
 

 

 

Abstract 
 

Onboard monocular cameras have been widely 
deployed in both public transit and personal vehicles. 
Obtaining vehicle-pedestrian near-miss event data from 
onboard monocular vision systems may be cost-effective 
compared with onboard multiple-sensor systems or traffic 
surveillance videos. But extracting near-misses from 
onboard monocular vision is challenging and little work 
has been published. This paper fills the gap by developing 
a framework to automatically detect vehicle-pedestrian 
near-misses through onboard monocular vision. The 
proposed framework can estimate depth and real-world 
motion information through monocular vision with a 
moving video background. The experimental results based 
on processing over 30-hours video data demonstrate the 
ability of the system to capture near-misses by comparison 
with the events logged by the Rosco/MobilEye Shield+ 
system which includes four cameras working 
cooperatively. The detection overlap rate reaches over 
90% with the thresholds properly set. 
 

1. Introduction 
According to a report published by National Highway 

Traffic Safety Association (NHTSA) in 2016 [1], the 
number of total motor vehicle fatalities in the U.S. keeps 
decreased from 43510, in 2005 to 32,675 in 2014.  
However, the annual number of pedestrian fatalities 
remained at about same level during the past decade. As a 
result, pedestrian fatalities as a percentage of total fatalities 
increased from 11% to 15%. More research is needed to 
enhance pedestrian safety. 

Traditional traffic safety research normally relies on 
data about collisions, which are rare events when 
considered in the context of normal measures of travel [2]. 
Other data measures of pedestrian activity such as 
pedestrian volume or speed are relatively rarely available 
compared with data for motor vehicle use. Consequently, 
the lack of appropriate pedestrian data makes it very 
challenging to draw solid conclusions about pedestrian 

safety improvements.  
Researchers and engineers are aware of the lack of 

pedestrian collision data and started looking for surrogate 
safety measures [2-9, 16-18]. Despite slightly different 
definitions in several studies, these surrogate events are 
commonly called near-misses. Basically, a near-miss is the 
conflict between road users that requires sudden evasive 
action and has the potential to develop into a collision. 
Collisions and near-miss events both can be used to 
measure the safety of certain locations or scenarios [7]. 
Near-misses have attracted more attention and have the 
potential to be used to explore factors that influence 
pedestrian safety. Research findings in this area will 
encourage a walking-friendly environment. 

Near misses must be detected and extracted from 
specific data sources, such as video records [2-3], records 
from in-vehicle sensors [4], or even output from a 
simulation model of a certain location [9]. Initially, safety 
surrogate measures were extracted manually, which was 
very inefficient and inaccurate [6-8]. Recently, automated 
near-miss detection methods have been proposed in 
several studies but few of them have used onboard 
monocular cameras [2-4, 9]. 

There are several advantages in using onboard 
monocular camera as the near-miss sensor: compared with 
surveillance video cameras which are installed at fixed 
locations with limited view coverage, onboard cameras are 
moving vision sensors that cover much larger areas; 
compared with using multiple in-vehicle sensors such as 
GPS units, radar sensors and stereo vision systems, 
onboard monocular cameras are much cheaper, but may 
need more sophisticated algorithms to reach similar 
performance. Considering that many personal vehicles and 
public buses have installed onboard monocular cameras as 
standalone driver recorders, the recorded videos have huge 
potential to be turned into valuable datasets for traffic 
safety research. Since most developed traffic safety models 
require large volumes of data, the large number of existing 
onboard videos may be effective data sources if automated 
near-miss detection methods can be properly developed.  

However, challenges do exist in near-miss detection in 
monocular cameras. First, with moving background and 
moving foreground in the video, traditional background 
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segmentation methods would not work as well as for 
stationary roadway surveillance videos [10]; also, in 
onboard front-facing cameras, the background points in 
different locations of a video frame do not share a similar 
motion, thereby identifying background points using 
“similar motion criterion” would get inaccurate results 
[11]. With the recent progress in vision-based pedestrian 
detection and tracking, several studies have been 
completed showing that pedestrian detection and tracking 
algorithms could be applied in vehicle-pedestrian collision 
avoidance and near-miss detection. However, these studies 
performed all calculations using two-dimensional image 
coordinates instead of real-world coordinates. 
Consequently, those algorithms are not able to calculate 
true near-miss indicators, such as time-to-collision (TTC). 
To develop the correspondence between image coordinate 
and real-world coordinate, information from an extra 
dimension must be added. Two well-known methods use 
range-measuring sensors such as radar or stereo vision, 
which tend to require expensive hardware [12-13]. 

