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Abstract

Metaphase chromosome analysis is one of the primary

techniques utilized in cytogenetics. Observations of chro-

mosomal segments or translocations during metaphase can

indicate structural changes in the cell genome, and is of-

ten used for diagnostic purposes. Karyotyping of the chro-

mosomes micro-photographed under metaphase is done by

characterizing the individual chromosomes in cell spread

images. Currently, considerable effort and time is spent to

manually segment out chromosomes from cell images, and

classifying the segmented chromosomes into one of the 24

types, or for diseased cells to one of the known translocated

types. Segmenting out the chromosomes in such images can

be especially laborious and is often done manually, if there

are overlapping chromosomes in the image which are not

easily separable by image processing techniques. Many

techniques have been proposed to automate the segmen-

tation and classification of chromosomes from spread im-

ages with reasonable accuracy, but given the criticality of

the domain, a human in the loop is often still required. In

this paper, we present a method to segment out and classify

chromosomes for healthy patients using a combination of

crowdsourcing, preprocessing and deep learning, wherein

the non-expert crowd from CrowdFlower is utilized to seg-

ment out the chromosomes from the cell image, which are

then straightened and fed into a (hierarchical) deep neu-

ral network for classification. Experiments are performed

on 400 real healthy patient images obtained from a hospi-

tal. Results are encouraging and promise to significantly

reduce the cognitive burden of segmenting and karyotyping

chromosomes.

1. Introduction

Chromosomes are elongated rope like structures in the

cell nucleus that contain the human body’s genetic code.

The human body has 23 pairs of chromosomes. Chromoso-

∗Note: ⋆ indicates equal contribution

mal analysis or karyotyping is a useful technique to detect

genetic abnormalities like Down syndrome, Edwards syn-

drome, Chronic myelogenous leukemia, and Turner syn-

drome. These abnormalities can manifest in the form of

known chromosomal translocations and segments that cor-

respond to different disorders. Karyotyping is performed by

culturing cells and during metaphase separating the chro-

mosomes from the nucleus of the cells and staining them on

a slide to allow for micro-photography. Figure 1(a) shows

a sample chromosome slide. Finally, the chromosome im-

ages are analyzed by experts to classify and segregate the

different chromosome segments.

(a) (b)
Figure 1. (a) A metaphase chromosome image and (b) correspond-

ing karyotype image.

Despite the diagnostic importance of karyotyping chro-

mosomes, considerable manual time and effort is required

for segmenting out and classifying the chromosomes in im-

ages from a cell culture. In this paper, we propose a pipeline

for automatic segmentation and classification of chromo-

somes that combines the use of non-expert crowd for an-

notating the chromosome segments and a deep classifica-

tion model for categorizing the individual chromosomes.

The slides are fed to a crowdsourcing platform Crowd-

Flower [11] to annotate the chromosome boundaries, which

are then extracted and fed into the classification engine for

karyotyping. We perform straightening of bent chromo-

somes before feeding the chromosome images to a deep

neural network for classification because it improves the

classification accuracy as described in Section 5. The main
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contributions of the paper are as follows :

• The use of crowdsourcing for generation of chro-

mosome segments as opposed to clinicians manually

segmenting and annotating the chromosome images

during karyotyping. We also address the challenges

of spurious or spam markings as well as maximize

coverage of segmentation labels as discussed in Sec-

tion 4.1.2.

• The use of deep learning for classification of chro-

mosome images. To the best of our knowledge, deep

learning hasn’t been explored in the realm of chromo-

some classification. We perform some pre-processing

of chromosome segments like straightening of bent

chromosomes and chromosome-length normalization

before feeding the images to the deep convolutional

network (CNN) for classification. The proposed CNN

architecture is shown in Figure 7.

The objective is not to replace the domain expert but to

significantly reduce the cognitive load involved during the

segmentation and classification task, and to allow the expert

to correct for any errors made by the system.

