
 

Abstract 

 

     Traffic surveillance has always been a challenging task to 

automate. The main difficulties arise from the high variation 

of the vehicles appertaining to the same category, low 

resolution, changes in illumination and occlusions. Due to the 

lack of large labeled datasets, deep learning techniques still 

have not shown their full potential. In this paper, thanks to 

the MIOvision Traffic Camera Dataset (MIO-TCD), an 

Ensemble of Deep Networks (EDeN) is used to successfully 

classify surveillance images into eleven different classes of 

vehicles. The ensemble of deep networks consists of 2 

individual networks that are trained independently. Extensive 

evaluations were carried out using individual networks and 

their ensemble, using the MIO-TCD dataset that consists of 

786,702 diverse images resembling a real-world 

environment. Experimental results show that the ensemble of 

networks gives better performance compared to individual 

networks and it is robust to noise. The ensemble of networks 

achieves an accuracy of 97.80%, mean precision of 94.39%, 

mean recall of 91.90% and Cohen kappa of 96.58. 

1. Introduction 

Automatic vehicle classification plays a vital role for the 

safety and efficient traffic surveillance. To date, the majority 

of the traffic data acquisition and measurements are obtained 

using sensors such as radar, loop detectors and road tubes. A 

drawback of these sensors is the requirement of intrusive 

installations and calibration procedures. Instead, non-intrusive 

video-based traffic measurement systems are becoming 

popular for two main reasons. First, humans can more easily 

review the data collected from a video camera. Second, 

advanced computer vision and machine learning algorithms 

can be employed at different stages of the data acquisition 

pipeline. This is useful for extracting scalable information that 

can be used in designing efficient and intelligent 

transportation systems. 

     Many modern vehicle classification algorithms rely on 

machine learning to classify vehicles [16]. These algorithms 

are trained on small traffic datasets that do not contain 

sufficient diversity for training a real-world traffic monitoring 

system [17-19]. Furthermore, these datasets do not contain a 

sufficient variability in terms of weather conditions, camera 

perspectives, roadway conditions and roadway configurations. 

     In this paper, we present an Ensemble of Deep Networks 

(EDeN) for the classification of vehicles from traffic 

surveillance images using the MIOvision Traffic Camera 

Dataset (MIO-TCD). To date, MIO-TCD is the largest dataset 

collected so far for the task of vehicle surveillance. The 

dataset consists of 786,702 images taken from 8,000 different 

traffic surveillance cameras deployed all over the USA and 

Canada. These images are taken at different times of the day 

and different times of the year. Additionally, the images are 

taken from a different angle, scale and resolution. Fig.1 shows 

a few examples of images taken from the dataset. 

 

 
Fig. 1: Sample images from the MIO-TCD dataset.  

 

In Fig. 1, the images in the first row are car, motorcycle, 

bicycle and bus. The images in the second row are pedestrian, 

background, articulated truck and single unit truck. The 

images in the last row are non-motorized vehicle, pickup truck 

and work van. 

In our Ensemble of Deep Networks, we train 2 individual 

networks (Network A and Network B) independently. During 

testing, we use 3 networks (Network A, B and C) and get the 

final prediction by taking the weighted average of the 

predictions of the individual networks. Network C is a copy of 

Network B but with the inclusion of logical reasoning. We 

perform extensive experiments on each network individually 

and in ensemble for evaluating the validation and testing 

accuracy. Our experiments show that using the networks in 

ensemble achieved better results. We found that the ensemble 

of networks is more robust to noisy data. 
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2. Related Work and Contributions 

2.1. Related work 

In the past, computer vision has mostly been used in 

combination with different handcrafted features and sensors 

[1-4]. Cho et al. [1] fused radar and laser systems together 

using a Kalman filter for object detection and classification. 

They used different motion models for tracking pedestrians, 

bicyclists and cars. Held et al. [2] used different road and 

deformable parts based model to detect generic moving 

objects on roads. A probabilistic model is used to combine 

multiple forms of evidence to locate cars in real-world 

scenarios. Carafii et al. [3] detected moving objects in real-

time using a single car-mounted camera. The vehicles are 

tracked using a WaldBoost detector along with a Tracking-

Learning-Detection (TLD) tracker. Jazayeri et al. [4] used 

temporal information of features of the detected object and a 

front-view motion model to reduce false positives. To 

separate the vehicles from the background, they used a hidden 

Markov model to characterize the continuous movement of 

features. Thakoor and Bhanu [23] used the rear view to 

classify vehicles on highways. They used the variation in the 

structural signature as a vehicle moved forward to classify 

them as sedan, pickup truck and SUV/minivan. They 

classified the vehicles using support vector machines (SVM). 

