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Abstract

An analysis of different techniques for recognizing and
detecting objects under extreme scale variation is pre-
sented. Scale specific and scale invariant design of de-
tectors are compared by training them with different con-
figurations of input data. By evaluating the performance
of different network architectures for classifying small ob-
jects on ImageNet, we show that CNNs are not robust to
changes in scale. Based on this analysis, we propose to
train and test detectors on the same scales of an image-
pyramid. Since small and large objects are difficult to rec-
ognize at smaller and larger scales respectively, we present
a novel training scheme called Scale Normalization for Im-
age Pyramids (SNIP) which selectively back-propagates the
gradients of object instances of different sizes as a function
of the image scale. On the COCO dataset, our single model
performance is 45.7% and an ensemble of 3 networks ob-
tains an mAP of 48.3%. We use off-the-shelf ImageNet-1000
pre-trained models and only train with bounding box su-
pervision. Our submission won the Best Student Entry in
the COCO 2017 challenge. Code will be made available at
http://bit.ly/2yXVg4c.

1. Introduction
Deep learning has fundamentally changed how comput-

ers perform image classification and object detection. In
less than five years, since AlexNet [20] was proposed, the
top-5 error on ImageNet classification [9] has dropped from
15% to 2% [16]. This is super-human level performance for
image classification with 1000 classes. On the other hand,
the mAP of the best performing detector [18] (which is only
trained to detect 80 classes) on COCO [25] is only 62%
– even at 50% overlap. Why is object detection so much
harder than image classification?

Large scale variation across object instances, and espe-
cially, the challenge of detecting very small objects stands
out as one of the factors behind the difference in perfor-
mance. Interestingly, the median scale of object instances
relative to the image in ImageNet (classification) vs COCO

Figure 1. Fraction of RoIs in the dataset vs scale of RoIs relative
to the image.

(detection) are 0.554 and 0.106 respectively. Therefore,
most object instances in COCO are smaller than 1% of im-
age area! To make matters worse, the scale of the small-
est and largest 10% of object instances in COCO is 0.024
and 0.472 respectively (resulting in scale variations of al-
most 20 times!); see Fig. 1. This variation in scale which
a detector needs to handle is enormous and presents an ex-
treme challenge to the scale invariance properties of con-
volutional neural networks. Moreover, differences in the
scale of object instances between classification and detec-
tion datasets also results in a large domain-shift while fine-
tuning from a pre-trained classification network. In this pa-
per, we first provide evidence of these problems and then
propose a training scheme called Scale Normalization for
Image Pyramids which leads to a state-of-the-art object de-
tector on COCO.

To alleviate the problems arising from scale variation
and small object instances, multiple solutions have been
proposed. For example, features from the layers near
to the input, referred to as shallow(er) layers, are com-
bined with deeper layers for detecting small object in-
stances [23, 34, 1, 13, 27], dilated/deformable convolution
is used to increase receptive fields for detecting large objects
[32, 7, 37, 8], independent predictions at layers of different
resolutions are used to capture object instances of different
scales [36, 3, 22], context is employed for disambiguation
[38, 39, 10], training is performed over a range of scales
[7, 8, 15] or, inference is performed on multiple scales of
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an image pyramid and predictions are combined using non-
maximum suppression [7, 8, 2, 33].

While these architectural innovations have significantly
helped to improve object detection, many important issues
related to training remain unaddressed:

• Is it critical to upsample images for obtaining good
performance for object detection? Even though the
typical size of images in detection datasets is 480x640,
why is it a common practice to up-sample them to
800x1200? Can we pre-train CNNs with smaller
strides on low resolution images from ImageNet and
then fine-tune them on detection datasets for detecting
small object instances?

• When fine-tuning an object detector from a pre-trained
image classification model, should the resolution of the
training object instances be restricted to a tight range
(from 64x64 to 256x256) after appropriately re-scaling
the input images, or should all object resolutions (from
16x16 to 800x1000, in the case of COCO) participate
in training after up-sampling input images?

