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Abstract

We present a scalable weakly supervised clustering ap-

proach to learn facial action units (AUs) from large, freely

available web images. Unlike most existing methods (e.g.,

CNNs) that rely on fully annotated data, our method ex-

ploits web images with inaccurate annotations. Specifi-

cally, we derive a weakly-supervised spectral algorithm that

learns an embedding space to couple image appearance

and semantics. The algorithm has efficient gradient up-

date, and scales up to large quantities of images with a

stochastic extension. With the learned embedding space,

we adopt rank-order clustering to identify groups of visu-

ally and semantically similar images, and re-annotate these

groups for training AU classifiers. Evaluation on the 1 mil-

lon EmotioNet dataset demonstrates the effectiveness of our

approach: (1) our learned annotations reach on average

91.3% agreement with human annotations on 7 common

AUs, (2) classifiers trained with re-annotated images per-

form comparably to, sometimes even better than, its super-

vised CNN-based counterpart, and (3) our method offers

intuitive outlier/noise pruning instead of forcing one anno-

tation to every image. Code is available.1

1. Introduction

Facial action unit (AU) analysis has been a long-standing

problem in computer vision and psychology [9, 30]. Auto-

mated AU annotation enables numerous applications such

as human-robot interaction, digital marketing, psycholog-

ical and behavioral research. Most existing approaches

to AU detection rely on either supervised methods (i.e.,

training on fully annotated data) or semi-supervised meth-

ods (i.e., training on partly annotated data). Although the

amount of online facial images has been growing at an ex-

ponential rate, it remains unclear how AU detectors can

benefit from large, freely available web images with inac-

curate annotations (i.e., annotations with errors). The need

for alleviating the constraints of annotations, therefore, has

increased considerably.

1https://github.com/zkl20061823

Feature space

Weak annotation:     pos,     neg Re-annotation:     pos,     neg

Weakly supervised clustering

Figure 1. An illustration of weakly-supervised clustering: Unlike

the original feature space (left) that encloses different semantics

and noisy annotations in neighboring images, weakly supervised

clustering (right) finds a new embedding space where image clus-

ters possess visual-semantic coherence. The proposed approach

scales up to a large number of images, and offers outlier/noise

pruning by design. Each cluster is re-annotated as the same class

by majority voting, and will be included for training AU detectors.

Reviewing the literature, an AU detector can be trained

with full supervision using methods based on either static

models (e.g., boosting [25], SVM [50], DBN [44], CNN

[14, 51]), dynamic models (e.g., HMM [23], CRF [5],

LSTM [45]), or their combinations (e.g., [11, 24]). Given

different degrees in the number of samples, these methods

impose regularization in space and/or time during learning

to improve model generalizability. Another trend of model

regularization belongs to semi-supervised learning (SSL),

which makes use of partial supervision by considering ad-

ditional unannotated data. To our best knowledge, most

SSL approaches resort to unannotated test samples due to

their availability at prediction time. The test samples are

often predicted by personalized classifiers (e.g., [7, 47]) or

removing a person’s identity [37, 46]. We refer interested

readers to [29, 35, 38] for more comprehensive reviews.

Training AU detectors with either fully or partly anno-

tated data encounters several limitations. First, collecting

AU annotations requires labor-intensive coding processes

by FACS experts. With an experienced coder, manually

coding 1 AU for a one-minute video can take 30 minutes or

more. Due to this demanding coding process, datasets in the

literature (e.g., CK+ [27], SEMAINE [41], AM-FED [32],

1
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DISFA [31], BP4D [49]) are still constrained by the number

of coded AUs, samples, and subjects. Second, most exist-

ing datasets lack assessment of inter-rater reliability, result-

ing in potentially error-prone or inaccurate annotations [54].

Classifiers trained on such annotations are likely to make in-

consistent predictions and thus hinder performance. Lastly,

existing pre-trained models can only be applied to the de-

tection phenomena described by FACS experts, i.e., unable

to correct images mis-annotated by human coders.

To address these challenges, we propose a weakly-

supervised clustering (WSC) approach for learning AUs.

Our approach exploits a largely, free web image set with

weak annotations that are often obtained from either pre-

trained models or query strings. Fig. 1 illustrates our main

idea. In the input feature space, neighboring images could

suffer from discrepancy in semantics due to non-optimized

representation. WSC optimizes for a new embedding space,

preserving both similar appearance and annotations. Our

approach is efficient, and extends naturally with stochastic

approximation that accommodates web-scale images. Clus-

ters in the learned embedding space are re-annotated to be

the same class by majority voting, and will be later used to

train AU detectors. We show the effectiveness of our ap-

proach on the EmotioNet dataset [13] that consists of 1 mil-

lion facial images collected from the Internet. Our results

suggest that our learned annotations yield high agreement

with human annotations, and AU detectors trained with the

re-annotated images can perform closely to, sometimes bet-

ter than, their supervised counterpart. We also show our

approach is able to prune outliers/noise by design, instead

of forcing an annotation on each image.