In this paper, we propose a cost-effective framework to 
automatically extract vehicle-pedestrian near-misses from 
onboard monocular cameras. This framework is composed 
of four main stages: 1) pedestrian detection, 2) motion 
estimation, 3) vehicle-pedestrian relative position and 
speed calculation, and 4) near-miss detection. Our study 
addresses several challenging issues in near-miss detection 
including the moving video background issue, depth 
estimation, and real-world motion information extraction 
only using monocular video. The experimental results 
show that the proposed system is comparable to a 
commercial system with multiple camera sensors in terms 
of accuracy. Further analysis such as near-miss distribution 
estimation can be conducted with the proposed system. 
Our literature review did not reveal any significant 
published work about vehicle-pedestrian near-miss 
detection and extraction using onboard monocular videos. 
The work described in this paper appears to be among the 
first efforts. 

2. Methodology 

2.1. Overview 

The proposed detection framework has a different 
processing logic from previous vehicle-pedestrian conflict 
studies. First, our framework does not handle the complex 
background information in the moving onboard video, but 
tries to locate the pedestrian directly. Also, after the 
pedestrian being detected and tracked, we conduct the 
calculation in the 3D real-world coordinate instead of the 
2D image coordinate as in previous studies. In the 2D 
image space no real-world value can be obtained. 
Specifically, our framework has four main stages, which 

are pedestrian detection in onboard video, motion 
estimation in the image coordinate, relative position and 
speed calculation in the real-world coordinate, and near-
miss detection. The processing pipeline is shown in Figure 
1. In the first stage, the well-known HOG pedestrian 
detector is used to detect pedestrian within the camera 
vision [14]; in the second stage, interest points inside the 
detected rectangle region which basically represents the 
pedestrian is tracked with KLT method [15], thus, the 
motion of the pedestrian in the image coordinate can be 
estimated; in the third stage, with several camera 
parameters known and the assumption that the pedestrian 
detected is on the same plane with the vehicle, pedestrian’s 
relative position and relative speed to the vehicle in the 3D 
real-world coordinate can be calculated; in the fourth 
stage, several thresholds such as TTC need to be set to 
determine if there is a potential vehicle-pedestrian near-
miss event. 

2.2. Pedestrian Detection 

Pedestrian detection often plays a key role in multi-
modal transportation engineering. Efficient and accurate 
pedestrian detection approaches would benefit traffic 
surveillance from many perspectives. Pedestrian detection 
is mainly based on the unique features of pedestrians. 
Generally, there are three types of single features used in 
pedestrian detection: gradient-based features, shape-based 
features, and motion-based features [21]. Motion-based 
features are not suitable for pedestrian detection in 
onboard videos as a single feature due to the complicated 
motion of traffic scene which is composed of moving 
background, and road users with random movements. 
Gradient-based and shape-based features are more suitable 
in our case. Our framework has an advantage that it is 
designed for a wide range of pedestrian detectors as long 
as they are based on pedestrian pattern instead of motion 
information. In this paper, HOG is implemented as the 
pedestrian detector and the candidate pedestrian windows 
are identified using the sliding window approach. The 
input of the pedestrian detection is a video frame and the 
output is rectangle window(s) representing the 
pedestrian(s). In order for the following description, we 

denote 1_imgp  the point where the detected pedestrian’s 

feet on. In other words, 1_imgp  is the midpoint of the 

pedestrian candidate window’s bottom edge. 

2.3. Motion Estimation 

In traffic video analysis, KLT tracker is very effective 
and has been widely used in motion analysis not only in 
surveillance videos with fixed background [2, 23] but also 
in aerial videos with moving background [11, 22, 24]. 
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However, in onboard monocular videos, background 
motion is more complex than that in either surveillance 
videos or aerial videos. Thus, instead of tracking points in 
the background and clustering them, in our framework, 
only those interest points in the detected region are tracked 
thereby background motion does not need to be directly 
handled. Basically, the average motion of the top 20 
interest point with the least errors is used to represent the 
relative motion of the detected pedestrians to the vehicle in 
the image coordinate. If m denotes the average motion of 

all the interest points within the rectangle, and 2_imgp  

denotes the location of the pedestrian in the next frame 
(see Figure 1), we have 

2_ 1_img imgp p m                            (1) 
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Figure 1. The proposed framework for vehicle-pedestrian near-

miss detection through onboard monocular vision 
 

2.4. Relative Position and Speed Calculation 

With the pedestrian detected and motion m obtained, we 
developed a method to calculate the relative position and 
speed through monocular vision. In the image coordinate, 

as defined in last sub-section, 1_imgp  and 2_imgp  are the 

pedestrian locations in two frames (see Figure 2(a)). We 
calculate their corresponding points (see Figure 2(b)) in 
the top-view of the real-world coordinate through a camera 
model as follows.  