We design controlled experiments on ImageNet and
COCO to seek answers to these questions. In Section 3,
we study the effect of scale variation by examining the per-
formance of existing networks for ImageNet classification
when images of different scales are provided as input. We
also make minor modifications to the CNN architecture for
classifying images of different scales. These experiments
reveal the importance of up-sampling for small object de-
tection. To analyze the effect of scale variation on object
detection, we train and compare the performance of scale-
specific and scale invariant detector designs in Section 5.
For scale-specific detectors, variation in scale is handled by
training separate detectors - one for each scale range. More-
over, training the detector on similar scale object instances
as the pre-trained classification networks helps to reduce
the domain shift for the pre-trained classification network.
But, scale-specific designs also reduce the number of train-
ing samples per scale, which degrades performance. On the
other hand, training a single object detector with all train-
ing samples makes the learning task significantly harder be-
cause the network needs to learn filters for detecting object
instances over a wide range of scales.

Based on these observations, in Section 6 we present a
novel training paradigm, which we refer to as Scale Nor-
malization for Image Pyramids (SNIP), that benefits from
reducing scale-variation during training but without paying
the penalty of reduced training samples. Scale-invariance
is achieved using an image-pyramid (instead of a scale-
invariant detector), which contains normalized input rep-
resentations of object instances in one of the scales in the
image-pyramid. To minimize the domain shift for the clas-
sification network during training, we only back-propagate

gradients for RoIs/anchors that have a resolution close to
that of the pre-trained CNN. Since we train on each scale
in the pyramid with the above constraint, SNIP effectively
utilizes all the object instances available during training.
The proposed approach is generic and can be plugged into
the training pipeline of different problems like instance-
segmentation, pose-estimation, spatio-temporal action de-
tection - wherever the “objects” of interest manifest large
scale variations.

Contrary to the popular belief that deep neural networks
can learn to cope with large variations in scale given enough
training data, we show that SNIP offers significant im-
provements (3.5%) over traditional object detection training
paradigms. Our ensemble with a Deformable-RFCN back-
bone obtains an mAP of 69.7% at 50% overlap, which is an
improvement of 7.4% over the state-of-the-art on the COCO
dataset.

2. Related Work
Scale space theory [35, 26] advocates learning represen-

tations that are invariant to scale and the theory has been
applied to many problems in the history of computer vision
[4, 30, 28, 21, 14, 5, 23]. For problems like object detection,
pose-estimation, instance segmentation etc., learning scale
invariant representations is critical for recognizing and lo-
calizing objects. To detect objects at multiple scales, many
solutions have been proposed.

The deeper layers of modern CNNs have large strides
(32 pixels) that lead to a very coarse representation of the
input image, which makes small object detection very chal-
lenging. To address this problem, modern object detectors
[32, 7, 5] employ dilated/atrous convolutions to increase the
resolution of the feature map. Dilated/deformable convolu-
tions also preserve the weights and receptive fields of the
pre-trained network and do not suffer from degraded per-
formance on large objects. Up-sampling the image by a
factor of 1.5 to 2 times during training and up to 4 times
during inference is also a common practice to increase the
final feature map resolution [8, 7, 15]. Since feature maps of
layers closer to the input are of higher resolution and often
contain complementary information (wrt. conv5), these fea-
tures are either combined with shallower layers (like conv4,
conv3) [23, 31, 1, 31] or independent predictions are made
at layers of different resolutions [36, 27, 3]. Methods like
SDP [36], SSH [29] or MS-CNN [3], which make indepen-
dent predictions at different layers, also ensure that smaller
objects are trained on higher resolution layers (like conv3)
while larger objects are trained on lower resolution layers
(like conv5). This approach offers better resolution at the
cost of high-level semantic features which can hurt perfor-
mance.