2. Related Work

Learning-based AU detection: Algorithms for auto-

mated AU detection have evolved along with the scale of

datasets and available annotations. For small datasets, chal-

lenges were addressed progressively. For instance, given

the observation that an AU occurs only in sparse facial re-

gions, sparsity-induced algorithms (e.g., [40, 50, 53]) were

exploited to select informative regions so that the influ-

ence of uncorrelated facial regions can be reduced or ne-

glected. To alleviate errors caused by individual differ-

ences, transductive learning (e.g., [7, 46, 47]) was applied

to train AU detectors with consideration of unannotated test

samples. Another challenge involves AU correlations, i.e.,

occurrence of an AU could increase or decrease the like-

lihood of other AUs. Considering AU correlations, algo-

rithms based on multi-label learning (e.g., [12,50]) or DBN

(e.g., [44]) yield a multi-label AU classifier to jointly pre-

dict multiple AUs. Temporal modeling, on the other hand,

captures transition between consecutive frames. For in-

stance, a temporal manifold (e.g., [24]) models onset, apex,

and offset phases within an AU segment, or overlapping

sliding windows [21] produces fixed-length representations

for variable-length motions. We refer interested readers

to [29, 35, 38] for comprehensive reviews.

For larger datasets, Convolutional Neural Networks

(CNN) have become a dominating approach due to their ca-

pacity and capability of representation learning. Strategies

for small datasets start to migrate to CNN-based methods.

Given AU relations, [14, 51] learn a unified model to pre-

dict multiple AUs. Temporal modeled as the Long Short-

Term Memory (LSTM) is aggregated to CNN architecture

to construct fusion models (e.g., [8, 19]). In the view of

peak and non-peak frames corresponding to the same se-

mantic (e.g., expressions), [52] applies a siamese-like CNN

model to learn the feature responses of non-peak frames to-

wards those of peak ones. These methods are mostly fully

supervised. In contrast, the proposed Weakly Supervised

Clustering (WSC) utilizes unannotated images.

Learning with unannotated images: Methods tackling

with unannotated images can be broadly categorized into

two-fold: semi-supervised and weakly supervised learn-

ing. Semi-supervised learning aims to leverage unannotated

data by assuming that unannotated data follow continuity or

form cluster with annotated data. For instance, to alleviate

individual differences between the training and the test set,

STM [7] trains a personalized classifier for each test sub-

ject. Similary, CPM [48] remedies subjects discrepancy by

iteratively training SVM classifiers with test samples anno-

tated by pre-trained classifiers. GFK [15] learns an inter-

mediate space that can describe distribution similarities on

a Grassmann manifold. In addition, instead of only unan-

notated test data, LapSVM [33] and TSVM [20] exploits all

available unannotated data into learning.

On the other hand, weakly supervised learning exploits

inexact, incomplete or inaccurate annotations [54] (i.e.,

weak annotations), and has proven effectiveness in vision

tasks. For semantic segmentation, treating an object-level

annotation on an entire image as weak supervision, Liu

et al. [26] combined spectral clustering and a discrimina-

tive classifier to learn the mapping between superpixels and

object-level annotations. Similarly, Vezhnevets et al. [42]

presented a family of CRF models to predict classes for su-

perpixels by encouraging neighboring superpixels to share

the same class label. For object detection, the presence or

absence of an object is also given at image-level. Bilen et

al. [3] utilized a latent SVM with convex clustering to lo-

cate high probable windows. For human-object interaction,

without human and object location, action label could be a

clue for weak supervision. For instance, Prest et al. [36]

used an action classifier and a human detector to determine

the relevant object for an action and its relative location

to a human. In contrast, WSC can not only learn from

weakly annotated images (i.e., inaccurate annotation), but

can prune noisy annotations by design.



3. Scalable Weakly Supervised Clustering

The proposed weakly-supervised clustering comprises

two components. First, we propose Weakly-supervised

Spectral Embedding to find an embedding space. Then, we

re-annotate images in the embedding space using rank-order

clustering. Below we describe each in turn.

3.1. Weaklysupervised Spectral Embedding

The first component, Weakly-supervised Spectral Em-

bedding (WSE), finds an embedding space that preserves

coherence in both visual similarity and weak annotation

(i.e., inaccurate supervision [54]). Conventional methods

that consider only one factor could suffer from the gap be-

tween visual features and semantic. For instance, images

that are close in the feature space may not carry the same se-

mantics, while weak annotations often contain noise/outlier

and are thus not fully trustworthy. Through WSE, we aim

to achieve a proper balance between the two factors.

