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Abstract

High-speed confocal microscopy has shown great

promise to yield insights into plant-fungal interactions by

allowing for large volumes of leaf tissue to be imaged at

high magnification. Currently, segmentation is performed

either manually, which is infeasible for large amounts of

data, or by developing separate algorithms to extract in-

dividual features within the image data. In this work, we

propose the use of a single deep convolutional neural net-

work architecture dubbed DeepXScope for automatically

segmenting hyphal networks of the fungal pathogen and cell

boundaries and stomata of the host plant. DeepXScope is

trained on manually annotated images created for each of

these structures. We describe experiments that show each

individual structure can be accurately extracted automati-

cally using DeepXScope. We anticipate that plant scientists

will be able to use this network to automatically extract mul-

tiple structures of interest, and we plan to release our tool

to the community 1.

1. Introduction

1.1. Background of Maize Imaging

Microscopic phenotypes extracted from image data on

plant-pathogen interactions provides a basis for studying

mechanisms of pathogenesis. Recently, a platform to

systematically capture three-dimensional (3D) image data

across large areas of maize leaf tissue infected with fungal

pathogens was developed [3].

In many microscopy applications, fluorescent stains are

used that bind to specific molecules constituting biologi-

cal structures. Imaging deep into the tissue of plants and

1Code will be made available at http://www.drmaize.org/

other organisms to obtain 3D image data has been facilitated

by recent developments in optical clearing [1, 6, 3] com-

bined optical clearing with fluorescent confocal microscopy

to image fungal infected plant tissues where the host and

pathogen cells were differentiated by stains that fluoresce

at distinct wavelengths. However, gathering enough image

data to make statistical inference requires large-scale mi-

croscopy imaging. To address this, Minker et al. [3] also

developed ”Macroscopic Microscopy,” an approach where

images from partially overlapping fields of view are stitched

together into one large, high-resolution image of the origi-

nal tissue specimen. This methodology was used to capture

3D image stacks of maize leaf tissue with each stack com-

prised of 150 slices at 1.2µm resolution with approximately

36mm2 surface area per slice.

1.2. Image Processing

Capturing large 3D areas of a numerous tissue samples

requires a very large amount of data storage. Traditional

image processing methods are not effective on this data due

to low amounts of contrast between desired features and the

background [5], as well as differing intensities, orientations,

and contrasts between samples.

With the goal of segmenting biological structures and

features from the data, methods were originally developed

using a suite of automatic thresholding schemes, template

matching, active contours, and shape fitting. However,

many of these methods would only work on small subsets

of samples and needed to be consistently fine-tuned when

new datasets were captured on the microscope.

We propose a new method of adapting a deep convo-

lutional neural network (CNN) for segmenting the maize

leaf image data in order to consistently and accurately seg-

ment biological features needed for phenotyping pathogen

resistance in maize at a microscopy level. A single deep
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CNN can be trained to segment multiple structures of inter-

est using annotated training (ground truth) data. This net-

work is applied to segment fungal hyphae networks, host

cell boundaries, and host stomatal structures.

1.3. Paper Outline

In the Section 2, we describe the CNN architecture and

the training methodology that was used in the segmenta-

tion scheme. We then present the experiments and results

in Section 3 for each of the segmented biological structures.

Finally, we close with a conclusion and future work in Sec-

tion 4.

2. Method

Traditional image processing methods are insufficient at

solving many of the problems that arise in data collected by

Minker et al. [3]. Hand-picked features and ad-hoc methods

not only perform poorly, but do not generalize to maintain a

unified workflow. Therefore, we developed a single work-

flow that uses the same pipeline of training and applying

our CNN (Section 2.1). Some steps are slightly modified

depending on the type of training data input and the de-

sired output. For instance, surface features, including stom-

ata, and cell boundaries use an estimated leaf surface image

[2], while hyphal networks use the entire leaf image stack.

Each training scheme is also slightly different as described

in Section 2.2.

2.1. Network Description

We adapted the U-net architecture from Ronnebereger

et al. [4] because of its success in segmenting features in

biomedical images, which often exhibit the same difficul-

ties for segmentation as our microscopy data. The U-Net

architecture has an initial contracting stage to capture con-

text and a mirrored expansion stage for localization. This

architecture is particularly useful in our application because

it requires relatively few training samples to get acceptable

segmentations, and the segmentation is robust to close or

touching objects in the same class.