Methods like FPN, Mask-RCNN, RetinaNet [23, 13, 24],
which use a pyramidal representation and combine features



Figure 2. The same layer convolutional features at different scales
of the image are different and map to different semantic regions in
the image at different scales.

of shallow layers with deeper layers at least have access to
higher level semantic information. However, if the size of
an object was 25x25 pixels then even an up-sampling factor
of 2 during training,will scale the object to only 50x50 pix-
els. Note that typically the network is pre-trained on images
of resolution 224x224. Therefore, the high level seman-
tic features (at conv5) generated even by feature pyramid
networks will not be useful for classifying small objects (a
similar argument can be made for large objects in high reso-
lution images). Hence, combining them with features from
shallow layers would not be good for detecting small ob-
jects, see Fig. 2. Although feature pyramids efficiently ex-
ploit features from all the layers in the network, they are not
an attractive alternative to an image pyramid for detecting
very small/large objects.

Recently, a pyramidal approach was proposed for de-
tecting faces [17] where the gradients of all objects were
back-propagated after max-pooling the responses from each
scale. Different filters were used in the classification layers
for faces at different scales. This approach has limitations
for object detection because training data per class in object
detection is limited and the variations in appearance, pose
etc. are much larger compared to face detection. We ob-
serve that adding scale specific filters in R-FCN for each
class hurts performance for object detection. In [33], an im-
age pyramid was generated and maxout [12] was used to se-
lect features from a pair of scales closer to the resolution of
the pre-trained dataset during inference. A similar inference
procedure was also proposed in SPPNet and Fast-RCNN
[14, 11]: however, standard multi-scale training (described
in Section 5) was used. We explore the design space for
training scale invariant object detectors and propose to se-
lectively back-propagate gradients for samples close to the
resolution of the pre-trained network.

Figure 3. Both CNN-B and CNN-B-FT are provided an upsampled
low resolution image as input. CNN-S is provided a low resolu-
tion image as input. CNN-B is trained on high resolution images.
CNN-S is trained on low resolution images. CNN-B-FT is pre-
trained on high resolution images and fine-tuned on upsampled
low-resolution images. ResNet-101 architecture is used.

3. Image Classification at Multiple Scales
In this section we study the effect of domain shift, which

is introduced when different resolutions of images are pro-
vided as input during training and testing. We perform
this analysis because state-of-the-art detectors are typically
trained at a resolution of 800x1200 pixels 1, but inference
is performed on an image pyramid, including higher reso-
lutions like 1400x2000 for detecting small objects [8, 7, 2].

Naı̈ve Multi-Scale Inference: Firstly, we obtain im-
ages at different resolutions, 48x48, 64x64, 80x80, 96x96
and 128x128, by down-sampling the original ImageNet
database. These are then up-sampled to 224x224 and pro-
vided as input to a CNN architecture trained on 224x224
size images, referred to as CNN-B (see Fig. 3). Fig. 4
(a) shows the top-1 accuracy of CNN-B with a ResNet-
101 backbone. We observe that as the difference in resolu-
tion between training and testing images increases, so does
the drop in performance. Hence, testing on resolutions on
which the network was not trained is clearly sub-optimal, at
least for image classification.

Resolution Specific Classifiers: Based on the above ob-
servation, a simple solution for improving the performance
of detectors on smaller objects is to pre-train classification
networks with a different stride on ImageNet. After-all, net-
work architectures which obtain best performance on CI-
FAR10 [19] (which contains small objects) are different
from ImageNet. The first convolution layer in ImageNet
classification networks has a stride of 2 followed by a max
pooling layer of stride 2x2, which can potentially wipe out
most of the image signal present in a small object. There-
fore, we train ResNet-101 with a stride of 1 and 3x3 con-
volutions in the first layer for 48x48 images (CNN-S, see

1original image resolution is typically 480x640



Figure 4. All figures report accuracy on the validation set of the ImageNet classification dataset. We upsample images of resolution 48,64,80
etc. and plot the Top-1 accuracy of the pre-trained ResNet-101 classifier in figure (a). Figure (b,c) show results for different CNNs when
the original image resolution is 48,96 pixels respectively.

Fig. 3), a typical architecture used for CIFAR. Similarly, for
96x96 size images, we use a kernel of size 5x5 and stride of
2. Standard data augmentation techniques such as random
cropping, color augmentation, disabling color augmentation
after 70 epochs are used to train these networks. As seen
in Fig. 4, these networks (CNN-S) perform significantly
better than CNN-B. Therefore, it is tempting to pre-train
classification networks with different architectures for low
resolution images and use them for object detection for low
resolution objects.