Formulation: A promising method to find good clusters

has recently emerged into spectral clustering [43], due to

its simplicity in avoiding parametric density estimators and

local minima encountered in iterative algorithms (e.g., K-

means). Inspired by empirical successes (e.g., [16, 26]), we

adopt the objective of spectral clustering to find a new em-

bedding space. Denote N data samples {xi}Ni=1 in the data

matrix X ∈R
d×N , we form a symmetric mutual k-nearest

neighbor graph [43] by computing each component of an

affinity matrix A ∈ R
N×N :

Aij =

{

exp(−γd(xi,xj)), if xi ∈ Nk(xj),
0, otherwise,

(1)

where Nk(xj) is the set of k-nearest neighbors of xj mea-

sured by a distance function d(·, ·) (we used L2), and γ is a

parameter for normalization. A graph Laplacian L∈R
N×N

is obtained as L = D−A (or L = D
− 1

2 (D−A)D− 1

2 for

a normalized Laplacian), where D is the degree matrix for

a finite graph represented by A. Spectral clustering solves

for an embedding W ∈ R
N×K by:

min
W

Tr(W⊤
LW), (2)

s. t. W
⊤
W = IK ,

where IK ∈R
K×K is an identity matrix andK is the dimen-

sion of the learned embedding space. Solving (2) yields an

embedding space where convex regions directly correspond

to clusters with visually similar images, whereas clusters in

the original space usually do not [43]. Taking weak anno-

tations Y = {yi}Ni=1 into account, we denote a “group” Gi

as the set of images annotated as the same class yi, and then

associate images with weak annotations to a set of groups

G = {Gg}|G|g=1. This association allows a general represen-

tation for binary and multi-label weak annotations due to

Algorithm 1 Weakly Supervised Spectral Embedding

Input: Laplacian matrix L ∈ R
N×N , orthonormal matrix W0 ∈

R
N×K , stepsize η, update ratio γ, and tuning parameter λ

Output: An orthonormal matrix W ∈ R
N×K

1: a0 = 1, t = 0
2: while not converge do

3: if f(Wt) + λψ(Wt,G) ≥ QL(Wt,V) then

4: η = γη

5: end if

6: V = Wt − η(2LWt)

7: for Gg ∈ G do

8: Wg = (Ing +
2λ

ng
Cg)

−1
Vg // Update each group of W

9: end for

10: at =
2

t+3

11: Wt = Wt +
1−at−1

at−1

· at(Wt −Wt−1)

12: Wt = orth(Wt) // Enforce Wt to be orthonormal

13: end while

14: W = Wt

the independence between groups. As will be shown later,

this method allows each Gg to be optimized independently.

Given the representation of “groups”, we define

ψg(W,Gg) =
1
ng

(

∑

wi∈Gg
(wi −wg)

⊤(wi −wg)
)

as a

scatter measure of the g-th group, where wi is the i-th row

of W and wg is the mean of rows of W that belong to the

g-th group. The scatter measure can be rewritten as a com-

pact matrix form: ψg(W,Gg) =
1
ng

Tr(W⊤
CgW), where

Cg = Ing
− 1

ng
11

⊤ is an ng×ng centering matrix, ng is

the number of images in group Gg (i.e.,
∑

g ng = N ) and

1 is a vector of ones. That is, smaller value of ψg(W,Gg)
indicates higher agreement of weak annotations within the

same group. Let ψ(W,G) =
∑

Gg∈G ψg(W,Gg) be the

scatter over all groups, we formulate WSE as:

min
W∈RN×K

f(W,L) +
λ

|G|ψ(W,G), (3)

s. t. W
⊤
W = IK ,

where f(W,L) denotes the spectral clustering objective in

Problem (2), ψ(W,G) serves as a regularizer that encour-

ages images with similar weak annotations to be close in the

learned embedding space, and λ ≥ 0 is a trade-off between

visual similarity and weak annotations. The goal of WSE is

to pull together images that share both similar appearance

and annotations.

Optimization: For smooth convex functions, first-order

gradient method can be applied with convergence rate

O(1/t2). However, WSE in Problem (3) is non-smooth

due to the group regularizer ψ(W,G), especially when G
contains overlapping groups. To perform effective and ef-

ficient optimization, we propose a fast algorithm with con-

vergence rate O(1/t) based on accelerated gradient descent

[6]. First, we expand (3) with the first-order Taylor expan-
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Figure 2. A synthetic example for solving Eq. (3) with λ=256. Left to right: Objective value in Eq. (4) v.s. #iterations, clustering effect

at selected iterations, and weak annotations (30% noise added to ground truth). Red circles (©©©) and blue rectangles (���) indicate samples

assiociated with different annotations. Upon convergence at #100, noisy annotations are removed, resulting in distributions closer to ground

truth. As can be seen, our method is able to group neighboring samples while preserving their relationship to the weak annotations.

sion of f(W):