The rest of the paper is organized as follows : Section 2

discusses prior attempts at automated karyotyping of chro-

mosomes. Section 3 provides the details of the dataset used

and Section 4.1 explains our proposed methodology of us-

ing a crowdsourcing platform for chromosome segmenta-

tion. We discuss the straightening of bent chromosomes,

pre-processing of chromosome segments followed by clas-

sification of chromosomes in Section 4.4. Subsequently, we

present details of experiments and results in Section 5. Con-

clusions and avenues for future work are outlined in Sec-

tion 6.

2. Related Work

The most challenging problems in karyotyping are the

segmentation and classification of overlapping chromo-

somes in metaphase spread images, and numerous attempts

have been made in the literature to automate overlapping

chromosome segmentation with limited success. This could

be because of situations, such as, unsplit clusters which

could be another main contributor of false positives and

chromosome fragmentation that could increase the false

negative rate as broken chromosomes cannot be used for

further analysis. A rule based approach for segmentation

and classification was proposed in [8], where the rule pa-

rameters would adapt to each cell. This method would fail

when (a) chromosome arms are widely separated and (b)

the chromosomes are very pale. To overcome this, Char-

ters and Graham [4] proposed a collection of sub chromo-

somal banding profile templates in order to train models to

recognize the chromosome segments to first oversegment,

and subsequently combined mini-segments in a bottom up

fashion. Agam and Dinstein [1] utilized minsets to sep-

arate out overlapping grayscale chromosomes using shape

based hypothesis testing. Lerner used a neural network to

identify the relevant cut points that indicate separation af-

ter automatic binarization using principal component anal-

ysis for feature selection [10]. Another work has looked

at finding the concave points on the image contour and

constructing heuristics for chromosome separation [12]. A

geometric based approach to fully automatic chromosome

segmentation [13] was proposed which separates individ-

ual chromosomes from clusters one at a time. This method

utilizes skeletonization, ellipse fitting and utilizes the con-

vex hull area to identify overlapping chromosomes. We

observed that the aforementioned work did not generalize

across the datasets and our custom dataset in particular.

Hence, deep learning based approaches which have proven

transfer learning capabilities are explored in our paper. Re-

cently, deep learning based approaches have been suggested

for segmentation in a Kaggle competition but have only

been applied for the pairwise chromosome separation prob-

lem [7], not for clusters. We try to address the problem via

proposing a pipeline that is a combination of crowdsourcing

with deep learning to tackle chromosome segmentation and

classification.

Manual effort for ground truth creation via segmenta-

tions of microscopic images is an essential step for biomed-

ical analysis. The tediousness and time consuming nature

of the task makes it difficult to scale the availability of sub-

stantial ground truth for the training phase. Similarly, it be-

comes difficult to deploy at scale, human-machine work-

flows, where segmentation by humans can be fed to ma-

chine classifiers. A. Sorokin and D. Forsyth were the first

to explore the use of crowds for image segmentation [18].

Several subsequent contributions have emerged (see [9] for

a comprehensive review). However, a large percentage of

our work has focused on obtaining a tight fitted bounding

box as an approximation to exact segmentation can prove

tedious for a crowd. Consequently, the HCI community has

shown interest in modeling the crowd behaviour in segmen-

tation [14] and also in reducing the segmentation task to

clicks on an object [3]. However, these techniques and

observations do not readily extend to tasks where several

objects have to be segmented in a single image which is

a common requirement for microscopic images. Gold stan-

dard questions or qualification questions are often employed

for controlling the quality of crowd work, and [5] utilizes

such inbuilt functionalities from CrowdFlower for nucleus

segmentation. However, these approaches are susceptible to

changes in the behaviour of a worker. The work by Sameki

et. al. [15] does consider worker behaviour as well as im-

age features to identify spam, however, they also consider

microscopic images only with an individual object. Finally,
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Figure 2. Proposed pipeline for Automatic Karyotyping of Chromosome Images. Initially, the gray-scale chromosome image is passed to

the non-expert crowds from CrowdFlower for segmentation of chromosomes. The challenges like, wrong or spam markings as well as

maximize coverage of segmentation labels at boundary regions of chromosomes, are also addressed in the crowdsourcing module 4.1.2.