Fine-tuning High-Resolution Classifiers: Yet another
simple solution for small object detection would be to fine-
tune CNN-B on up-sampled low resolution images to yield
CNN-B-FT ( Fig. 3). The performance of CNN-B-FT on
up-sampled low-resolution images is better than CNN-S,
Fig. 4. This result empirically demonstrates that the filters
learned on high-resolution images can be useful for recog-
nizing low-resolution images as well. Therefore, instead of
reducing the stride by 2, it is better to up-sample images 2
times and then fine-tune the network pre-trained on high-
resolution images.

While training object detectors, we can either use differ-
ent network architectures for classifying objects of different
resolutions or use the a single architecture for all resolu-
tions. Since pre-training on ImageNet (or other larger clas-
sification datasets) is beneficial and filters learned on larger
object instances help to classify smaller object instances,
upsampling images and using the network pre-trained on
high resolution images should be better than a specialized
network for classifying small objects. Fortunately, existing
object detectors up-sample images for detecting smaller ob-
jects instead of using a different architecture. Our analysis
supports this practice and compares it with other alterna-
tives to emphasize the difference.

4. Background
In the next section, we discuss a few baselines for de-

tecting small objects. We briefly describe the Deformable-
RFCN [8] detector which will be used in the following
analysis. D-RFCN obtains the best single model results on

COCO and is publicly available, so we use this detector.
Deformable-RFCN is based on the R-FCN detector [7].

It adds deformable convolutions in the conv5 layers to adap-
tively change the receptive field of the network for creat-
ing scale invariant representations for objects of different
scales. At each convolutional feature map, a lightweight
network predicts offsets on the 2D grid, which are spatial
locations at which spatial sub-filters of the convolution ker-
nel are applied. The second change is in Position Sensitive
RoI Pooling. Instead of pooling from a fixed set of bins on
the convolutional feature map (for an RoI), a network pre-
dicts offsets for each position sensitive filter (depending on
the feature map) on which Position Sensitive RoI (PSRoI)-
Pooling is performed.

For our experiments, proposals are extracted at a sin-
gle resolution (after upsampling) of 800x1200 using a pub-
licly available Deformable-RFCN detector. It has a ResNet-
101 backbone and is trained at a resolution of 800x1200.
5 anchor scales are used in RPN for generating proposals
[2]. For classifying these proposals, we use Deformable-
RFCN with a ResNet-50 backbone without the Deformable
Position Sensitive RoIPooling. We use Position Sensitive
RoIPooling with bilinear interpolation as it reduces the
number of filters by a factor of 3 in the last layer. NMS
with a threshold of 0.3 is used. Not performing end-to-end
training along with RPN, using ResNet-50 and eliminating
deformable PSRoI filters reduces training time by a factor
of 3 and also saves GPU memory.

5. Data Variation or Correct Scale?
The study in section 3 confirms that differences in reso-

lutions between the training and testing phase leads to a sig-
nificant drop in performance. Unfortunately, this difference
in resolution is part of the current object detection pipeline -
due to GPU memory constraints, training is performed on a
lower resolution (800x1200) than testing (1400x2000) (note
that original resolution is typically 640x480). This section
analyses the effect of image resolution, the scale of object
instances and variation in data on the performance of an ob-
ject detector. We train detectors under different settings and



Figure 5. Different approaches for providing input for training the classifier of a proposal based detector.

evaluate them on 1400x2000 images for detecting small ob-
jects (less than 32x32 pixels in the COCO dataset) only to
tease apart the factors that affect the performance. The re-
sults are reported in Table 1.

Training at different resolutions: We start by training
detectors that use all the object instances on two different
resolutions, 800x1400 and 1400x2000, referred to as 800all
and 1400all, respectively, Fig 5.1. As expected, 1400all out-
performed 800all, because the former is trained and tested
on the same resolution i.e. 1400x2000. However, the im-
provement is only marginal. Why? To answer this question
we consider what happens to the medium-to-large object
instances while training at such a large resolution. They be-
come too big to be correctly classified! Therefore, training
at higher resolutions scales up small objects for better clas-
sification, but blows up the medium-to-large objects which
degrades performance.