QL(W,Wt) = f(Wt) + 〈W −Wt,▽f(Wt)〉

+
M

2
‖W −Wt‖2F +

λ

|G|ψ(W,G), (4)

where 〈A,B〉 = Tr(A⊤
B) denotes the inner product of

matrices, and M is the coefficient of Taylor expansion. Let

V = Wt − 1
M▽f(Wt) and qL(V) = minWQL(W,V)

be the smoothed problem, we can rewrite Eq. (4) as:

qL(V) = min
W

1

2
‖W −V‖2F +

λ

M |G|ψ(W,G). (5)

Define λ̃ = λ
M |G| , (5) can be decomposed into each group:

qL(V) = min
W1,··· ,Wg

∑

Gg∈G

1

2
‖Wg −Vg‖2F

+ λ̃
∑

Gg∈G

1

ng
Tr(W⊤

g CgWg). (6)

Seeing each group g separately, we obtain a group-wise op-

timization for each Wg:

min
Wg

1

2
‖Wg −Vg‖2F +

λ̃

ng
Tr(W⊤

g CgWg). (7)

The optimal solution for (7) can be obtained as W
⋆
g =

(Ing
+ 2λ̃

ng
Cg)

−1
Vg , yet the numerical solution to inverse

operation is usually slow and numerically unstable. In-

stead, we derive a closed-form solution as Wi =
1
aVi −

b
a(a+bng)

∑

j Vj , where a=1+ 2λ̃
ng

, b= 2λ̃
−n2

g
, and Wi and

Vi are the i-th row of Wg and the i-th row of Vg , respec-

tively. Algorithm 1 summarizes the optimization procedure

with accelerated gradient updates. Please see supplemen-

tary materials for detailed derivation and theoretical ratio-

nale. We used a stopping condition as the changes in objec-

tive value (Eq. (4)) is less than 1e-5.

Fig. 2 illustrates the convergence process of WSE on

synthetic data. To synthesize weak annotations, we ran-

domly introduce 30% noisy samples to ground truth an-

notation. While the number of iteration increases, WSE

λ
=

2
−
8

cluster1

cluster2

negative

(51.8%)
λ
=

2
−
4

(95.0%)

λ
=

2
5

(91.1%)

Figure 3. Illustration of the learned W with different λ on real

data of AU12. Each sample is colored by cluster ID (left col-

umn) or weak-annotations, i.e., positive v.s. negative (right col-

umn). Parentheses indicate the % of agreement between WSC

re-annotation and ground truth (higher better). A good balance is

found at λ = 2−4 where WSC achieved highest agreement.

gradually converges to two clusters that group neighboring

samples and preserve information of the noisy supervision.

Upon convergence at iteration #100, WSE is able to prune

noisy annotations, resulting in a distribution that closely re-

sembles ground truth. This shows WSE’s capability of cou-

pling visually similar images with their weak annotations.

Influence of λ: Fig. 3 shows the learned embedding

W projected onto 2-D PCA space according to different

choices of λ. In this particular example, we used 10k web

images in the EmotioNet dataset [2], with weak annotation

of AU12 from an AlexNet model pre-trained on the BP4D

dataset [49]. As can be seen, WSE with small λ (top row)

tends to group visually similar images due to their close-

ness in the feature space (left column), yet fails to maintain



Algorithm 2 Stochastic Spectral Embedding

Input: Laplacian matrix L ∈ R
N×N , orthonormal matrix W0 ∈

R
N×K , number of batchesB, number of iterations T , stepsize

η, update ratio γ, and tuning parameter λ

Output: An orthonormal matrix W ∈ R
N×K

1: while t ≤ T do

2: for b = 1, . . . , B do

3: L̃t = sampling(L) // Perform edge sampling

4: Solve Wt using Algorithm 1 with (L̃t, Wt−1, η, γ, λ)

5: Wt = orth(Wt) // Enforce Wt to be orthonormal

6: end for

7: end while

8: W = Wt

semantics in neighboring images (right column). As a re-

sult, the agreement (i.e., accuracy) of WSC re-annotation

with ground truth annotation is only 51.8%. On the con-

trary, WSE with large λ (bottom row) enforces the algo-

rithm to trust completely on the weak annotations, lead-

ing to a clean-cut clustering result and a 91.1% agreement

with ground truth. An appropriate λ lies in-between (mid-

dle row), where WSE is able to preservie images that are

both close in the feature space and possess the same anno-

tations. With an appropriate λ, the agreement with ground

truth annotation reaches 95.0%.

Stochastic extension of WSE: Applying WSE to large-

scale web images can be expensive for both building the

Laplacian and parameter update in Algorithm 1. We intro-

duce a scalable version of WSE to deal with large amount of

images using stochastic approximation. Denote L̃ ∈ R
N×N

as an “edge-sampled” version of L [10] that ensures the ex-

pectation condition E(L̃t)=L. Here, L̃ij are set to be Lij

if the edge between the i-th and j-th nodes in the graph are

sampled, and 0 otherwise. Under this condition, the local

convergence rate becomes O(1/
√
T ). Algorithm 2 summa-

rizes the optimization procedure.