As shown in Figure 1, we maintain a similar structure to

that of the Unet architecture but with a slightly more shal-

low network depth and different numbers of filters at each

layer. We also chose to implement the architecture in Keras

using Tensorflow as opposed to the original Caffe imple-

mentation in order to easily fit into our current deep learning

workflow.

2.2. Training Schemes

We trained a separate instance of one network architec-

ture for each biological structure of interest. That is, the

number of nodes and layers remained the same for each

structure, but different hyper-parameters were used when

Figure 1. Our adaptation of the U-net architecture with input and

output shapes. Each convolution layer is followed by a non-linear

activation function (ReLU). In this graph, the input was a grayscale

2000x2000 surface image. For the input shape, the dimensions are

as follows: (ImageBatchSize,ImageChannels,ImageY,ImageX)

For intermediate convolution shapes, the dimensions are: (Image-

BatchSize,NumberOfFilters,ImageY,ImageX). In both instances,

batch size is reported as ”None” because it is variable to the net-

work.
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training. For each of the structures, ground truth data was

supplied as patches of 2D data. 3D fungal hyphae structures

were segmented by applying 2D segmentation for each Z-

slice without a 3D constraint. The batch size varied depend-

ing on the amount of training data for each structure, and is

given in each corresponding subsection.

2.2.1 Cell Boundaries

For cell boundaries, training datasets were created by manu-

ally labeling images and generating masks. Cell boundaries

were manually labeled in 60 48x48 image patches from sur-

face images. A batch size of 50 was used. The CNN for cell

boundary segmentation did not apply a final softmax layer

for normalization, but instead was normalized and thresh-

olded in a post-processing step.

2.2.2 Fungal Hyphae

Due to the three dimensional nature of hyphae in the leaf

tissue, as well as blurring between layers, it was very dif-

ficult to create manually annotated training data. Because

of this limitation, a semi-automatic synthetic fungus gener-

ation scheme was developed to create training data. Syn-

thetic hyphal networks were generated in manually chosen

areas of the leaf samples that were free of fungus. These

synthetic volumes were then blurred to simulate intensity

changes across layers in real data. For more details on this

process, see [5]. This process generated synthetic data used

to train the CNN. 2D patches were extracted from the train-

ing volume and segmentation was applied on each Z-slice

in the 3D stack. A batch size of 100 was used.

2.2.3 Stomata

Training data for stomata was generated by a semi-

automatic method. Approximately 30 stomatal locations

were manually identified per sample. A 25x25 image patch

was cropped around the identified stomatal locations and

then used as templates to identify more stomates on the

leaf’s surface image. A threshold of 0.75 on the normalized

template matching score was used to facilitate identification

of additional stomatal locations. A circular disk with a ra-

dius of 15 pixels centered around each stomate was used as

a mask. The images and the corresponding masks were di-

vided into non overlapping patches of size 48x48. Image

patches that had at least 75 pixels set in the corresponding

patch from the mask were used to train the network. 1,391

image patches containing 1,107 stomata were used for train-

ing. A batch size of 128 was used, which is more than the

other structures due to the amount of training samples.

The network used for segmenting stomates included a

final softmax layer to normalize the final response.

3. Experiments and Results

In this section we describe our experiments to test each

subsystem – fungus, cells, stomata – all using the same

CNN architecture for segmentation.

3.1. Cell Boundary Segmentation

The cell boundaries segmented for quantification were

taken from 2D surface images from the initial 3D image

stack [2]. Due to the enormous number of cells in a single

surface image, quantification was done on 36 manually seg-

mented 48x48 image patches from six different surface im-

ages. An example of the patches generated and their CNN

responses is shown in 4

Cell boundaries for training data were labeled at single

pixel resolution, so quantification metrics leveraged a le-

niency threshold that allowed for up to a 2 pixel radius in

any direction to account for boundary thickness. Figure 3

gives the precision recall curve generated using the 36 im-

age patches.

The network was also designed to run on the entire sur-

face image. An example of the CNN applied to a surface

image can be found in Figure 2. The CNN segmentation

is fast to apply, taking on average 4.69s per 2000x2000

cropped surface image on a NVidia Titan X (Pascal).