The segmented chromosomes are then sent to the classification module where the bent chromosomes are straightened, length-normalized

and passed through a trained deep CNN network as shown in Figure 7. We get chromosome class labels (0-23) as the output of this network.

Schlesinger et. al. [17] present an approach called iaSTA-

PLE for segmenting the epithelial cells of a fly wing. How-

ever, this work requires image features to evaluate the qual-

ity of crowd work. Such an approach may not be feasible at

initial stage of learning the segmentation and classification.

The key challenges when working with a crowd is to iden-

tify spurious or spam markings, as well as maximize cover-

age. In this work, we consider the use of non expert crowds

from CrowdFlower for segmentation of chromosomes. We

propose steps towards addressing both of the aforesaid chal-

lenges.

3. Dataset

The dataset comprised of 400 stained images with vary-

ing degrees of overlap between chromosomes, out of which

200 were kept for testing and the remaining for training and

validation. The sample stained images are shown in Fig-

ure 1(a).

4. Proposed Methodology

The proposed pipeline for automatic karyotyping of

chromosomes mainly consists of two major modules,

namely, Chromosome Segmentation via crowdsourcing and

Chromosome Classification using deep CNN. These mod-

ules are described in detail as follows :

4.1. Chromosome Segmentation via the crowd

4.1.1 System and Workflow

We recruited workers from CrowdFlower to segment the

chromosomes in a given image. We provided them an in-

terface where they used their mouse to draw an outline

around each chromosome present in the image. Workers

were asked to draw these outlines around all the chromo-

somes that they identified. We initially considered asking a

single worker to mark all chromosomes (as shown in Fig-

ure 3(a)) in an image, while creating redundancy by allo-

cating the same image to multiple workers. However, this
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(a) (b)
Figure 3. Examples of crowd marking in Phase 1 and Phase 2.

(a) (b)

Figure 4. Examples of erroneous crowd responses.

led to two drawbacks. (1) Poor coverage as several workers

would feel fatigued and would drop off without complet-

ing the microtask. On average, a worker would only mark

≈ 20 chromosomes. (2) Poor mixing as each worker would

be cross-evaluated only by another 4 workers allocated the

same image. In order to circumvent this problem, we ask

the workers to mark chromosomes that intersect or lie com-

pletely within an area highlighted by a dotted red rectan-

gle as shown in Figure 3(b). We observed significantly im-

proved coverage with this change. However, several work-

ers would cut a marking off at the border of the red-dotted

line. We were able to reduce this effect with very explicit

instructions that provided the crowd workers with screen

shots and examples describing chromosome marking across

the boundaries.

We anticipated and observed two types of spammers: i)

workers that were marking a large outline covering all the

chromosomes in their grid and ii) workers not marking /

partially marking chromosomes (See Figure 4). In addition,

some of the workers would fuse the marking for overlaid

chromosomes. In the subsequent section, we provide fil-

tering procedure to guard against the above described spam

responses and selection of segmentation labels.

4.1.2 Modeling and Algorithms

We have m crowd workers and n images. Let the Ii repre-

sent the ith image. Each image can be further partitioned

into t parts, with Iij representing the jth part of the ith im-

age. Let Sij be the set of workers who could provide seg-

mentation for Iij . Let Hk be a set of tuples (i, j) represent-

ing the parts that worker k had been assigned. Further, let

cijk be the number of segments marked by the kth worker

for Iij .

• Spammer Identification

We employ the following filtering procedure to remove

spammers. Let Cij be the mode of cijk calculated over

set Sij . If all workers disagree on the count, then we

declare Cij to be equal to median, and in case of a

tie, we choose the higher value. Further, a worker’s

reliability is measured by

ak = Σ(i,j)∈Hk
1(| Cijk − Cij |≤ τ) (1)

which represents the number of times a worker is in

close agreement with the mode. We remove all work-

ers with reliability below a threshold. This filtering

mechanism removes the most obvious spammers who

tend to mark segments with little correlation to the true

chromosomes.