3.2. Rankorder clustering for reannotation

With the learned embeddings from WSE, the second

component aims at improving the weak annotations. Fig. 4

summarizes the re-annotation process. First, we build an

undirected graph of the learned embeddings using rank-

order distance [34], which measures the distance between

two samples by their orders in each other’s neighbors. Ob-

serving that samples of the same class often have simi-

lar distributions of closest neighbors, we found the rank-

order distance is more robust to biased distribution of AU

data (i.e., large negative-positive ratio) compared to stan-

dard absolute L1/L2 distance. Given the undirected graph,

we used breadth-first hierarchical clustering to find clusters

with high intra-cluster density and low inter-cluster density.

We term this process Rank-Order Clustering (ROC).

To describe the quality of clustering results, we modi-

fied the notion of Modularization Quality Index (MQI) [28].

Build a graph

on WSE

Hierarchical 

clustering via BFS

Quality index

(uMQI)

Majority 

voting

Figure 4. Pipeline for WSC re-annotation

MQI was designed originally to evaluate directed graphs in

programming language. We revise the formation to evaluate

modularization on undirected graphs, and term it “uMQI”.

Denote Ci as the i-th cluster, mi and ni as the number of

edges and the number of nodes of Ci, andmij as the number

of edges between Ci and Cj , we define uMQI on clustering

results C={Ci, ∀|Ci| > δ}Ki=1 as:

uMQI(C) = E[intra(C)]− E[inter(C)], (8)

where intra(C) = 1
K

∑

i
mi

n2

i
−ni

measures the intra-cluster

density, and inter(C) = 1
K(K−1)/2

∑

ij
mij

2ninj
measures the

inter-cluster density. uMQI computes the difference be-

tween expectations of intra-cluster and inter-cluster densi-

ties, resulting in a value in [−1, 1]. The higher uMQI is, the

better clustering results preserve modularization. To avoid

trivial solution, we consider only the clusters with non-

single element by setting δ = 1. As illustrated in Fig. 5(a),

uMQI serves as an objective criteria to choose #clusters.

Compared to conventional clustering (e.g., k-means),

ROC offers numerous benefits for our task: (1) ROC

stands on hierarchical clustering, and is exempt from re-

quiring #clusters as an input. (2) ROC enables intuitive

noise/outlier pruning by identifying clusters with rare sam-

ples, while standard clustering methods tend to assign a

cluster label to each sample. (3) ROC scales up easily

to large number of samples. The complexity of ROC is

O(Nk) + O(N), given k the number of nearest neighbors

for each node. A naive k-means takes O(tKNd) for run-

ning t iterations with K clusters. As in Fig. 5(b), the run-

ning time of ROC is unrelated to #clusters, unlike k-means.

Finally, images of the same cluster were simply treated to

be the same class based on majority voting. As will be

showing in experiments, this simple approach is effective in

improving annotation quality and excluding undesired out-

lier/noise, which sum to better performance.

3.3. Comparison with semisupervised methods

WSC shared similarities with existing semi-supervised

methods, i.e., STM [7], CPM [48], GFK [15], LapSVM [33]

and TSVM [20]. Compared to fully supervised methods

(e.g., DRML [51]), semi-supervised methods aim to uti-

lize unannotated data for learning. However, they differ

in several aspects, as summarized in Table 1. GFK, STM,

and CPM recruit unannotated data from the test set. These

methods hold assumptions on the distribution: GFK as-

sumes a geodesic flow kernel from training set to test set

to minimize the mismatch, while STM and CPM assume
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Figure 5. Two properties of rank-order clustering: (a) uMQI

v.s. #clusters, showing an objective criteria for choosing #clusters,

(b) Running time v.s. #clusters between k-means and ROC.

the unannotated test data belong to the same identity. In

contrast, LapSVM and TSVM require no such assumptions,

and can be generalized to any form of unannotated data.

However, LapSVM and TSVM cannot scale to large dataset

for their kernel-based design. In addition, common to all

these approaches involves their limitations in pruning noisy

annotations. Overall, WSC is exempt from strong assump-

tions, scales up to large amount of samples, and can prune

noisy annotations by design.

4. Experiments

4.1. Settings

Dataset: We evaluated the effectiveness of WSC on the

EmotioNet dataset [2], which contains 1 million images col-

lected from the Internet. 50,000 images were manually la-

beled with multiple AUs by expert annotators. We followed

the train/test partition in [2], ending up with with 25,000 im-

ages in each. 7 AUs with base rate larger than 5% (as shown

in Table 2) were chosen for the experiments. The remaining

950,000 samples were used to exhibit the benefits of the use

of unannotated web images. Throughout the experiments,

we reported on the test set.