Let 0 0(u ,v )C  be the center of the image coordinate 

and 1 1(u ,v ) is the position of 1_imgp , then  

 

1 0du u u                                   (2) 

1 0dv v v                                   (3) 

 

where du and dv are the differences between 1_imgp  and 

the image center. 
To find the correspondence, four camera parameters are 

needed: camera focal length f, pixel length l, camera 
installation height h, and camera tilt angle θ. In the top-
view of the real-world coordinate, the origin (0,0)O  is 

the camera center, whose location and motion are basically 

the same as the vehicle. Points 1_wldp  and 2_wldp  are the 

correspondences of 1_imgp  and 2_imgp , respectively. Let 

1x  and 1y  be the x-coordinate and y-coordinate of 

1_imgp . Then 1x  and 1y  are related to du and dv by the 

following equations: 
 

arctan( )
l dv

f
 
                       (4) 

 
where   is the angle between ground and the line 

connecting 1_wldp  and (0,0)O . Thus, the depth value 

1y can be obtained, that is, 

 

1 arctan( )

h
y


                              (5) 

 

Then, with 1y and du known, 1x can be computed by the 

relation 
 

1 1

l du
x y

f


                              (6) 

 
In this way, the relative position of the pedestrian to the 

vehicle is obtained. Similar to the calculation of 1x  and 
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1y , 2x  and 2y can be calculated. Let fr be the frame rate, 

then the relative speed v between pedestrian and the 
vehicle is 
 

2 2
2 1 2 1(x ) (y )v fr x y                  (7) 

 
Specifically, for relative speed components vx and vy in x-
axis and y-axis respectively, we have 
 

2 1(x )xv fr x                             (8) 

2 1(y )yv fr y                            (9) 

2.5. Near-miss Detection 

With the relative position and speed estimated through 
monocular vision, events can be judged by calculating 
near-miss indicators. The most commonly used indicator is 
TTC [2-5] and we also use TTC as the major near-miss 
indicator in this study, which can be obtained with the 
following equation  
 

1

y

y
TTC

v
                                   (10) 

where 1y is the y-coordinate of the detected pedestrian in 

the real-world coordinate (see Figure 2(b)). 
However, Eq. (10) alone is not sufficient to determine 

whether there is a near-miss, because even if the value got 
by Eq. (10) is very small, it is possible the horizontal 
component of the relative speed, i.e., vx, is very large so 
that the pedestrian would not hit the vehicle following the 
current moving direction. Thus, another indicator is 
needed to be set to judge if the conflict will happen 
following the current relative speed on x-axis. We define 
this indicator as distance-to-safety (DTS), which can be 
calculated as follows 
 

1
x

y

y
DTS v

v
                              (11) 

 
Therefore, if both TTC and DTS are within their 
respective ranges for near-miss detection, i.e., TTC < 
TTCthreshold and –T < DTS < T (where TTCthreshold and T are 
the thresholds), an event is detected. T is shown in Figure 
2(b) and it should be set not smaller than half of the 
vehicle width. 
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Figure 2. Method to find the correspondence between image coordinates and real-world coordinates. 

 

3. Case Study 

3.1. Data Description 

The data was collected on a King County Metro transit 
bus, which was operated in Seattle area. The onboard 

monocular video data used as input to our system was part 
of the Rosco Dual-Vision system. The comparison dataset 
of vehicle-pedestrian conflict was collected by the 
Rosco/MobilEye Shield+ system. Rosco/MobilEye 
Shield+ system is a vision-based collision avoidance 
warning system specifically designed for large vehicles 
(e.g., buses, trucks) which includes four cameras working 
cooperatively. The video for testing our method, i.e., the 
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onboard front-facing video collected by Dual-Vision 
system, has a resolution of 640 × 480 pixels (width × 
height).and a frame rate of 7.5 frames-per-second (fps). 

3.2. Results and Validation 

More than 30 hours of onboard monocular video data 
was used to test the performance of the proposed near-miss 
detection method. Figure 3 shows two representative 
samples identified as near-misses by our system. In (a), the 
vehicle was approaching a stop sign when two pedestrians 
were crossing the street. One of the pedestrians was 
detected as having the potential to collide with the vehicle 
if no evasive action was taken. In (b), a pedestrian standing 
at a bus stop was detected by when the bus approached the 
stop and changed lanes.  

Video detection results are compared with events 
logged by the Rosco/MobilEye Shield+ system with 
multiple camera sensors. Different TTC thresholds are 
used in the experiments, and the results are presented in 
Table 1. In general, the corresponding detection overlap 
rate (Overlap rate = (NTotalDetection － NDifferentDetection) / 
NTotalDetection) between the two systems ranges from 81.5% 
to 90.7%, with an average overlap rate of 86.9%. The 
largest overlap rate occurs at when the TTC threshold is 

set to 2s. The results show that our video system detects 
majority of near-misses picked up by the Shield+ system 
but difference still exists. We manually checked those 
video clips showing events that are not detected by both 
systems at the same time. Generally, we find there are 
three main reasons: 

1) Some events occur at the side of the bus and these 
events are not recorded by the onboard 
monocular camera. These events cannot be 
detected by our system because the target object 
(i.e., the pedestrian) does not appear in the view 
of the front-facing camera. 

