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Abstract

We present an efficient scene layout aware object de-

tection method for traffic surveillance. Given an input im-

age, our approach first estimates its scene layout by trans-

ferring object annotations in a large dataset to the target

image based on nonparametric label transfer. The trans-

ferred annotations are then integrated with object hypothe-

ses generated by the state-of-the-art object detectors. We

propose an approximate nearest neighbor search scheme

for efficient inference in the scene layout estimation. Ex-

periments verified that this simple and efficient approach

provides consistent performance improvements to the state-

of-the-art object detection baselines on all object categories

in the TSWC-2017 localization challenge.

1. Introduction

Consider the object detection problem as depicted in Fig-

ure 1. As humans, we are able to estimate the scene layout

at the very first glance and then know where to look for a

given object category. For instance, cars will mostly likely

appear on paved areas and pedestrians are usually found

on sidewalks. On the contrary, most object detection algo-

rithms produce scores for densely sampled object locations

and scales, or a few hundreds to thousands of “blobby” ob-

ject proposals. While these approaches have merit in terms

of straightforwardly building a strong model of object ap-

pearance, they usually lack an understanding of the scene

layout and act quite differently from what a human would

do for the same task.

In this paper, we seek to exploit the spatial context for ef-

ficient object detection in traffic surveillance images. A key

feature of these data is that they exhibit strong regularities in

terms of scene layout that are useful for localizing objects

of interest. This general idea has long been proven effec-

tive in the computer vision community, with seminal works

from Torralba et al. [43, 32, 45], and later Hoiem, Efros

and Hebert [19], plus a few more [47, 35, 4] as prominent

examples. More recently, the modeling of spatial context

has been extended to 3D scenarios [40, 2, 41, 6, 26, 15, 29]
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Figure 1. Upper panel: Illustration of our method. We incorpo-

rate scene-level cues for object detection by nonparametric label

transfer. Color keys: car �, pedestrain �, motorized vehicle �.

Note that the false alarms at the center bottom of the image are

removed for the pedestrian category. In addition, two pedestrians

at the distant roundabout are detected. Lower panel: Possible ob-

ject locations for the car category. We show four different object

scales here, from small (nearby) to large (farther away).

as high quality co-registered depth and color images have

become more easily accessible. Most existing approaches

assume a parameterized model for the scene layout, such as

the piecewise planar assumption [9], blocks world assump-

tion [14], or the Manhattan world assumption [18, 24, 23,

5]. These priors are indeed necessary when annotated data

is scarce and expensive to obtain. However, in this work

we seek to explore scene layout estimation from an alter-

native perspective. Specifically, we are interested in im-

proving object detection through a nonparametric implicit

scene layout model that predicts potential object locations

and scales, as shown in Figure 1. Our method crucially de-

pends on the availability of large-scale databases that cover

objects of different sizes and at various locations. In partic-

ular, surveillance images are well-suited for our approach

because their scene layouts provide strong priors for local-

izing objects. More importantly, large-scale databases such

as the MIO-TCD dataset [1] containing more than a hun-

dred thousand images and millions of object instances are

becoming publicly accessible. Datasets at this scale allow
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for high quality object proposals with a simple K-neareset

neighbor search, as illustrated in Figure 3.

The benefit of adopting a nonparametric scene layout

model is twofold. Firstly, since we retrieve object layout

from the nearest neighbors these models can naturally han-

dle diverse scene layouts, as shown in Figure 5. In ad-

dition, similar to other nonparametric knowledge-transfer

methods (e.g., [27, 42]) ours is also simple and efficient.

Our primary contribution includes a scene layout transfer

method to model the spatial context for object detection,

and an approximate nearest neighbor search scheme for

efficient inference. The proposed method is backed by a

consistent performance boost to all object categories in the

TSWC-2017 [1] localization challenge, when paired with

state-of-the-art object detection algorithms including Faster

RCNN [37] and SSD [28]. Our best-performing model

achieves a mean AP of 77.19% in the official challenge.

The rest of this paper is organized as follows. Sec-

tion 2 briefly reviews the related literature on object de-

tection, context modeling and nonparametric transfer. We

then describe details of our method in Section 3. After-

wards, Section 4 discusses details of our experiments, fol-

lowed by closing remarks in Section 5. Source codes of

our method are available from https://github.com/

realwecan/traffic-context-detection.