Metric: We reported two standard metrics for AU de-

tection: F1 score and S score (i.e., free marginal kappa co-

efficient) [4]. F1 score captures specific agreement on the

positive class, and, despite its popularity, known to be sen-

sitive to unbalanced distribution such as AUs (e.g., Table

2). As an alternative, we reported S score, which is more

robust to prevalence and bias [4]. For each metric, we also

reported their average over all AUs (denoted as Avg.).

Comparative methods: For a thorough comparison, we

applied the annotations learned by WSC to two popular

models for AU detection, i.e. AlexNet [22] and DRML [51].

There are semi-supervised approaches that utilize unanno-

tated images for AU detection, i.e., STM [7], CPM [48],

GFK [15], LapSVM [33] and TSVM [20]. However, STM

and CPM depend on strong assumptions that unannotated

images are correlated and belong to the same identity, and

thus are not applicable to our task. To understand the im-

pact of annotation quality on model performance, we set up

four types of annotations: (1) “gt” denotes ground truth an-

notations, (2) “wlb” denotes weak annotations, (3) “wsc”

Table 1. Comparisons with related methods

Methods UD PN SL IE

DRML [50] × × X X

STM [7], CPM [48] X × × ×
GFK [15] X × × X

LapSVM [33], TSVM [20] X × × X

WSC (ours) X X X X

*UD: Unannotated data, PN : Pruning noisy annotation, SL:

Scalability, IE: Identity exemption.

Table 2. Base-rate (%) of each AU in EmotioNet [2]

AU 1 2 4 5 6 9 12 17 20 25 26

Train 6.2 3.1 11.5 5.7 20.5 2.2 38.7 2.1 0.6 50.0 8.6

Test 5.6 4.1 6.3 6.0 24.7 0.7 41.2 0.9 0.6 50.0 8.4

denotes annotations provided by our approach, (4) “ulb“

denotes no annotations. We noted each annotation type

with the number of images to indicate different scale of

experiments, e.g., “wlb10k” and “wsc25k” indicate 10k

weakly annotated images and 25k images annotated by

WSC. Throughout the experiments, we will use the braces

“{}” to indicate one or combination of annotation types.

Implementation details: For AlexNet [22], we ap-

pended batch norm [18] to each relu layer, and revised the

output of fc7 to 256-D. For DRML, considering a fair com-

parison with AlexNet, we applied binary softmax loss in-

stead of multi-label cross-entropy loss used in the original

paper. Instead of the hand-crafted shape and Gabor features

as provided originally in the EmotioNet dataset [2], we ex-

tracted 256-D features by an AlexNet model trained on the

BP4D dataset [49] and then fine-tuned on EmotioNet train-

ing set. According to our analysis, the learned features per-

formed more reliably than the hand-crafted features (details

in supplementary material). We used the learned features as

inputs for GFK, LapSVM and TSVM.

For GFK, we set the subspace dimension as 100-D and

randomly select 5,000 samples per random trials. For

LapSVM, we apply RBF kernel and train the classifier in

primal. For TSVM, we search the tuning parameter λwithin

{10−5, ..., 102}. To understand the impact of leveraging

unannotated images over annotated ones, we used AU pre-

dictions of the fine-tuned AlexNet as weak annotations for

the 950,000 unannotated images. During training, we used

1:1 positive-negative ratio for each mini-batch by oversam-

pling positive images if the distribution of an AU is overly

skewed. All hyper-parameters were set following the orig-

inal work. For WSE, we search the tuning parameter λ
within {2−10, ..., 210}. The dimension of the learned em-

bedding space was set to 100-D, which was chosen empiri-

cally but found robust to all AUs. For rank-order clustering,

we set the number nearest neighbors for each node as 100,

and implemented randomized k-d tree using the FLANN li-

brary [1] to get the list of neighboring nodes. We applied



Table 3. Performance comparison on EmotioNet [2] test set. Braces indicate training images with different amount and annotations (see

Sec. 4.1 for details). Bracketed and bold numbers indicate the best and second best performance.

F1 S score

AU

AlexNet
{

gt15k

wlb10k

}

AlexNet
{

gt15k

wsc10k

}

AlexNet
{

gt25k
}

DRML
{

gt25k
}

AlexNet
{

gt25k

wsc25k

}

DRML
{

gt25k

wsc25k

}

AlexNet
{

gt15k

wlb10k

}

AlexNet
{

gt15k

wsc10k

}

AlexNet
{

gt25k
}

DRML
{

gt25k
}

AlexNet
{

gt25k

wsc25k

}

DRML
{

gt25k

wsc25k

}

1 11.8 19.8 24.2 25.3 25.3 [26.3] [83.6] 82.6 76.1 76.5 78.2 78.9

4 23.9 32.5 34.7 [35.7] 34.5 35.5 53.9 [63.9] 63.0 61.8 62.9 61.9

5 26.6 37.6 39.5 40.0 39.3 [40.3] [87.5] 86.4 80.1 79.6 79.2 80.1

6 58.8 73.5 73.1 75.3 75.6 [78.7] 69.4 74.8 77.3 78.5 78.6 [79.6]