In the second phase of filtering, we shall remove the

spammers who could possibly have a slight adversarial

attitude, or have misunderstood instructions and pro-

vide consistently poor segmentations. Let Oijkl be the

lth segment marked by worker k on Iij . We define a

score T (Oijkl) in terms of the best match provided by

some other worker:

T (Oijkl) = max
c 6=k
∀b,c,d

Area(Oijkl ∩Oibcd)

Area(Oijkl ∪Oibcd)
(2)

Thus, the quality of a worker can be described by the

expected quality of his marking, q(k) = E[T (Oijkl)].
We remove all workers with quality below a chosen

threshold.

• Consensus Segmentation

Once the quality workers are identified, we proceed

towards identifying the best segmentation labels. We

select chromosomes in a greedy fashion on the basis

of the score T (.). Whenever a segmentation label is

selected, we remove labels from all other workers with

a significant overlap with the selected marking. This

process is repeated till there are no more segmentation

labels left to be selected.

4.2. Chromosome Classification using deep CNN

After the individual chromosomes have been segmented

out from the image, they are fed to a classifier to determine

the type of chromosome. This involves some preprocessing

steps to improve classification as follows :
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Figure 5. Chromosome straightening process showing (a) original

image, (b) binary image, (c) orientation of bending, (d) bending-

axis, (e) image after stitching operation, (f) line drawn to fill the

empty area after straightening and (g) final straightened image.

4.2.1 Straightening of Chromosomes

One of the main challenges in the automatic classification

of chromosome images obtained from a light microscope is

that often chromosomes are bent in different orientations.

As the point and extent of bending varies diversely for dif-

ferent chromosomes, the problem of classification becomes

more complex. Therefore, we use an automatic straighten-

ing method [6] to straighten the bent chromosomes. The

method presented in [6] is effective for straightening highly

curved chromosomes but does not perform well for slightly

less curved chromosomes. We added some modifications to

make the former chromosome straightening algorithm more

widely applicable, as described below:

4.2.2 Find Bending Orientation

After binarization of the chromosome image as mentioned

in [6], we determine the bending orientation of the chromo-

some, i.e., whether a particular chromosome is straight or

bent. This is done based on the fact that an upright tight fit-

ting rectangle for a straight chromosome contains less blank

area as compared to the area for bent chromosomes. There-

fore, we define a whiteness value ’W’ as ratio of the sum of

pixel values of a binarized chromosome image (which rep-

resents the total number of white pixels as all black pixels

are of value = 0 ) and total area of the tight fitting rectangle.

The chromosomes with W ≥ WT are labeled as straight

chromosomes, where WT is the whiteness threshold whose

value is determined empirically to be 170 for our dataset.

Further, we find the direction of bending of curved chromo-

somes. The direction of bending is needed for a later step to

determine the final orientation of the straightened chromo-

somes. We fit a line to the binarized chromosome as shown

in Figure 6 and use the sign of slope of this line to find out

Figure 6. Figure showing chromosomes (a) bent towards the left

having negative slope and (b) bent towards the right having posi-

tive slope of fitted line, respectively.

the direction of bending. The chromosomes bent towards

the right would have a positive slope for the fitted line.

4.2.3 Find Bending Centre of Curved Chromosomes

We used the same method as proposed in [6] to locate the

bending centre of curved chromosomes. Prior to locating

the maxima and minima of the horizontal projection vector,

we smoothened out the distribution curve of horizontal pro-

jection vectors by applying a Savitzky Golay filter [16] to

ignore small deflections which may contribute to unwanted

local maxima or minima. As a result of this step, we split

the chromosome into two sub-images containing one arm

each along the bending axis as shown in Figure 5(d), which

is where the chromosome is thinnest.