Another rear view based classification was done by Kafai and 

Bhanu [26] where they used the spatial information between 

landmarks of the vehicle (e.g. taillights and license plates) and 

a dynamic Bayesian network for vehicle classification. They 

had a drawback similar to as [23] where they could not 

differentiate between SUV and minivan because these 

vehicles look aesthetically similar from the rear view. 

Theagarajan et al. [14] classified vehicles in images using 

their rear view. They were able to distinguish between SUV 

and minivan from the rear view using the visual rear ground 

clearance. They classified the vehicles into high and low 

visual rear ground clearance. The visual rear ground clearance 

of each vehicle is estimated as a physical measurement using a 

multi-frame tracking approach. 

Before the widespread adoption of Convolutional Neural 

Networks (CNNs) and deep learning within computer vision, 

one of the most successful methods for vehicle detection was 

the deformable parts based model [5]. After the Imagenet 

competition [27] entry of Krizhevsky et al. [6], state-of-the-art 

for feature extraction shifted towards CNNs [7-10]. 

Girshick et al. developed Regions and CNN features (R-

CNN), a two-part system which used selective search [11] to 

propose regions and the architecture of [6] to classify them. 

Szegedy et al. [9] detected objects using a regression network 

that detected high resolution bounding boxes using a multi-

scale inference procedure. Huval et al. [12] used The 

OverFeat [7] architecture along with a mask detector similar 

to Szegedy et al. [9] to detect highway lanes and vehicles in 

real-time. Wang et al. [13] used CNN along with Fisher 

feature encoding algorithms to classify the type of a vehicle. 

They used CNN to compensate the information loss that 

occurs by using handcrafted features. Chen et al. [15] used 

parallel deep neural networks (PNN) to localize vehicles from 

satellite images. The authors did not use direct connections 

between branches in order to maintain the structure and 

dimension of each branch, and in doing so, their architecture 

achieved 10X speed compared to a single Deep Neural 

Network (DNN). 

However, the datasets used in the above mentioned state-

of-the-art approaches did not contain a sufficient number of 

diverse examples that resemble real-world traffic surveillance 

images. The following works used real-world traffic 

surveillance videos/images. Salvi [20] used vehicle 

surveillance videos during the night time. They counted the 

number of vehicles on the highways by using morphology and 

image processing algorithms. Aslaine et al. [21] used optical 

flow combined with morphology to track and classify vehicles 

according to their size. 

Although, DNN's have been successful in the task of 

vehicle classification, not much work has been done for real-

world traffic surveillance applications using DNN. 

2.2. Contributions of this paper 

     In view of state-of-the-art, the contributions of this paper 

are: 

� An ensemble of deep networks for classifying vehicles 

from traffic surveillance images. 

� Logical reasoning to solve dual class misclassifications 

(explained in Section IV. E). 

� Extensive experimental evaluation of our model on a 

huge real-world traffic surveillance dataset. 

3. Technical Approach 

     This section describes the framework and architecture of 

the individual models in our ensemble of deep networks 

(EDeN). Fig. 2 shows the overall architecture of our 

approach. 

3.1. Framework of Ensemble of Deep Networks 

     As depicted in Fig. 2 the input of our network is a batch of 

images. From each image, we randomly crop a fixed size 

patch and pass the batch into 2 individual networks (Network 

A and Network B). Each network is trained independently and 

we denote the final predicted vector of each network as X’i. 

The size of X’i  is 1xN, where N is the number of output 

classes to be predicted. During testing, we use 3 networks 

(Network A, Network B and Network C). Network C is a 

copy of Network B but with the inclusion of logical reasoning. 

The logical reasoning is added after the fully connected layer.  
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     Each element of X’i is multiplied by the corresponding 

element of a weight vector Wi, where:  
T

i i i1 i1 i2 i2 iN iNW X ' [W X ' ,W X ' ,..., W X ]=  (1) 

     The final prediction vector is the average of the weighted 

predictions of each network. 

3.2. Network architecture 

     We employ the Residual Network architecture by [21], 

where identity mapping is used for increasing the depth of the 

network thereby avoiding the vanishing gradient problem. In 

EDeN we used the RESnet34 and RESnet50 architectures. 

RESnet34 has 34 convolutional layers, and RESnet50 has 50 

convolutional layers. In both architectures, max pooling is 

replaced by convolutional down sampling. 