Scale specific detectors: We trained another detector
(1400<80px) at a resolution of 1400x2000 while ignoring
all the medium-to-large objects (> 80 pixels, in the origi-
nal image) to eliminate the deleterious-effects of extremely
large objects, Fig 5.2. Unfortunately, it performed signif-
icantly worse than even 800all. What happened? We lost
a significant source of variation in appearance and pose by
ignoring medium-to-large objects (about 30% of the total
object instances) that hurt performance more than it helped
by eliminating extreme scale objects.

Multi-Scale Training (MST): Lastly, we evaluated the
common practice of obtaining scale-invariant detectors by
using randomly sampled images at multiple resolutions dur-
ing training, referred to as MST 2 , Fig 5.3. It ensures train-
ing instances are observed at many different resolutions, but
it also degraded by extremely small and large objects. It per-
formed similar to 800all. We conclude that it is important
to train a detector with appropriately scaled objects while
capturing as much variation across the objects as possible.
In the next section we describe our proposed solution that
achieves exactly this and show that it outperforms current

2MST also uses a resolution of 480x800

1400<80px 800all 1400all MST SNIP
16.4 19.6 19.9 19.5 21.4

Table 1. mAP on Small Objects (smaller than 32x32 pixels) under
different training protocols. MST denotes multi-scale training as
shown in Fig. 5.3. R-FCN detector with ResNet-50 (see Section
4).

training pipelines.

6. Object Detection on an Image Pyramid
Our goal is to combine the best of both approaches i.e.

train with maximal variations in appearance and pose while
restricting scale to a reasonable range. We achieve this by a
novel construct that we refer to as Scale Normalization for
Image Pyramids (SNIP). We also discuss details of training
object detectors on an image pyramid within the memory
limits of current GPUs.

6.1. Scale Normalization for Image Pyramids

SNIP is a modified version of MST where only the ob-
ject instances that have a resolution close to the pre-training
dataset, which is typically 224x224, are used for training
the detector. In multi-scale training (MST), each image is
observed at different resolutions therefore, at a high resolu-
tion (like 1400x2000) large objects are hard to classify and
at a low resolution (like 480x800) small objects are hard to
classify. Fortunately, each object instance appears at sev-
eral different scales and some of those appearances fall in
the desired scale range. In order to eliminate extreme scale
objects, either too large or too small, training is only per-
formed on objects that fall in the desired scale range and
the remainder are simply ignored during back-propagation.
Effectively, SNIP uses all the object instances during train-
ing, which helps capture all the variations in appearance and
pose, while reducing the domain-shift in the scale-space for
the pre-trained network. The result of evaluating the detec-
tor trained using SNIP is reported in Table 1 - it outperforms
all the other approaches. This experiment demonstrates the



Figure 6. SNIP training and inference is shown. Invalid RoIs which fall outside the specified range at each scale are shown in purple. These
are discarded during training and inference. Each batch during training consists of images sampled from a particular scale. Invalid GT
boxes are used to invalidate anchors in RPN. Detections from each scale are rescaled and combined using NMS.

effectiveness of SNIP for detecting small objects. Below we
discuss the implementation of SNIP in detail.

For training the classifier, all ground truth boxes are used
to assign labels to proposals. We do not select proposals
and ground truth boxes which are outside a specified size
range at a particular resolution during training. At a partic-
ular resolution i, if the area of an RoI ar(r) falls within a
range [sci , e

c
i ], it is marked as valid, else it is invalid. Sim-

ilarly, RPN training also uses all ground truth boxes to as-
sign labels to anchors. Finally, those anchors which have
an overlap greater than 0.3 with an invalid ground truth box
are excluded during training (i.e. their gradients are set to
zero). During inference, we generate proposals using RPN
for each resolution and classify them independently at each
resolution as shown in Fig 6. Similar to training, we do
not select detections (not proposals) which fall outside a
specified range at each resolution. After classification and
bounding-box regression, we use soft-NMS [2] to combine
detections from multiple resolutions to obtain the final de-
tection boxes, refer to Fig. 6.