2. Related work

Object detection. Recent years witnessed a huge success of

Convolutional Neural Network (CNN) based object detec-

tion algorithms over conventional methods based on hand-

crafted features and a shallow object grammar-based archi-

tecture such as the Deformable Parts Model (DPM) [10].

Some of the most prominent examples include sliding-

window based OverFeat [38] and object proposal based R-

CNN [13] and its faster variants [16, 12, 37]. These meth-

ods are directly inspired by the success of CNN for image

classification. The latter, proposal-based methods seek to

exploit the strong representation power of deep networks to

classify and make refinements to a relatively small set (typ-

ically hundreds to a few thousands) of potential object re-

gions. Another line of work attempts to make direct predic-

tions using a deep network without the object proposal step.

Examples include YOLO [36] and SSD [28] and we note

that these methods are generally more efficient and is com-

parably better suited for real-time detection. In this work,

we choose Faster RCNN [37] and SSD [28] as our baseline

object detectors and explore how to improve their results

via incorporating scene-level context cues.

Context modeling. Context-aware object detection has

been well studied, and many context-aware object detection

methods have been proposed (e.g., [43, 44, 47, 35, 19, 21,

4, 30, 34]). See [47] for a review and [7] for an empirical

study of earlier work in the literature. More recently, Yang

et al. [48] have shown that reasoning about a 2.1D layered

object representation in a scene can positively impact object

detection. Yao et al. [49] propose a holistic scene under-

standing model which jointly solves object detection, seg-

mentation and scene classification. Mottaghi et al. [31] ex-

ploit both the local and global contexts by reasoning about

the presence of contextual classes, and propose a context-

aware improvement to the DPM. Zhu et al. [51] use CNNs

to obtain contextual scores for object hypotheses, in addi-

tion to scores obtained with object appearance. Batzer et

al. [3] propose a context-aware voting scheme for small and

distant object detection. Other works have extended con-

text modeling to 3D scenarios. For example, Bao, Sun and

Savarse propose a parameterized 3D surface layout model

and combine it with object detectors [2, 41]. Geiger, Wojek

and Urtasun [11] propose a generative model for joint infer-

ence of scene topology, geometry and 3D object locations.

Choi et al. [6] learn latent 3D geometric phrases to jointly

solve object detection and scene layout estimation. Simi-

larly, Lin et al. [26] use a CRF model to integrate various

contextual relations for holistic scene understanding. Other

later works include [15] and [29]. Our work differs from the

methods above in the sense that we propose a nonparamet-

ric, knowledge-transfer based approach to model the spatial

context for object detection, and exploit the regularities in

terms of scene layouts in traffic surveillance images.

Nonparametric transfer. Recently, the emergence of large

databases of images allows researchers to build nonpara-

metric models for label prediction in various vision tasks.

The basic idea is to explain an image by matching its parts

to other images from a database. For example, Liu, Yuen

and Torralba [27] address the semantic segmentation prob-

lem by first retrieving nearest neighbors of a query image

with distance derived from global scene descriptors such as

GIST [33] and the spatial pyramid intersection of HOG vi-

sual words [22]. This is followed by a coarse-to-fine SIFT

flow algorithm to establish dense pairwise correspondences

between the query scene and each of its nearest neighbors.

Similarly, Tighe and Lazebnik propose SuperParsing [42]

which performs label transfer at the superpixel level to

avoid the expensive inference via SIFT flow. Similar ideas

have been used in label propagation in videos [8] and glass

object segmentation [46]. Unlike their methods, our goal is

to transfer layout as a scene-specific context prior for ob-

ject detection. Perhaps closest to our work is [50] which

also proposes a nonparametric method for scene layout es-

timation. However, they use a column-based tiered model

which is only applicable to a specific viewpoint, while our

method has no such restriction and is able to deal with large

viewpoint variations. Furthermore, we propose an approxi-

mate nearest neighbor search scheme and demonstrate that

our method is able to efficiently transfer scene layouts in

databases with more than a hundred thousand images.
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3. Our approach

The proposed scene layout transfer method can be used

in conjunction with any object detection algorithm that out-

puts bounding boxes. For an input image, scene layout

transfer essentially produces a score for any given object

hypothesis. The score is then combined with the output of

an off-the-shelf object detector to obtain a final output.