3.2. Fungal Hyphae Segmentation

Fungal hyphae networks were present in 3D images with

a resolution of 2357x2366x150. Manually annotating 3D

ground truth is not feasible to do, as even single slices of

the stack can take hours to annotate. To give a quantitative

analysis, we manually annotate maximum intensity projec-

tions (MIPs), which are 2D projections where the intensity

at each X,Y coordinate is the maximum intensity along the

Z dimension. We manually annotated 11 samples from low,

medium, and high fungal growth image stacks for a total of

351,059 positive pixels and 60,597,609 negative pixels. A

summary of these statistics is in Table 1.

Table 1. Number of positive pixels and number of connected fun-

gal networks in samples containing low, medium, and high levels

of fungal infection.

Infect Lvl Pos Px # Nets

Low 9383 181

Medium 128991 694

High 212685 261

Overall 351059 1136

Using the manually annotated MIPs, we calculated three

metrics. The first metric was based on precision and recall.

The Equal Error Rate (EER) is the threshold that causes pre-

cision and recall to be equal, where a value closer to 1.0 is

better. Another way to combine precision and recall is the

F1 score, which is the harmonic mean of the precision and

93



Figure 2. Example of cell boundary segmentation of entire surface images from different samples. a) Raw imagery b) Thresholded CNN

response.

recall defined by f = 2 ∗
P∗R

P+R
. This metric is a single

measure of the performance of the CNN for fungal hyphae

detection, and can represent its performance even given the

sparsity of the positive pixels.

Due to the fact that manually segmented pixels and au-

tomatically segmented pixels can have different line thick-

ness, we allow a leniency threshold of 10 pixels. That is, if

the proposed positive pixel is within a radius to the ground

truth defined by the leniency threshold, the pixel is marked

correct. Without this leniency threshold, only pixel per-

fect segmentations to the manually marked ground truth are

marked as correct, which is gives a misleading view of the

performance. Figure 6 gives a precision-recall curve on our

dataset for fungal hyphae segmentation and Table 2 gives

tabular results across different levels of fungal infections.

The second metric we calculate is the number of con-

Table 2. Precision, recall, and F1score of the deep CNN for various

levels of fungal infection with a leniency threshold of 10px.

Infect Lvl Prec Recall F1

Low 0.62 0.83 0.68

Medium 0.71 0.97 0.81

High 0.89 0.99 0.94

Overall 0.712 0.93 0.79

nected fungal hyphae networks. Since most fungal hyphae

networks did not overlap in the Z dimension, the MIPs pro-

vide a reasonable estimate of the number of total fungal hy-

phae networks. Accurately measuring the number of fun-

gal networks is a important for quantifying fungal infection.

Moreover, it is possible to have a high F1-score but a poor

estimate of the number of connected fungal hyphae.

To measure performance in terms of the number of con-
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Figure 3. Precision-Recall curve generated by varying the thresh-

old on the response from the deep CNN applied to surface image

patches for cell boundary detection.

Figure 4. Example of two 48x48 patches from two separate leaf

surface images used in the testing set for cell boundary segmen-

tation. Left: Input patch, Center: CNN Response image, Right:

Automatic threshold image

nected hyphae, we calculated the percentage of the number

of detected networks from the CNN segmentation relative

to the MIP ground truth data. We calculated this with and

without applying the minimum spanning tree (MST) con-

nection algorithm described by Saponaro et al. [5]. Exper-

imentally, we found 75 pixels to be the highest performing

threshold for the MST connection algorithm. We note that

the MST algorithm does not significantly affect the recall,

and reduces the precision by 3%. The results with this met-

ric are summarized in Table 3.

Table 3. Percent increase of number of fungal networks from au-

tomatically segmented to ground truth across low, medium, and

high levels of infection. The first row is without using the MST

algorithm, and the second row is using it with an experimentally

determined optimal gap threshold.

Gap Thresh Low Medium High Overall

N/A 47.13 341.53 1011.28 456.18

75 10.92 19.04 -18.04 8.85

The final metric we calculated was the distribution of

pixel intensity. Figure 7 shows this as a box and whisker

plot for the positive ground truth pixels, positive CNN pix-

els, and the negative ground truth pixels. Note the whiskers

of the plot represent a standard deviation of 2.7 for 99.3%

coverage of the data.