The resolution of the RoIs after pooling matches the pre-
trained network, so it is easier for the network to learn dur-
ing fine-tuning. For methods like R-FCN which divide RoIs
into sub-parts and use position sensitive filters, this becomes
even more important. For example, if the size of an RoI is
48 pixels (3 pixels in the conv5 feature map) and there are
7 filters along each axis, the positional correspondence be-
tween features and filters would be lost.

6.2. Sampling Sub-Images

Training on high resolution images with deep networks
like ResNet-101 or DPN-92 [6] requires more GPU mem-
ory. Therefore, we crop images so that they fit in GPU

memory. Our aim is to generate the minimum number of
chips (sub-images) of size 1000x1000 which cover all the
small objects in the image. This helps in accelerating train-
ing as no computation is needed where there are no small
objects. For this, we generate 50 randomly positioned chips
of size 1000x1000 per image. The chip which covers the
maximum number of objects is selected and added to our
set of training images. Until all objects in the image are
covered, we repeat the sampling and selection process on
the remaining objects. Since chips are randomly gener-
ated and proposal boxes often have a side on the image
boundary, for speeding up the sampling process we snap the
chips to image boundaries. We found that, on average, 1.7
chips of size 1000x1000 are generated for images of size
1400x2000. This sampling step is not needed when the im-
age resolution is 800x1200 or 480x640 or when an image
does not contain small objects. Random cropping is not the
reason why we observe an improvement in performance for
our detector. To verify this, we trained ResNet-50 (as it re-
quires less memory) using un-cropped high-resolution im-
ages (1400x2000) and did not observe any change in mAP.

7. Datasets and Evaluation

We evaluate our method on the COCO dataset. COCO
contains 123,000 images for training and evaluation is per-
formed on 20,288 images in test-dev. Since recall for pro-
posals is not provided by the evaluation server on COCO,
we train on 118,000 images and report recall on the re-
maining 5,000 images (commonly referred to as minival
set). Unless specifically mentioned, the area of small ob-
jects is less than 32x32, medium objects range from 32x32
to 96x96 and large objects are greater than 96x96.



Method AP APS APM APL

Single scale 34.5 16.3 37.2 47.6
MS Test 35.9 19.5 37.3 48.5

MS Train/Test 35.6 19.5 37.5 47.3
SNIP 37.8 21.4 40.4 50.1

Table 2. MS denotes multi-scale. Single scale is (800,1200). R-
FCN detector with ResNet-50 (as described in Section 4).

7.1. Training Details

We train Deformable-RFCN [8] as our detector with 3
resolutions, (480, 800), (800, 1200) and (1400,2000), where
the first value is for the shorter side of the image and the
second one is the limit on the maximum size of a side.
Training is performed for 7 epochs for the classifier while
RPN is trained for 6 epochs. Although it is possible to com-
bine RPN and RCN using alternating training which leads
to slight improvement in accuracy [23], we train separate
models for RPN and RCN and evaluate their performance
independently. This is because it is faster to experiment
with different classification architectures after proposals are
extracted. We use a warmup learning rate of 0.0005 for
1000 iterations after which it is increased to 0.005. Step
down is performed at 4.33 epochs for RPN and 5.33 epochs
otherwise. For our baselines which did not involve SNIP,
we also evaluated their performance after 8 or 9 epochs but
observed that results after 7 epochs were best. For the clas-
sifier (RCN), on images of resolution (1400,2000), the valid
range in the original image (without up/down sampling) is
[0, 80], at a resolution of (800,1200) it is [40, 160] and at
a resolution of (480,800) it is [120, ∞]. We have an over-
lap of 40 pixels over adjacent ranges. These ranges were
design decisions made during training, based on the consid-
eration that after re-scaling, the resolution of the valid RoIs
does not significantly differ from the resolution on which
the backbone CNN was trained. Since in RPN even a one
pixel feature map can generate a proposal we use a validity
range of [0,160] at (800,1200) for valid ground truths for
RPN. For inference, the validity range for each resolution
in RCN is obtained using the minival set. Training RPN is
fast so we enable SNIP after the first epoch. SNIP doubles
the training time per epoch, so we enable it after 3 epochs
for training RCN.