4.2.4 Chromosome Arms Stitching and Reconstruc-

tion

Each sub-image contains one arm of the chromosome which

is approximately a straight object. The two sub-images

must now be rotated so that the two arms are in the same

direction. For this purpose, each sub-image is rotated from

−90◦to 90◦ while its vertical projection vector is calculated

at each rotation step. Due to the particular shape of each

arm of the chromosome, the vertical projection vector will

demonstrate minimum width if the arms are in the vertical

position inside the sub-image. In a similar manner, the up-

per arm is rotated so as to be in the vertical position. These

same transformations are applied to the real gray scale im-

age rather than its binary version.

The stitching of the two arms is done by cropping out the

lower black part of aligned upper arm and upper black part

for aligned lower arm and shifting upper image horizontally

allowing the upper part of the chromosome to lie correctly

on the lower part. The shifting is done such that the lowest

white pixel of the upper image is just on top of topmost

white pixel of lower image as shown in Figure 5(e).

As we can see from Figure 5(e) after stitching of the

chromosome arms, some pixels of chromosome image are

lost. We perform reconstruction to address this issue. In this

process, the two outer end points (unjoined) of the empty

part of the stitched chromosome are found and joined using
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Figure 7. CNN architecture used for classification of chromosomes.

a single straight line as can be seen in Figure 5(f). The pix-

els in the area enclosed are then filled with the mean value

of the pixels at the same horizontal level as the empty pixel

as shown in Figure 5(g). This is done as chromosomes have

horizontal bands. Thus, the shade of pixels at the same hor-

izontal level of the straightened chromosome should be the

same.

4.3. Chromosome Length Normalization

The chromosome segment-images are of varying sizes

as a result of segmentation via crowdsourcing. As observed

from the karyotype image shown in Figure 1(b), the most

distinct features of different chromosomes are the length

of chromosomes and the centromere position. To preserve

this distinguishing feature, we perform length normaliza-

tion of chromosome segment images using centromere po-

sition, which is described as follows :

4.3.1 Centromere Position of Chromosome

The chromosome centromere is the thinnest part of the chro-

mosome. For straight chromosomes, the centromere is lo-

cated by finding out the row number where the sum of row

pixels is the lowest, i.e., it has the least number of white

pixels or width. In case of curved chromosomes, the bend-

ing centre is the centromere position which is located as

discussed in Section 4.2.3.

4.3.2 Length of Chromosome

When a chromosome bends, the surface towards which it is

bent contracts in length and the outer surface expands. It

is assumed that the length of the medial axis of the object

stays the same length after bending. After straightening the

chromosome, we calculate the true length of the chromo-

some by adding together the distance from the centre of the

upper cut line to the upper edge and the distance from the

centre of the lower cut line to the lower edge. We normalize

the true length across each karyotype image of 23 pairs of

chromosomes to a value between 0 and 100.

4.4. Chromosome Classification

In humans, each cell normally contains 23 pairs of chro-

mosomes, for a total of 46. Twenty-two of these pairs,

called autosomes, are identical in both males and females.

The 23rd pair, the sex chromosomes X and Y, differ in males

and females. Therefore, we classify the chromosomes into

24 classes using a deep convolutional network. The con-

volutional network, as shown in Figure 7, consists of four

blocks where each block contains two convolutional lay-

ers with Relu activation, one dropout and one maxpool-

ing layer. These blocks are followed by two fully con-

nected layers with sigmoid activation and a softmax layer

of 24 units at the end. The number of filters in the four

blocks are different. This network was trained using cate-

gorical crossentropy loss and Stochastic Gradient Descent

optimization.