More formally, suppose we have an image I and an ob-

ject class of interest o. Let the object hypothesis be x ∈ X ,

where X is the object pose space. To simplify the nota-

tion, we assume each hypothesis is x = (xc, as, ar) where

xc = (ax, ay) is the image coordinate location of the ob-

ject center, as a scale, and ar an aspect ratio. Note that

each x now implies a bounding box as well. Object de-

tection algorithms define a scoring function Sd(x, o) for

each valid object hypothesis x and a given object class

o. For example, this score is implemented as a two-class

softmax score for each object class in Faster RCNN, i.e.,

Sd(x, o) = p(x, o|I).
We propose an additional scene layout score Sl(x, o) (in

the logarithmic space) for any given object hypothesis x and

class o. The final detection score is a weighted sum of the

two scores:

S(x, o) = Sd(x, o) + θ logSl(x, o) (1)

where θ is a hyperparameter for the relative importance be-

tween the two terms. The scene layout score Sl(x, o) is

obtained in a nonparametric fashion, as detailed in the next

section.

3.1. Scene layout transfer

Similar to other nonparametric label transfer approaches,

the scene layout transfer score Sl(x, o) is obtained by in-

vestigating a local neighborhood NI of the input image I

defined on an appearance feature manifold. This neighbor-

hood is also referred to as the retrieval set in the literature.

Concretely, let Ij ∈ NI be a neighbor image of I , and

f , fj be the image-level feature vectors of I and Ij that give

rise to the neighborhood relations. Note that the retrieval

set is typically an annotated database, and is the training set

in our case. Therefore, each image Ij contains a number of

ground-truth object hypotheses given an object class o. We

denote these object hypotheses as y ∈ Yj . Our scene layout

transfer score Sl(x, o) is based on the retrieval set NI and

can be written as:

Sl(x, o|NI) =
∑

j∈NI

k(1)(f , fj)
∑

y∈Yj

k(2)(x,y) (2)

where f and fj are 2048-D features extracted from the pool5

layer of a ResNet-50 [17] network applied on images I and

Figure 2. Example images in the neighborhood NI . The leftmost

column shows the query image I . The four columns to the right

show examples of neighbour images in NI from different cameras

with similar views.

Ij respectively. In addition, k(i)(·, ·), i ∈ {1, 2} are heat

kernels of the following form:

k(i)(z1, z2) = exp

(

−
d(i)(z1, z2)

σ2
i

)

(3)

where d(i)(·, ·) is a distance metric and σi is the kernel

width. In this work, we choose the cosine distance between

two feature vectors for d(1)(·, ·) as it was found to outper-

form the Euclidean distance. We use the Jaccard index (i.e.,

the IoU overlap between two bounding boxes) for d(2)(·, ·):

d(2)(x,y) =
area(x ∩ y)

area(x ∪ y)
(4)

Definition of the neighborhood. The most common def-

inition of the neighborhood NI of the image I consists of

taking the K nearest neighbors (K-NN). In addition, ǫ-NN

is another widely adopted neighborhood definition that con-

siders all of the neighbors within (1+ǫ) times the minimum

distance from the image I . Following [27] we adopt the

〈K, ǫ〉-NN neighborhood as NI for our input image I:

NI = {Ij |d
(1)(f , fj) ≤ (1 + ǫ)d(1)(f , f1),

f1 = argmin d(1)(f , fj), j = 1 . . .K} (5)

Note that as ǫ → ∞, 〈K,∞〉-NN reduces to K-NN. Con-

versely, as K → ∞, 〈∞, ǫ〉-NN reduces to ǫ-NN. See Fig-

ure 2 for example images in the neighborhood NI . Note

that NI contains images taken from different cameras with

similar views, not merely different images taken from the
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same camera. In addition, Figure 3 presents examples of

transferred annotations for varying values of K in a K-NN

neighborhood. As illustrated, a small value for K gives

good recall for objects in the first three images. However,

a larger value for K is needed for the remaining examples.

The neighborhood definition we adopt this work is flexible

at handling feature manifolds with large density variations,

which is also relevant to the discussion about an alternative

design choice below.