     The network takes 224x224 image patches, and batch 

normalization is performed to get a faster training 

convergence. Rectified linear units (ReLU) are used as non-

linearities. In Fig. 2, network A is a RESnet34 architecture 

and network B is a RESnet50. Both networks A and B use a 

weighted cross-entropy loss function. Network C has the same 

architecture as network B but includes logical reasoning. 

Table I is a summary of the individual networks used in 

EDeN. 

 
Table I: Summary of the individual networks

Network Arcitecture Loss function 

Network A Resnet34 Weighted cross entropy 

Network B Resnet50 Weighted cross entropy 

Network C Resnet50 with 

logic 

Weighted cross entropy 

 

 

 
 

Fig. 2: Overall architecture of EDeN. 

 

     During training, Network A and B are trained 

independently. By doing so each network learns its own 

representation of the image. During testing, the image is 

passed through the individual networks, and the weighted 

average of the softmax output gives us the final predictions. 

3.3. Weighted Cross-entropy loss function 

     Traffic surveillance involves classification of different 

vehicles as well as pedestrians and background. All classes do 

not have an equal amount of training data because some 

vehicles are rarely seen on the road compared to others. For 

example, surveillance cameras on highways are more likely to 

see trucks than bicycles or pedestrians, and vice versa for a 

college campus. In order to handle this unbalanced nature of 

surveillance data, we use a weighted cross-entropy loss 

function. It is desirable to give more weight to classes that 

have very few training data compared to classes that have 

more training data. In our network, we used the 

complementary a-priori probability of each class as weights. 

The complementary a-priori probability for class 

i c iC 1 X / X= − , where Xci is the total number of images 

belonging to class Ci and X is the total number of images for 

all classes. 

4. Experiments 

     We evaluated our proposed approach on the MIO-TCD 

dataset especially made for traffic surveillance tasks for the 

Traffic Surveillance Workshop and Challenge held in 

conjunction with the conference on Computer Vision and 

Pattern Recognition (CVPR), 2017. 

     The network architecture along with the overall framework 

have been implemented using the Pytorch computing 
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framework [22] on a NVIDIA DIGITS DevBox with four 

TITAN X GPU’s with 7 TFlops of single precision, 

336.5GB/s of memory bandwidth and 12 GB of RAM 

memory per board. 

4.1. Datasets 

     We performed our experiments on the MIO-TCD dataset 

where the images are obtained from real-world traffic 

surveillance cameras deployed all over the USA and Canada. 

The total number of training images in the dataset for the 

classification task is 521,451 with 11 different classes namely: 

articulated truck (1.98%), background (30.68%), bus (1.98%), 

bicycle (0.44%), car (49.96%), motorcycle (0.38%), non-

motorized vehicle (0.34%), pedestrian (1.2%), pickup truck 

(9.76%), single unit truck (0.98%) and work van (1.86%). The 

percentage above indicates the data distribution of each class 

in the dataset. 

     Clearly, it can be noticed that the dataset is unbalanced 

with data distribution for cars nearly 50%. According to the 

Bureau of Transportation Statistics for 2012 [28], 63.96% of 

all registered vehicles in the USA are light duty vehicles that 

include cars and pickup trucks, which is close to the data 

distribution of cars and pickup trucks (59.72%) in the dataset. 

Additionally, 3.22% of the registered vehicles in 2012 were 2 

axles with 6 or more tires which include articulated trucks and 

single unit trucks from our dataset which corresponds to a 

data distribution of (2.96%). This makes the data distribution 

in the MIO-TCD dataset close to real-world vehicle data 

distribution. More details are provided on the workshop's 

website [23]. 

4.2. Data Augmentation 

     From the data distribution, it can be noticed that 8 out of 

11 classes have less than 5% of the total images. In order to 

add more diversity for those classes, we added more images 

from the Imagenet dataset [27] and training images from the 

localization dataset of MIO-TCD. The total number of images 

added was 2,247 from Imagenet and 101,234 from the 

training images of the localization dataset of MIO-TCD. 

Additionally, we added 18,000 more images for the pedestrian 

class from the benchmark pedestrian re-identification database 

PETA [24]. 