2) Some events detected by our system involve a 
pedestrian running towards the front of a stopped 
bus; a bus with no speed deactivates the 
Rosco/MobilEye system’s vehicle-pedestrian 
near-miss detection function but the relative 
motion calculated by our system still indicates a 
potential conflict. 

3) Some interest points inside the detected rectangle 
may come from objects other than the pedestrian 
such as corner points of lane markings, which 
could result in inaccurate motion estimation. 

 

 

 
Figure 3. Sample frames showing the representative near-miss events detected by the proposed system. 

 
 

Table 1. Summary of the comparison results with the Rosco/MobilEye Shield+  system 
TTCthreshold 4s 3s 2s 1s 

Number of different detections 20 10 4 1 
Number of total detections 108 81 43 8 

Detection overlap rate 81.5% 87.7% 90.7% 87.5% 
 

Besides safety surrogate data collection, another 
purpose for developing a cost-effective vehicle-pedestrian 

near-miss detection framework is to automatically identify 
hotspots and geographic distributions of events, to help 
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drivers anticipate potential collisions in higher-risk 
locations. With the event data collected by our system, 
several plots displaying the distribution of the events are 
shown in Figure 4. It can be seen that most events occur at 
the right of the vehicle. This is reasonable since when a 
vehicle travels on roadway, normally pedestrians appear to 
the right of it; the left of the vehicle is traffic moving along 
the opposite direction thereby few pedestrians appear. 
However, at intersections, pedestrians are likely to appear 
at different spots (rather than just right of the vehicle) from 
the driver’s perspective. By manually checking those 
frames with near-misses occurring at the left or middle of 
the vehicle, we find most of them do occur at intersections. 
For example, an event may occur when a left-turning 
vehicle has a conflict with a pedestrian crossing the street.  
Also, we can see that the region with densest events are 
different in the image coordinate ((a), (b)) and the real-

world coordinate ((c), (d)): the densest region in the image 
coordinate is the top right region, but in the real-world 
coordinate it is the bottom right region. That is to say, 
most near-misses occur at a relatively farther distance to 
the vehicle in the image coordinate intuitively, but closer 
to the vehicle in the real-world coordinate. This result is 
surprising at first glance, but the reason is that in the image 
coordinate, objects of same size at a farther distance to the 
camera occupy less pixels than those closer; in other 
words, a pixel represents larger real-world size at a farther 
location to the camera. Thus, although the fact is more 
near-miss events occur in the region closer to the vehicle, 
it looks like more near-misses occur at a relatively farther 
distance in the image space. These findings may help 
drivers improve driving behavior and overall safety by 
knowing the distribution of near-misses.

 

(c) (d)

(a) (b)

 
Figure 4. Scatter plots and heat maps showing the distribution of near-misses in image coordinates (a) and (b) and top-view of real-world 

coordinates, (c) and (d). 
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4. Conclusion and Future Work 
A cost-effective framework for automated vehicle-

pedestrian near-miss detection through onboard monocular 
vision is proposed in this paper. It aims at automatically 
extracting vehicle-pedestrian surrogate safety measure data 
using onboard monocular video. The framework 
incorporates a HOG pedestrian detector and KLT tracker 
to detect and track pedestrians appearing in the monocular 
camera. Then it calculates the region of interest and 
estimates motion in image coordinates. With known 
camera parameters, a camera model is built to find the 
correspondence between image coordinates and real-world 
coordinates of detected pedestrians. Using this 
correspondence, we calculate the relative speed and 
relative position information and then are able to obtain 
the near-miss indicators. This framework is among the first 
efforts for detecting vehicle-pedestrian near-misses by 
using onboard monocular video. It can be applied to both 
safety surrogate data collection and collision avoidance 
tasks for most types of vehicles. The experiment shows our 
system works reasonably well by the comparison with 
Rosco/MobilEye Shield+ system which includes four 
camera sensors.  

Based on the experimental results and analysis in this 
study, future work is currently planned on the following 
aspects. First, future work will involve testing the system 
in more challenging scenarios such as vehicle approaching 
a crowd of pedestrians thus to further improve the overall 
performance. Second, errors in motion estimation may 
occur due to that some of the interest points may not come 
from the pedestrians but other objects appearing in the 
candidate windows. Hence, in the future work, we plan to 
implement a method to filter out those extraneous interest 
points. Third, instead of validating the proposed 
framework with a vision-based system, it would be helpful 
to also compare it with more advanced systems such as a 
system incorporating both vision and radar sensors. 
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