5. Experimental Results

We evaluate the efficacy of our crowd filtering recom-

mendation by considering a control set of 50 images each

of which was known to contain 46 chromosomes. How-

ever, this fact was not revealed to the crowd workers. Our

crowd task was created by dividing each image into (3x3)

9 parts, and asking each worker to provide segmentations

for 10 parts chosen from 10 different images. We paid each

worker 50 cents for completing the task, and the task re-
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Figure 8. Examples of responses removed during filtering steps. The red rectangle outlines the grid assigned to the worker. The different

types of spam identified are (a) one large marking within the grid, (b) large markings outside the grid, (c) incomplete markings and (d)

marking only one chromosome per grid.

ceived an average satisfaction score of 4.3/5 from the work-

ers. A handful of workers left the job without completion

and thus, we had a total of 230 workers making a contri-

bution. We employed a threshold of τ = 2 and k ≥ 3 as

a first step for filtering. This removed the contributions of

32 workers. Further, we evaluated the mean T(.) score for

the remaining workers and used a threshold of 0.4 which re-

moved an additional 91 workers. Figure 8 shows responses

by workers who were removed during this stage.

Subsequently, we employed our consensus step, how-

ever, we observed that a few spurious markings with very

low score of T(.) were not getting eliminated. Hence, a

threhold of 0.1 was employed on T(.) to allow for a seg-

mentation label to be selected in the final recommendation.

We observed after these steps that we were able to identify

on average 35.9 chromosomes per image. Figure 9 shows

some of the example segmentations obtained post the filter-

ing and consensus steps.

Figure 9. Sample annotations from the crowd.

As mentioned earlier in Section 3 that the complete ex-

perimental dataset consists of 400 complete greyscale im-

ages, out of which 200 were used for testing and the re-

maining for classifier training and validation. We manu-

ally annotated 1800 individual chromosome images with

their chromosome types, while maintaining class balance.

We used 1600 of these images (derived from the 200 full

images in the training set) for training and validation sets

for training a deep CNN classifier. We tested the trained

classifier on remaining 200 chromosome images (from the

200 full images in the test set). Without straightening and

pre-processing, the average classification accuracy obtained

was 68.5%. However, with preprocessing, the classification

accuracy improved to 86.7%. These results are very likely

to improve with more annotated training data for classifica-

tion. Moreover, we provide an interface to doctors for cor-

recting any errors during crowdsourced segmentation and

automated classification as shown in Figure 10. The doctor

can select a particular chromosome marking from the left

to focus on its corresponding classification on the right. If

the expert finds any errors in either the segmentation or the

classification, they can modify these and save the corrected

response in the system.

6. Conclusion and Future Work

One of the objectives of this excercise was to examine

the hypothesis that the crowd can generate sufficient train-

ing data for future segmentation to be performed via a deep

segmentation model like Segnet [2]. Even acknowledging

that 200 training images are unlikely to be sufficient for this

purpose, we went ahead and trained a Segnet variant to seg-

ment out the chromosomes based on the annotations from

the crowd. The results are encouraging, with Segnet obtain-

ing a classification accuracy of over 80%, suggesting that

given sufficient training data, Segnet could potentially learn

to disambiguate the different chromosomes. To further vali-

date this approach, we downloaded the kaggle dataset [7] of

13434 annotated images of overlapping chromosome pairs

and attempted to train Segnet to distinguish between back-

ground pixels, overlapping chromosome regions and non-

overlapping chromosome regions. We used 10000 images

to train, 3000 to validate and 434 images to test our model.

Segnet does well on this task with an accuracy exceeding

97% on the test set for all three classes. However, the same

model when applied to model clusters with more than two

overlapping chromosomes, fares poorly. This is not surpris-

ing given that the datasets are quite different. Despite this,

there appears to be significant incentive to building deep
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Figure 10. Interface provided to doctors for correcting any errors made during crowd-sourced segmentation and deep classification

models for segmentation as they manage to find more nat-

ural overlapping regions than traditional image processing

methods. Future work involves building a deep segmenta-

tion engine to separate the chromosomes more efficiently

even with chromosomal translocations and do active learn-

ing to minimize dependence on the crowd for segmentation.
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