4.3. Preprocessing 

     All the images in our dataset were resized to maintain 

aspect ratio such that the shorter side has length of 256 pixels 

and the longer side has the corresponding length to maintain 

the aspect ratio. For example, for a given M x N image where 

M is the row dimension, and N is the column dimension, the 

aspect ratio is given by AR = N/M and the resized image has 

the following dimensions:  

 

if M N;M 256,N AR* M

if M N ; N 256,M N / AR

< = =


> = =
 

 

(2) 

 

4.4 Experimental setup 
 

     For all the experiments we evaluate performance in terms 

of accuracy, mean precision, mean recall and Cohen kappa 

score. These measures are used to evaluate entries in the 

Traffic Surveillance Challenge. Since a validation set is not 

provided, we split the training set (before data augmentation) 

into 75% data for training and 25% data for validation. 

     We set the mini-batch size as 128, and during each epoch, 

the training data is randomly shuffled, and we take a randomly 

cropped 224x224 patch from each input image. We used the 

stochastic gradient descent algorithm to minimize the 

weighted cross-entropy loss function. 

     We did random parameter selection on the validation set 

for individual networks to obtain the best learning rate, 

momentum and weight decay for each network.  

     The best parameters for Network A were found to be, 

learning rate = 6x10-3, momentum = 0.9 and weight decay = 

10-4. 

     The best parameters for Network B were found to be, 

learning rate = 6.5x10-3, momentum = 0.9 and weight decay = 

4x10-4. 

     For both networks, the learning rate is reduced when the 

training loss has not decreased after 3 consecutive epochs.  

     The learning rate is reduced by a factor of 5 after the 15th 

and 25th epoch for Network A.  

     For Network B the learning rate is reduced by a factor of 5 

after the 12th and 20th epoch. 

     After every epoch, we check the validation error and if it is 

decreasing, we save the model. If the validation error has not 

decreased after 5 consecutive epochs we employ early 

stopping and stop the training. 

4.5. Experimental results 

� Network A: We trained Network A, which is a RESnet34 

architecture pre-trained on the Imagenet dataset, with the 

parameters as explained in the experimental setup. The 

evaluated performance of the network on the validation set 

achieved an accuracy of 97.12%, mean recall of 90.12% and 

mean precision of 91.35%. Fig. 3 shows the performance 

evaluation plot for network A on the validation set. 

 

� Network B: We trained Network B, which is a RESnet50 

architecture pre-trained on the Imagenet dataset, with the 

parameters as explained in the experimental setup. The 

evaluated performance of the network on the validation set 

achieved an accuracy of 97.51%, mean recall of 90.78% and 

mean precision of 92.23%. Fig.4 shows the performance 

evaluation plot for network B on the validation set. 
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Fig. 3: Performance evaluation plot of Network A on the validation 

set. 

 

     We individually tested Network A and Network B on the 

testing set and the results are shown in Table II. For testing, 

we employed the five patch testing method as in [6], where 

each image is split into 5 overlapping patches (4 patches from 

the corner and 1 patch from the center) and passed through the 

network. The average prediction of the 5 patches is taken as 

the final prediction of the image. Network A achieved a 

classification accuracy of 97.25%, mean recall of 89.28%, 

mean precision of 93.60% and Cohen kappa score of 95.73. 

Network B achieved an accuracy of 97.43%, mean recall of 

91.61%, mean precision of 93.52% and Cohen kappa score of 

96.02 on the testing set.   
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Fig. 4: Performance evaluation plot of network B on the validation 

set. 

 

     According to the competition rules the final score for each 

model is the average of the accuracy, mean precision, mean 

recall and Cohen kappa score. Based on this rule, network A 

scored 93.96 and network B scored 94.64. 

      In Table II, the classes are denoted as AT: Articulated 

truck, BI: Bicycle, Bus: Bus, Car: Car, MO: Motorcycle, 

NMV: Non-motorized vehicle, PE: Pedestrian, PT: pickup 

truck, SUT: Single unit truck, WV: Work van, BG: 

Background.

 

Table II: Evaluation of Network A and Network B on testing set 

Network/Classes AT BI Bus Car MO NMV PE PT SUT WV BG 

Network A (precision) 0.9308 0.9128 0.9909 0.9831 0.9678 0.8529 0.9637 0.8821 0.8681 0.9494 0.9945 

Network A (recall) 0.9354 0.8984 0.9709 0.9757 0.9111 0.5959 0.9323 0.9525 0.8070 0.8443 0.9968 

Network B (precision) 0.9457 0.9042 0.9886 0.9876 0.9787 0.8238 0.9686 0.8803 0.8628 0.9527 0.9939 

Network B (recall) 0.9362 0.9089 0.9794 0.9735 0.9273 0.7260 0.9259 0.9583 0.8547 0.8889 0.9981 

 

     � Problems encountered during the training of Network 

A and Network B: During the training of network A and 

network B, we noticed persistent misclassification between 

bicycles and pedestrians, non-motorized vehicles and 

articulated truck/ single unit truck, and pickup trucks and cars. 