12 82.1 87.1 86.8 86.6 87.4 [88.1] 73.9 79.1 79.5 78.1 80.5 [80.8]

25 82.1 84.3 88.5 [88.9] 88.8 [88.9] 61.4 67.2 77.1 78.8 78.6 [78.9]

26 24.3 40.2 45.6 46.2 47.7 [49.1] [79.1] 68.5 75.7 76.7 77.6 78.2

Avg. 44.2 53.6 56.1 56.9 57.0 [58.1] 72.6 74.6 75.5 75.7 [76.5] 75.9

Table 4. Agreement with ground truth annotation (%) comparing

weak annotations (wlb) and our approach (wsc)

AU
AlexNet
{wlb10k}

AlexNet
{wsc10k}

1 91.1 93.8

4 83.4 83.5

5 94.1 94.5

6 87.0 87.5

12 91.1 98.6

25 87.4 88.6

26 90.4 91.5

Avg. 89.2 91.3

AU12: wlb=  1, wsc=+1

AU12: wlb=+1, wsc=  1

Alg. 2 to all experiments for scalability concerns. For get-

ting WSE embedding for 200k samples, it took 2 min on a

single machine with Intel i7 CPU.

4.2. Results

Tables 3, 5, and 6 show the main results on EmotioNet

under different conditions. All instantiations of our ap-

proach demonstrate that the models trained with our re-

annotated images outperform variants of existing models.

WSC vs. weak annotation: We evaluated WSC against

weak annotations (“wlb” hereafter) by comparing their an-

notation quality and improvement in model performance.

To compare annotation quality, we evaluated the agreement

of (wlb, wsc) with human annotations (gt). Table 4 shows

the % of agreement on wlb of AlexNet (wlb10k) and wsc

of AlexNet (wsc10k). The agreement is consistently higher

(on average 2.1%) between wsc and gt than between wlb

and gt, and particularly yields 98.6% for AU12. Sampled

AU12 images that wlb and wsc disagreed are shown in Ta-

ble 4, where we observed WSC was able to rectify incorrect

weak annotations in wlb. For model performance, we com-

pared AlexNet (wlb10k) and AlexNet (wsc10k) in Table 3,

and observed 17.9% improvement of F1 averaged over 7

AUs, and even >50% improvement of F1 on AUs (1, 4,

26). AUs (1, 4, 26) are highly unbalanced (see Table 2), and

thus are more sensitive to annotation quality. All highlights

Table 5. Results of alternative methods that use unlabeled images

F1 S score

AU

GFK
{

gt25k
}

LapSVM
{

gt25k

ulb10k

}

TSVM
{

gt25k

ulb25k

}

GFK
{

gt25k
}

LapSVM
{

gt25k

ulb10k

}

TSVM
{

gt25k

ulb25k

}

1 19.3 1.2 24.1 66.1 82.3 70.2

4 31.0 25.7 32.3 61.1 85.3 62.5

5 31.8 23.1 40.3 61.1 60.7 80.6

6 73.8 58.3 75.7 71.7 70.0 79.1

12 85.1 57.7 87.4 75.5 50.9 80.2

25 85.8 88.9 88.2 72.4 79.4 78.5

26 39.0 5.0 47.0 69.5 83.2 78.4

Avg. 52.2 37.0 56.4 68.2 73.1 75.6

that WSC produces better quality of annotations than wlb.

WSC vs. human annotation: We also compared WSC

with the gold standard—human annotations. Interestingly,

models trained with our automatically annotated images

performed close to, sometimes even better than, models

trained with human annotations. Take AlexNet (wsc10k)

and AlexNet (gt25k) in Table 3 for example, the average

F1 and S-score of AlexNet (wsc10k) are only 4.6 and 1.2

points lower than AlexNet (gt25k). For AUs (6, 12), F1

of AlexNet (wsc10k) are (0.4, 0.3) points even higher than

AlexNet (gt25k). If we further increased the amount of re-

annotated images (i.e., AlexNet (wsc25k)), the performance

on AlexNet increased from (56.1, 75.5) to (57.0, 76.5) in

terms of (F1, S) scores. Additionally, to prove the same

strategy can be generalized to different models, we evalu-

ated performance on the state-of-the-art DRML [51]. Sim-

ilar to AlexNet, with 25k more re-annotated images, the

performance on DRML improved 2.1% over the baseline

DRML trained with all available human annotated images.

WSC bridges the long-standing gap between using weakly

annotated images and improvement of model performance.