Additionally, we provide a qualitative comparison with

representative samples taken from the low, medium, and

high infection image stacks in Figure 5.

From the intensity distributions in Figure 7, 75% of the

negative pixels fall beneath 75% of the positive pixels, and

the boxes do not overlap. However, 25% of the negative

pixel intensities overlap with the box of the positive sam-

ples, which suggests simpler methods such as thresholding

would give higher errors than our schema, which was also

supported by Saponaro et al. [5]. The intensity distribution

for the CNN result overlaps with that of the positive ground

truth distribution, with the median of the CNN correspond-

ing to the lower quartile of the ground truth (at 26%). On

the other hand, the medians of intensity distributions for the

CNN and negative ground truth do not overlap. These re-

sults further support the ability of the CNN to detect the

targeted feature in the image data.

For connected components, Table 3 shows that the MST

connection algorithm from Saponaro et al. [5] is manda-

tory to achieve a reasonable fungal hyphae network count.

Without it, small gaps in the segmentation led to a large

over-estimation of the number of hyphal networks. This

could be explained by the intensity distributions as above

– 25% of the negative pixel intensities overlapped with the

positive pixel intensities.

In Table 2, the F1-score is maximal for the high infec-

tion levels and is lowest for low infection levels. One ex-

planation of this is that the CNN was trained on data that

more closely resembles full fungal networks, whereas the

low infection level fungus takes on different shapes/sizes.

One way to possibly improve the performance is to classify

the infection level and segment each infection level with a

differently trained network.

An additional note is that lowering the leniency threshold

to 5 pixels lowers the F1-score by 5% overall, and lowering

the threshold to 3 pixels lowers the F1-score by 15% overall.

3.3. Stomata Segmentation

Given 2D fluorescence images of the leaf surface, we

manually annotated the locations of 1,834 stomata for test-

ing (apart from the stomatal locations used in training). The

whole leaf surface image was given as input to the net-

work and the response image from the network was thresh-

olded to compare against the ground truth. A true posi-

tive is when the location of the ground truth stomata lies

within a connected component of the thresholded response

image. With this, we calculated the precision, recall, and

F1-score. Note that compared to the other structures, a

precision/recall curve was not needed because the response
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Figure 5. Qualitative comparison between the automatically segmented and ground truth hyphae MIPs from three samples – high, medium,

and low fungal infection levels. a) MIP Image. b) Ground truth. c) Thresholded CNN Response.

Figure 6. Precision Recall curve generated by varying the thresh-

old on the response from the deep CNN applied to fungal hyphae

image stacks and compared to MIP ground truth. A 10px leniency

threshold was used for the precision/recall calculation.

Figure 7. Intensity distribution for fungal hyphae between the pos-

itive ground truth pixels, positive pixels according to the CNN,

and negative ground truth pixels. The given whiskers represent a

standard deviation of 2.7 for 99.3% coverage of the data. Outliers

outside this range are displayed as xs.

from the CNN response was nearly binary. A threshold of
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Figure 8. Example result of CNN compared to ground truth for stomata segmentation. a) Raw surface image. b) Ground truth segmentation.

c) CNN segmentation.

0.90 for the response from the network was applied to cal-

culate the precision, recall, and F1-score in Table 4 (image

regions that were used in training were not included in these

metrics). An example full resolution stomata segmentation

result is shown in Figure 8.

Table 4. Precision, recall, and F1-score for stomata segmentation

using 1834 manually annotated stomata.

Prec Recall F1-score

0.78 0.69 0.73

4. Conclusion

We introduce a unified workflow for accurately segment-

ing specific biological features from maize leaf tissue using

a single deep neural network architecture.

Detecting useful information in microscopy data is a dif-

ficult task for traditional image processing methods. Hand-

crafted methods are usually not robust to changes in inten-

sity and noise, especially across multiple samples. Biologi-

cal features are also difficult to manually segment and label

across a large number of images. Despite these challenges,

we have shown that our CNN adaptation and workflow per-

forms well on 2D surface feature segmentation and 3D fun-

gal network segmentation.

In the future, we will implement cross-communication

into the workflow such that segmenting one type of feature

will assist in the segmentation of all other features. We also

hope to expand the workflow to include additional maize

subsurface features such as vascular bundle segmentation.
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