An alternative design choice. In addition to the approach

presented above, one easily perceived alternative to han-

dle the image-level similarities is to use clustering methods

such as K-means or affinity propagation to obtain scene lay-

out paradigms. Intuitively, these methods would provide an

interpretable scene layout representation in terms of clus-

ters. However, in our initial experiments we found it diffi-

cult to find a succinct set of universally applicable parame-

ters for these clustering methods due to the highly unstable

intra-cluster variations. Our approach addresses this issue

by eliminating the need to explicitly form scene layout clus-

ters, and instead infer the scene layout from a 〈K, ǫ〉-NN

neighborhood. Through experiments, we verified that our

design choice outperforms clustering-based methods and is

able to reliably transfer scene layouts for object location and

scale prediction, as illustrated in Figure 4.

3.2. Efficient approximate inference

One of the key design considerations of recent object de-

tection algorithms is on their efficiency. In particular, state-

of-the-art object detectors such as Faster RCNN, YOLO and

SSD operate at the speed of tens to hundreds of frames per

second. While the scene layout transfer method described

in the previous section is efficient when the kernels k(1)(·, ·)
in Equation 2 are computed, the computation of the pairwise

distances of a test image to all training images is non-trivial.

We now show that with a simple approximate nearest neigh-

bor search technique, the proposed method only brings in a

small computation overhead.

More specifically, the training set of the TSWC-2017 lo-

calization challenge contains 110, 000 images, and a CPU-

based multi-threaded mex implementation to compute the

2048-D pairwise feature distances between a test image and

the entire training set takes more than 2.6 seconds on an

i7-4790 system. Even with sophisticated GPU acceleration

(15x to 30x according to [25] and [20]), the computation

time is still comparable to that of a CNN-based object de-

tector. More importantly, the computational cost roughly

scales linearly with the size of the training set. To ad-

dress this issue, we propose an approximate nearest neigh-

bor search scheme for efficient test-time scene layout trans-

fer. The basic idea is to “replace” the query image feature

with its approximate nearest neighbor in the training fea-

tures, so the pairwise distances can be precomputed as part

GT K = 1 K = 10 K = 50 K = 100

Figure 3. Examples of transferred bounding boxes for varying

values of K in a K-NN neighborhood. Images are chosen from

a held-out validation set. Ground-truth (GT) on the left. See Fig-

ure 5 for color keys of the bounding boxes.

of the training process.

Mathematically, let M be the number of images in our

training set and D be the feature dimension for the image-

level appearance features (i.e., D = 2048 for our ResNet

pool5 features). We can perform K-means clustering with

N clusters for the training feature matrix Ftr ∈ R
D×M ,

and denote C ∈ R
D×N as the cluster centers. Here we

use bold uppercase letters to denote matrices and the corre-

sponding lowercase letters to denote their column vectors.

For example, f trm ,m = 1 . . .M are features for each train-

ing image and cn, n = 1 . . . N are individual cluster cen-

ters. Additionally, let Ftr,n ∈ R
D×Mn and its columns

f tr,nm ,m = 1 . . .Mn denote features in the n-th cluster.

At test time, we approximate d(1)(f , fj) with d̃(1)(f , fj) de-

fined as follows:

d̃(1)(f , fj) := d(1)(f tr,nm , fj),

m = argmin d(1)(f , f tr,nm ),m = 1 . . .Mn,

n = argmin d(1)(f , cn), n = 1 . . . N. (6)

Here we note that both features in the pairwise distance

d(1)(f tr,nm , fj) on the right hand side of Equation 6 belong

to the training set and can be precomputed. Therefore, the

computation reduces to working out the two argmin(·) op-

erators in Equation 6. In our experiments, we set N = 200
and Mn are typically in the hundreds (the mean of Mn is

495 and 98.3% of all clusters have 1000 members or less).

We note, however, it makes sense to further set an upper
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Algorithm 1: Efficient approximation of d(1)(f , fj).

Initialization: Precompute pairwise distance on Ftr

and perform K-means clustering to obtain C.