WSC vs. alternative methods: Close to WSC is SSL

and transfer learning, for their use of unannotated images

(denoted as “ulb”). Table 5 shows the results of GFK [15],



cartoon

artistic

non-face

noise

blurred

pose

shadow

occlusion

outlier

sketch

Figure 6. Undesired images identified by WSC: noise (left) and outlier (right). We note noise images as the ones that are not true faces

(e.g., cartoon, sketch, etc), and outlier images as uncommon/challenging cases including blur, large pose, shadow, and occlusion.

LapSVM [33] and TSVM [20]. Compared to Table 3, the

averaged F1 of AlexNet (wsc25k) and DRML (wsc25k)

are (11.5%, 57.0%, 3.5%) higher than GFK, LapSVM, and

TSVM, respectively. Note that the number of unannotated

images for LapSVM was set to be 10k due to the expense in

building the Laplacian matrix, i.e., {gt25k + ulb10k} con-

sumed more than 32G memory and took >6hrs. Recall that

these methods applied an additional SVM on top of deep

features. Our WSC showed better scalability, more efficient

to run, and performed best with existing CNNs.

#images: Finally, we investigated the impact of the num-

ber of images on model performance. Table 6 shows the

results of models trained with only images that are weakly

annotated or re-annotated by WSC. Comparing the results

between wlb (200k) and wlb (400k), the averaged F1 de-

creased from 48.5 to 47.9. One explanation is due to

polluted supervision introduced by weak annotations. On

the contrary, WSC consistently outperforms wlb, achiev-

ing 4.6%, 4.7%, 8.8%, and 12.6% higher on the scale of

20k, 200k, 400k, and 1M images, respectively. Not sur-

prisingly, the more images added to training, the larger im-

provement we observed in WSC. Both cues indicate WSC’s

capability of gathering meaningful images with high visual-

semantic coherence and cleaning undesired ones (detailed

in next section). We also observed that most AUs saturated

when the number of images went beyond 400k. We suspect

models with higher capacity (e.g., ResNet [17] or VGG-

16 [39]) might yield further improvement, and leave this

investigation for future work.

4.3. Pruning noisy annotations

Beyond the capability of preserving visual-semantic co-

herence, WSC offers an intuitive noise and outlier prun-

ing. This is done in the re-annotation step: Only clusters

that contain more than δ images are qualified for uMQI

evaluation. In other words, clusters of ≤ δ images re-

ceive limited support from its neighborhood, and thus are

likely to be noise (i.e., not real faces) or outlier (i.e., un-

common/challenging cases). Fig. 6 shows the clusters with

δ = 1, i.e., each image represents a single cluster. WSC

produced quite compelling results. As EmotioNet was col-

lected with generic face detectors, WSC is able to identify

Table 6. Large-scale evaluation of WSC (F1-score)

20k 200k 400k 1M

AU wlb wsc wlb wsc wlb wsc wlb wsc

1 17.6 18.3 17.8 19.3 16.9 [21.3] 17.6 21.2

4 20.3 20.5 19.0 20.4 18.9 21.3 18.4 [22.1]

5 28.5 28.9 30.1 30.8 31.5 33.4 30.8 [41.6]

6 72.4 74.1 75.9 76.9 76.3 78.6 77.4 [79.3]

12 76.7 85.8 79.1 86.4 79.3 87.8 81.4 [88.2]

25 84.7 85.7 85.4 85.9 79.4 86.1 86.1 [89.1]

26 32.4 34.9 32.7 36.0 33.3 36.1 33.3 [47.2]

Avg. 47.5 49.7 48.5 50.8 47.9 52.1 49.3 [55.5]

noise (e.g., cartoon face, sketch, artistic), and expose false

detection from the face detector (e.g., dog face and face-like

images). Additionally, WSC identifies outliers that involved

blurry face, large pose, and shadow/occlusion on the face.

Including noise and outlier images can degrade the perfor-

mance of AU detection. Unlike conventional clustering ap-

proaches that tend to assign a label to each image, WSC

allows for excluding noise and outlier images, suggesting a

more principled approach for data preparation.

5. Conclusion

We have presented a weakly spectral clustering (WSC)

approach to leverage web images for learning AUs. We pro-

posed weakly-supervised spectral embedding, a scalable al-

gorithm that learns an embedding space considering visual-

semantic coherence. Given the learned space, we intro-

duced rank-order clustering that finds high-density clusters

based on uMQI and meanwhile prunes noise/outlier. We

showed the effectiveness and scalability of WSC on the

1 million EmotionNet dataset. Results indicate that mod-

els trained with WSC consistently outperform models with

naive weak annotations, and perform comparably to mod-

els trained with human annotations. Adding more images

annotated by WSC, we showed further improvement over

all variants of baseline and state-of-the-art. Future work in-

cludes incorporating WSC with multiple labels, replacing

models with larger capacity, and extending WSC to more

applications such as video and scene classification.
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