Fig. 5 shows some of these examples. In Fig. 5 the top row 

corresponds to bicycles that were misclassified as pedestrians, 

the middle row corresponds to non-motorized vehicle 

misclassified as articulated truck and the bottom row 

corresponds to pickup truck misclassified as car. The reason 

for this is that an image that belongs to the class bicycle has 

both bicycle and pedestrian in it, while an image in the class 

pedestrian has only a pedestrian. Similarly, an image from the 

class non-motorized vehicle has both non-motorized vehicle 

and articulated truck/ single unit truck in it. So, as the network 

becomes deeper, it learns stronger features for pedestrian, 

articulated truck and single unit truck compared to bicycle and 

non-motorized vehicle. 

 

 
Fig. 5: Misclassified images from Network A and B. 

 

     Hence when it sees a pedestrian in an image that belongs to 

bicycle, the network is more likely to overpower the class 

bicycle and predicts it as pedestrian. The same holds for 

articulated truck, single unit truck and non-motorized vehicle. 
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� Network C: To solve this problem of dual class 

misclassification we introduced network C as depicted in Fig. 

2 and section III.B. Network C is the same as Network B, but 

with the addition of logical reasoning and is used only in the 

testing phase. Fig. 6 shows the functioning of the logical 

reasoning of network C. We employed the five patch testing 

method to evaluate network C. When the network sees an 

image that belongs to bicycle, if there is at least one patch out 

of the five predicted as bicycle, then the final prediction is 

bicycle. Similarly, when the network sees an image that 

belongs to non-motorized vehicle, if there is at least one patch 

that belongs to non-motorized vehicle, then the final 

prediction is non-motorized vehicle. The same is done for 

articulated truck/ single unit truck and pickup truck/ car. We 

individually evaluated Network C on the testing set of MIO-

TCD with the same experimental protocols explained in 

section IV.D and the results are shown in Table III. Network 

C achieved an accuracy of 97.59%, mean recall of 91.85%, 

mean precision of 94.26% and Cohen kappa score of 96.26%. 

The final score for Network C is 94.99. 

Bicycle Pedestrian Pedestrian

Pedestrian Pedestrian

Final 

prediction 

is Bicycle

Five patches

 
Fig. 6: Network C correctly classifies bicycle that was misclassified 

as pedestrian by Network B. 

          
 

Table III: Evaluation of Network C on the testing set 

Network/Classes AT BI Bus Car MO NMV PE PT SUT WV BG 

Network C (precision) 0.9383 0.9318 0.9913 0.9873 0.9748 0.8647 0.9662 0.8879 0.8763 0.9541 0.9954 

Network C (recall) 0.9405 0.9089 0.9763 0.9764 0.9374 0.7443 0.9323 0.9574 0.8305 0.9009 0.9981 

            

� Ensemble of Deep Networks (EDeN): In this experiment, 

we combine Networks A, B and C using weighted prediction 

vectors. In our experiments, we chose the weights Win to be 

the average of the precision and recall for each individual 

class of that network.  

 

in in inW average(Pre ,Rec )=  (3) 

where i=1,2,3 refers to Network A, Network B and Network 

C, respectively. n= 1 to N refers to the class index. 

in
in

in in

TP
P r e

TP FP
=

+

 
 

(4) 

 

in
in

in in

TP
Rec

TP FN
=

+

 
 

(5) 

     The final prediction is the average of W1X’1, W2X’2 and 

W3X’3, where W1X’1, W2X’2 and W3X’3 are the weighted 

predictions of Network A, Network B and Network C 

respectively. 

     The weights for each network are obtained by evaluating 

the network on the validation set. The model achieved an 

accuracy of 97.80%, mean recall of 91.90%, mean precision 

of 94.39% and Cohen kappa score of 96.58 resulting in a final 

score of 95.17. Table IV shows the confusion matrix of EDeN 

and Table V shows the evaluation of EDeN on the test set.