Input: Features f , fj ; Number of clusters N , Number

of nearest clusters to search T .

for t = 1 : T do

1. Find the t-th nearest cluster:

nt ← argmin d(1)(f , cn),
n ∈ {1 . . . N} if t = 1,

n ∈ {1 . . . N}\{n1 . . . nt−1} otherwise;

2. Find the nearest feature in this cluster:

mt ← argmin d(1)(f , f tr,nt
m ),m = 1 . . .Mnt

;

end

Output: d̃(1)(f , fj)← argmin d(1)(f tr,nt
mt

, fj),
t = 1 . . . T.

bound to Mn so that the worst case time complexity can be

guaranteed. In practice, we can additionally evaluate fea-

tures in the T nearest clusters instead of only one, as this

was found to narrow the performance gap between the ap-

proximate inference and the exact inference to a negligible

level. See Section 4.2 for details. The inference procedure

is summarized in Algorithm 1.

4. Experimental evaluation

In this section, we describe some details in relation to the

TSWC-2017 localization challenge and our experiments.

The TSWC-2017 introduces a new large-scale database of

traffic surveillance images: the MIOvision Traffic Camera

Dataset (MIO-TCD). The images in the localization chal-

lenge is partitioned into a training set with 110, 000 images

and a test set of 27, 743 images. All our quantitative results

reported in Section 4.2 are obtained on the test set by up-

loading our algorithm outputs to the challenge website. In

addition, we put aside 11, 000 images from the training set

and use them as a held-out validation set.

The two baseline object detection algorithms we trained

include Faster RCNN and SSD. We use the stock training

settings and parameters shipped with their respective source

codes without any changes. We choose the alternating op-

timization variant of Faster RCNN and SSD-512 in our ex-

periments. For our efficient approximate inference, we em-

pirically choose N = 200 for the number of clusters and

T = 3 for the number of nearest clusters to search, and note

that the results are not sensitive to these specific values.

Some of the model parameters are learned with grid

search on a held-out validation set. This includes the weight

θ for the scene layout term in Equation 1, K and ǫ in the

〈K, ǫ〉-NN neighborhood, and the kernel widths σ1 and σ2

Input Small Med.Small Med.Large Large

Figure 4. Possible object locations for the car category inferred

from the transferred scene layouts. Input images are shown in

the leftmost column, with possible locations for small (farthest),

medium-small (far), medium-large (close), and large (closest) ob-

jects shown in the four columns to the right.

in Equation 3.

We report the results of three variants of our method. The

first is Context (No Detector) which is obtained by switch-

ing off the object detector term Sd(x, o) in Equation 1. The

second and the third are termed Faster RCNN+Context and

SSD+Context, which are obtained by adding the scene lay-

out transfer score Sl(x, o) to the Faster RCNN and SSD

baselines respectively.

4.1. Qualitative studies

In order to closely examine the scene layouts we ob-

tained from data, Figure 4 shows examples of possible ob-

ject locations and scales inferred from the scene layouts be-

ing transferred. From these examples we can clearly see po-

tential locations for the smaller and distant objects, as well

as for the larger and closer ones.

In addition, Figure 5 shows a side-by-side comparison of

detection results obtained with SSD and with SSD+Context

on the held-out validation set. To allow for an easier com-

parison, for each class in every image we only show Ng

top-scoring detections where Ng is the number of ground-

truth objects for that class. In general, our method outper-

forms the baseline by making the following types of im-

provements: (1) removal of out-of-context false alarms; (2)

removal of multiple detections for a same category at a simi-

lar location, but some with incorrect scales; (3) better detec-

tion of missed distant objects; (4) better handling of extreme

viewpoint variations for difficult objects.

4.2. Quantitative results

We summarize the results that we obtain in the TSWC-

2017 localization challenge in Table 1. The three baseline

methods are YOLO (Version 1) [36], Faster RCNN [37] and
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Baseline Approaches

YOLO v1 [36] 82.72 70.02 91.56 77.16 71.43 44.41 20.68 18.08 85.59 58.30 69.26 62.65

Faster RCNN [37] 80.70 70.63 93.45 79.85 74.58 46.48 21.22 19.49 86.71 53.29 67.40 63.07

SSD [28] 91.28 77.36 96.56 93.59 79.53 55.39 56.60 41.58 92.66 72.74 79.40 76.06

Our Approaches

Context (No Detector) 25.38 9.65 13.40 14.75 38.31 7.80 13.54 5.87 34.16 12.31 14.16 17.21

