window in Figure 6),

I
zeropad

(1:64,1:64,1:64) becomes the input volume of the 3D CNN,

M , with size of 64 × 64 × 64 to generate I
seg

(1:32,1:32,1:32),

a sub-volume of Iseg on the top, left, frontal corner with

size of 32 × 32 × 32. Next, the 3D window is slided to x-

direction by 32 voxels (see green window in Figure 6), then

I
zeropad

(33:96,1:64,1:64) becomes the next input volume of the 3D

CNN, M , to generate I
seg

(33:64,1:32,1:32), a sub-volume slided

to x-direction by 32 voxels from the previous sub-volume,

I
seg

(1:32,1:32,1:32). This operation continues to x, y, and z-

direction until the entire volume is processed.

3. Experimental Results

We tested our method on four different rat kidney data

sets. All data sets consist of grayscale images of size X =
512× Y = 512. Data-I consists of Z = 512 images, Data-

II of Z = 36, Data-III of Z = 41, and Data-IV of Z = 23
images. Figure 7 shows the segmented images on Data-I

located at various depths.

(a) (b)

(c) (d)

Figure 7. Original images and their segmented images of Data-I

using the proposed method in different depth (a) Iorigz67
, (b) Isegz67

,

(c) Iorigz230
, (d) Isegz230

Our method was compared to other segmentation meth-

ods used in microscopy images including 3D active sur-

face [7], 3D active surface with inhomogeneity correc-

tion [9], 3D Squassh [10, 11], and 2D+ convolutional

neural network (2D+ CNN) [29]. In order to evaluate

our method, we used three 3D ground truth sub-volumes

of Data-I, I
gt

(241:272,241:272,31:62), I
gt

(241:272,241:272,131:162),

I
gt

(241:272,241:272,231:262) in different depth with size of 32×
32 × 32. Here, the ground truth volumes for evaluation are

manually generated from a real microscopy data set. Fig-

ure 8, Figure 9, Figure 10 are the 3D visualization of vari-

ous segmentation method results on different sub-volumes,
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helped by Voxx [31].

It was observed that 3D active surfaces had poor re-

sults as sub-volumes are acquired deeper into tissue because

voxel intensities on nuclei gets dimmer and more blurred.

This issue was resolved by counting inhomogeneity cor-

rection, yet it has no ability to distinguish between nuclei

and other subcellular structures. Squassh also failed to dis-

tinguish nuclei and other structures. Although 2D+ CNN

produced good results, discontinuity may be observed be-

tween planes because it has not utilized all three dimen-

sional information. However, 3D CNN can segment in el-

lipsoidal shape which is close to the shape of nuclei. Note

that the segmentation results are generated in a short run-

ning time (2∼3 minutes) using NVIDIA’s GeForce GTX

Titan X without any manually generated ground truth vol-

umes to train the network.

(a) (b) (c)

(d) (e) (f)

(g)

Figure 8. 3D visualization of I(241:272,241:272,31:62) of Data-I us-

ing Voxx [31] (a) original volume (b) 3D ground truth volume, (c)

3D active surfaces from [7], (d) 3D active surfaces with inhomo-

geneity correction from [9], (e) 3D Squassh from [10, 11], (f) 2D+

CNN from [29], (g) proposed method

All segmentations were evaluated using 3D ground truth

volumes based on the accuracy, Type-I error, and Type-II

error metrics. Here, accuracy = nTP+nTN

ntotal
, Type-I error =

nFP

ntotal
, Type-II error = nFN

ntotal
, where nTP, nTN, nFP, nFN, ntotal

are defined to be the number of true-positives (voxels cor-

rectly segmented as nuclei), true-negatives (voxels correctly

segmented as background), false-positives (voxels wrongly

segmented as nuclei), false-negatives (voxels wrongly seg-

mented as background), and the total number of voxels in

(a) (b) (c)

(d) (e) (f)

(g)

Figure 9. 3D visualization of I(241:272,241:272,131:162) of Data-I

using Voxx [31] (a) original volume (b) 3D ground truth volume,

(c) 3D active surfaces from [7], (d) 3D active surfaces with inho-

mogeneity correction from [9], (e) 3D Squassh from [10, 11], (f)

2D+ CNN from [29], (g) proposed method

a volume, respectively. Table 1, Table 2, Table 3 shows

the accuracy for various segmentation methods and the pro-

posed method on different sub-volumes.