 
Table IV: Confusion matrix of EDeN 

Classes AT BI Bus Car MO NMV PE PI SUT WV BG 

AT 94.51 0.00 0.15 0.19 0.00 1.04 0.00 0.08 3.52 0.15 0.35 

BI 0.00 89.84 0.18 0.18 1.40 0.00 7.18 0.00 0.00 0.00 1.23 

Bus 0.31 0.00 97.94 0.89 0.00 0.00 0.00 0.31 0.08 0.16 0.23 

Car 0.01 0.00 0.01 97.90 0.00 0.00 0.00 1.93 0.00 0.09 0.06 

MO 0.00 1.41 0.00 1.82 93.74 0.00 0.40 0.00 0.00 0.00 2.63 

NMV 6.39 0.23 0.46 1.37 0.23 72.37 0.46 3.88 5.25 1.83 7.53 

PE 0.00 1.73 0.00 0.13 0.45 0.06 93.48 0.06 0.06 0.00 4.03 

PI 0.02 0.00 0.01 3.56 0.00 0.02 0.00 96.24 0.09 0.04 0.02 

SUT 8.83 0.00 0.16 0.70 0.00 0.23 0.00 3.75 84.45 1.17 0.70 

WV 0.08 0.00 0.21 6.77 0.00 0.12 0.00 1.24 0.33 90.59 0.66 

BG 0.01 0.00 0.01 0.12 0.00 0.02 0.02 0.01 0.00 0.01 99.80 
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Table V: Evaluation of EDeN on the testing set 

Network/Classes AT BI Bus Car MO NMV PE PT SUT WV BG 

EDeN (precision) 0.9368 0.9361 0.9910 0.9889 0.9587 0.8661 0.9650 0.8997 0.8868 0.9585 0.9951 

EDeN (recall) 0.9451 0.8984 0.9794 0.9790 0.9374 0.7237 0.9348 0.9624 0.8445 0.9059 0.9980 

 

4.6. Discussion of results 

     Table VI shows the summary of the results of the 

individual networks and EDeN. In Table VI, Acc, Prec, Rec, 

and CK refer to accuracy, precision, recall and Cohen Kappa 

score respectively. 

 
Table VI: Summary of the results 

Network Acc. Prec. Rec. CK Avg. 

score 

Network A 97.25 93.60 89.28 95.73 93.96 

Network B 97.43 93.52 91.61 96.02 94.64 

Network C 97.59 94.26 91.85 96.26 94.99 

EDeN 97.80 94.39 91.90 96.58 95.17 

      

     In Table VI, Acc, Prec, Rec, CK refer to accuracy, 

precision, recall and Cohen kappa score. From Table VI, it 

can be observed that EDeN performs better than the 

individual networks. Furthermore, Network C, had better 

performance compared to Network A and Network B. This 

corroborates the fact that, the logical reasoning of Network C 

is able to solve the dual class misclassification problem.  

     On comparing EDeN with individual networks, EDeN had 

better accuracy, precision, recall and cohen kappa score. The 

reason for this is that, although there could be a possibility 

that Network C predicted some images wrong due to noise in 

some patches of the images, the weighted predictions of 

Network A and Network B for those patches were higher and 

hence overriding Network C’s prediction. On the other hand, 

Network C was able to dominate whenever there was a 

genuine dual class misclassification problem. 

     We also evaluated EDeN on the validation set and 

reviewed the classified images. Fig. 6 shows some of the 

results.  
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Fig. 6: Classified images from the validation dataset using EDeN. The red text is the ground-truth and the green text is the predicted class. The 

images in the green frame are correct classification, the images in the red frame are wrong classifications and the images in the yellow frame are 

noisy data with wrong ground-truth but EDeN predicted them correctly. 

 

In Fig. 6, the red color text is the ground-truth and the green 

color text is the predicted results. The images with the green 

box indicate correct classification and the images with the red 

box indicate incorrect classification. The images with the 

yellow box indicate that the ground-truth for those images was 

mislabeled and the predicted results were correct indicating 

that our model is robust to noisy data.  
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     Thus, from our experiments we can conclude that using an 

ensemble of deep networks helped to improve performance, 

mitigate dual class misclassification problem and it is also 

robust to noisy labels. 

5. Conclusions and Future work 

     In this paper, we introduced an ensemble of deep networks 

for the classification of vehicle surveillance images and 

performed extensive evaluation of our model on the MIO-

TCD dataset which is a real-world traffic surveillance dataset. 

The results obtained from our evaluation showed that our 

ensemble of networks performed better than individual 

networks and it was robust to noisy labels. Future work will 

involve using our Ensemble of Deep Networks to perform 

localization and evaluating our approach on other datasets that 

are acquired under different time periods and environments. 
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