Faster RCNN+Context 82.40 72.94 93.97 81.22 77.57 49.42 30.20 20.84 87.19 56.53 68.65 65.54

(+1.70) (+2.31) (+0.52) (+1.37) (+2.99) (+2.94) (+8.98) (+1.35) (+0.48) (+3.24) (+1.25) (+2.47)

SSD+Context 91.62 79.90 96.77 93.80 83.63 56.40 58.24 42.61 92.75 73.80 79.56 77.19

(+0.34) (+2.54) (+0.21) (+0.21) (+4.10) (+1.01) (+1.64) (+1.03) (+0.09) (+1.06) (+0.16) (+1.13)

Table 1. Per-class and mean average precision values (in %) we obtained in the TSWC-2017 localization challenge. Note that our method

improves performance on all categories for both the Faster RCNN and the SSD baselines.

SSD (ms) ResNet-50 (ms) NN search (ms) Others (ms) Total (ms) mean AP (%)

Exact 53 35 2626 18 2732 77.19

Approximate (T = 3) 53 35 45 18 151 77.13

Table 2. Average per-image runtime statistics for the exact and the approximate inference methods. The efficient inference is about 18

times faster. System specs: i7-4790 CPU, 32GB DDR3 RAM, GTX TITAN X Pascal GPU. Test batch size set to 1. See text for details.

SSD [28]. As expected, SSD outperforms Faster RCNN and

YOLO by a clear margin, and the performance difference

between the latter two is small. The results reported here

are obtained without using the approximate nearest neigh-

bor search scheme. We note that the approximate nearest

neighbor search only affects the performance slightly (mAP

of 77.13% for approximate search v.s. 77.19% for exact

search). A comparison on the computational costs is re-

ported in Section 4.3.

Somewhat surprisingly, without using any object detec-

tors we obtained a mean AP of 17.21% with Context (No

Detector) by scene layout transfer alone. We note that this

method should be regarded as more of an object proposal

one as it does not aim at predicting the location of any

particular object, but possible object locations and scales

in general (see Figure 4). Both Faster RCNN+Context

and SSD+Context compare favorably with their respective

baselines, providing mean AP improvements of 2.47% and

1.13% respectively. Although SSD has encoded the spa-

tial context for object detection in terms of utilizing feature

maps from several different layers in a CNN, the transferred

scene-specific layouts are able to further improve its perfor-

mance. We note that the improvements are consistent for

both methods and for all object categories. See Table 1 for

detailed per-class AP comparisons.

4.3. Computational efficiency

Table 2 reports a comparison in average per-image run-

times between the exact and the approximate nearest neigh-

bor search methods. The first two components, namely

SSD and ResNet-50, are implemented with Caffe, and the

rest parts are implemented with MATLAB. When choosing

T = 3 in the approximate inference, the performance gap

in terms of mean AP difference between the two methods is

small, yet the efficient inference is about 18 times faster.

In addition to the NN search, another component in our

method that may be considered time-consuming is the ex-

traction of ResNet-50 features. A forward pass of ResNet-

50 takes 35ms on a TITAN X Pascal. In a real-world appli-

cation, this feature may be replaced by alternatives such as

VGG-16 [39] and subsequently be integrated into detection

networks (e.g., SSD), incurring less extra computation.

5. Conclusion

In this paper, we propose an efficient scene layout aware

object detection method for traffic surveillance. The non-

parametric scene layout transfer in our method provides a

general approach to context modeling for object detection

that can be used in conjunction with many other detection

algorithms not mentioned in this paper. There are two future

directions in which we wish to explore. First, we are inter-

ested in integrating the contextual model into the detection

network, providing a unified model to facilitate end-to-end

training. In addition, we wish to explore the correlations

among objects of different classes in a single image, as well

as among objects from a set of test images.
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GT SSD SSD+Context GT SSD SSD+Context

Figure 5. Example detection results on our held-out validation set of the TSWC-2017 localization challenge. Columns: GT: Ground-truth.

SSD: Detections with SSD. SSD-Context: Detections with SSD+Context. Best viewed electronically, zoomed in.
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