7.2. Improving RPN

In detectors like Faster-RCNN/R-FCN, Deformable R-
FCN, RPN is used for generating region proposals. RPN
assigns an anchor as positive only if overlap with a ground
truth bounding box is greater than 0.7 3. We found that
when using RPN at conv4 with 15 anchors (5 scales - 32,

3If there does not exist a matching anchor, RPN assigns the anchor with
the maximum overlap with ground truth bounding box as positive.

Method AR AR50 AR75 0-25 25-50 50-100
Baseline 57.6 88.7 67.9 67.5 90.1 95.6

+ Improved 61.3 89.2 69.8 68.1 91.0 96.7
+ SNIP 64.0 92.1 74.7 74.4 95.1 98.0
DPN-92 65.7 92.8 76.3 76.7 95.7 98.2

Table 3. For individual ranges (like 0-25 etc.) recall at 50% overlap
is reported because minor localization errors can be fixed in the
second stage. First three rows use ResNet-50 as the backbone.
Recall is for 900 proposals, as top 300 are taken from each scale.

64, 128, 256, 512, stride 16, 3 aspect ratios), only 30% of
the ground truth boxes match this criterion when the im-
age resolution is 800x1200 in COCO. Even if this thresh-
old is changed to 0.5, only 58% of the ground truth boxes
have an anchor which matches this criterion. Therefore, for
more than 40% of the ground truth boxes, an anchor which
has an overlap less than 0.5 is assigned as a positive (or ig-
nored). Since we sample the image at multiple resolutions
and back-propagate gradients at the relevant resolution only,
this problem is alleviated to some extent. We also concate-
nate the output of conv4 and conv5 to capture diverse fea-
tures and use 7 anchor scales. A more careful combination
of features with predictions at multiple layers like [23, 13]
should provide a further boost in performance.

7.3. Experiments

First, we evaluate the performance of SNIP on classifica-
tion (RCN) under the same settings as described in Section
4. In Table 2, performance of the single scale model, multi-
scale testing, and multi-scale training followed by multi-
scale testing is shown. We use the best possible validity
ranges at each resolution for each of these methods when
multi-scale testing is performed. Multi-scale testing im-
proves performance by 1.4%. Performance of the detec-
tor deteriorates for large objects when we add multi-scale
training. This is because at extreme resolutions the recep-
tive field of the network is not sufficient to classify them.
SNIP improves performance by 1.9% compared to standard
multi-scale testing. Note that we only use single scale pro-
posals common across all three scales during classification
for this experiment.

For RPN, a baseline with the ResNet-50 network was
trained on the conv4 feature map. Top 300 proposals are se-
lected from each scale and all these 900 proposals are used
for computing recall. Average recall (averaged over multi-
ple overlap thresholds, just like mAP) is better for our im-
proved RPN, as seen in Table 3. This is because for large
objects (> 100 pixels), average recall improves by 10% (not
shown in table) for the improved baseline. Although the
improved version improves average recall, it does not have
much effect at 50% overlap. Recall at 50% is most impor-
tant for object proposals because bounding box regression



Method Backbone AP AP50 AP75 APS APM APL

D-RFCN [8, 2] ResNet-101 38.4 60.1 41.6 18.5 41.6 52.5
Mask-RCNN [13] ResNext-101 (seg) 39.8 62.3 43.4 22.1 43.2 51.2

D-RFCN [8, 2] ResNet-101 (6 scales) 40.9 62.8 45.0 23.3 43.6 53.3
G-RMI [18] Ensemble 41.6 62.3 45.6 24.0 43.9 55.2

D-RFCN DPN-98 41.2 63.5 45.9 25.7 43.9 52.8
D-RFCN + SNIP (RCN) DPN-98 44.2 65.6 49.7 27.4 47.8 55.8

D-RFCN + SNIP (RCN+RPN) DPN-98 44.7 66.6 50.2 28.5 47.8 55.9
Faster-RCNN + SNIP (RPN) ResNet-101 43.1 65.3 48.1 26.1 45.9 55.2