As shown in the 3D visualization from Figure 8, Figure

9, Figure 10, and accuracy test from Table 1, Table 2, Ta-

ble 3, our 3D CNN achieved similar results “without” any

ground truth volumes from Data-I during training. Training

with synthetic volumes can be extremely helpful for auto-

matic segmentation due to the difficulty of manually gener-

ating ground truth volumes in biomedical data sets.

Table 1. Accuracy, Type-I and Type-II errors for known methods

and our method on I(241:272,241:272,31:62) of Data-I

Acc. Type-I Type-II

Method [7] 84.09% 15.68% 0.23%

Method [9] 87.36% 12.44% 0.20%

Method [10, 11] 90.14% 9.07% 0.79%

Method [29] 94.25% 5.18% 0.57%

Proposed Method 92.20% 5.38% 2.42%

Our method can successfully segment nuclei from differ-

ent rat kidney data (Data-II, Data-III, Data-IV). Since the

size of nuclei in Data-II, Data-III, and Data-IV is smaller

than the size of nuclei in Data-I, we used a, length of semi-

axes of a synthetic nucleus, randomly generated between 2

and 3. Figure 11 shows the segmented images on different
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 10. 3D visualization of I(241:272,241:272,231:262) of Data-I

using Voxx [31] (a) original volume (b) 3D ground truth volume,

(c) 3D active surfaces from [7], (d) 3D active surfaces with inho-

mogeneity correction from [9], (e) 3D Squassh from [10, 11], (f)

2D+ CNN from [29], (g) proposed method

Table 2. Accuracy, Type-I and Type-II errors for known methods

and our method on I(241:272,241:272,131:162) of Data-I

Acc. Type-I Type-II

Method [7] 79.25% 20.71% 0.04%

Method [9] 86.78% 13.12% 0.10%

Method [10, 11] 88.26% 11.67% 0.07%

Method [29] 95.24% 4.18% 0.58%

Proposed Method 92.32% 6.81% 0.87%

Table 3. Accuracy, Type-I and Type-II errors for known methods

and our method on I(241:272,241:272,231:262) of Data-I

Acc. Type-I Type-II

Method [7] 76.44% 23.55% 0.01%

Method [9] 83.47% 16.53% 0.00%

Method [10, 11] 87.29% 12.61% 0.10%

Method [29] 93.21% 6.61% 0.18%

Proposed Method 94.26% 5.19% 0.55%

data sets.

4. Conclusions

In this paper we presented a nuclei segmentation method

that uses a fully 3D convolutional neural network. The

training volumes were generated using synthetic data. The

experimental results show that our method can accurately

(a) (b)

(c) (d)

(e) (f)

Figure 11. Nuclei segmentation on different rat kidney data (a)

I
orig
z9

of Data-II, (b) Isegz9
of Data-II, (c) Iorigz17

of Data-III, (d) Isegz17

of Data-III, (e) Iorigz6
of Data-IV, (f) Isegz6

of Data-IV

segment nuclei from fluorescence microscopy images. Our

results was compared to multiple segmentation methods us-

ing 3D groundtruth of real data. Our method achieved simi-

lar performance without using real data groundtruth in train-

ing. False detection rate of our method is higher than the

best results, since non-nuclei structures were not simulated

in our synthetic data. In the future, we plan to improve

our synthetic data generating process to create more real-

istic synthetic volumes by adding negative samples.
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