Faster-RCNN + SNIP (RPN+RCN) ResNet-101 44.4 66.2 49.9 27.3 47.4 56.9
ResNet-101 (ResNet-101 proposals ) 43.4 65.5 48.4 27.2 46.5 54.9

D-RFCN + SNIP DPN-98 (with flip) 45.7 67.3 51.1 29.3 48.8 57.1
Ensemble 48.3 69.7 53.7 31.4 51.6 60.7

Table 4. Comparison with state-of-the-art detectors. (seg) denotes that segmentation masks were also used. We train on train+val and
evaluate on test-dev. Unless mentioned, we use 3 scales and DPN-92 proposals. Ablation for SNIP in RPN and RCN is shown.

can correct minor localization errors, but if an object is not
covered at all by proposals, it will clearly lead to a miss.
Recall for objects greater than 100 pixels at 50% overlap is
already close to 100%, so improving average recall for large
objects is not that valuable for a detector. Note that SNIP
improves recall at 50% overlap by 2.9% compared to our
improved baseline. For objects smaller than 25 pixels, the
improvement in recall is 6.3%. Using a stronger classifica-
tion network like DPN-92 also improves recall. In last two
rows of Table 4, we perform an ablation study with our best
model, which uses a DPN-98 classifier and DPN-92 pro-
posals. If we train our improved RPN without SNIP, mAP
drops by 1.1% on small objects and 0.5% overall. Note that
AP of large objects is not affected as we still use the classi-
fication model trained with SNIP.

Finally, we compare with state-of-the-art detectors in Ta-
ble 4. For these experiments, we use the deformable posi-
tion sensitive filters and Soft-NMS. Compared to the single
scale deformable R-FCN baseline shown in the first line of
Table 4, multi-scale training and inference improves overall
results by 5% and for small objects by 8.7%! This shows
the importance of an image pyramid for object detection.
Compared to the best single model method (which uses 6
instead of 3 scales and is also trained end-to-end) based on
ResNet-101, we improve performance by 2.5% overall and
3.9% for small objects. We observe that using better back-
bone architectures further improves the performance of the
detector. When SNIP is not used for both the proposals and
the classifier, mAP drops by 3.5% for the DPN-98 classi-
fier, as shown in the last row. For the ensemble, DPN-92
proposals are used for all the networks (including ResNet-
101). Since proposals are shared across all networks, we
average the scores and box-predictions for each RoI. Dur-
ing flipping we average the detection scores and bounding
box predictions. Finally, Soft-NMS is used to obtain the
final detections. Iterative bounding-box regression is not

used. All pre-trained models are trained on ImageNet-1000
and COCO segmentation masks are not used. Faster-RCNN
was not used in the ensemble. On 100 images, it takes 90
seconds for to perform detection on a Titan X GPU using
a ResNet-101 backbone. Speed can be improved with end-
to-end training (we perform inference for RPN and RCN
separately).

We also conducted experiments with the Faster-RCNN
detector with deformable convolutions. Since the detector
does not have position-sensitive filters, it is more robust to
scale and performs better for large objects. Training it with
SNIP still improves performance by 1.3%. Note that we
can get an mAP of 44.4% with a single head faster-RCNN
without using any feature-pyramid!

8. Conclusion
We presented an analysis of different techniques for rec-

ognizing and detecting objects under extreme scale varia-
tion, which exposed shortcomings of the current object de-
tection training pipeline. Based on the analysis, a train-
ing scheme (SNIP) was proposed to tackle the wide scale
spectrum of object instances which participate in training
and to reduce the domain-shift for the pre-trained classifi-
cation network. Experimental results on the COCO dataset
demonstrated the importance of scale and image-pyramids
in object detection. Since we do not need to back-propagate
gradients for large objects in high-resolution images, it is
possible to reduce the computation performed in a signif-
icant portion of the image. We would like to explore this
direction in future work.
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