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Figure1. The detection results of tiny faces in the wild. (a) is the original low-resolution blurry face, (b) is the result of
re-sizing directly by a bi-linear kernel, (c) is the generated image by the super-resolution method, and our result (d) is learned
by the super-resolution (×4 upscaling) and refinement network simultaneously. Best viewed in color and zoomed in.

Abstract

Face detection techniques have been developed for
decades, and one of remaining open challenges is detect-
ing small faces in unconstrained conditions. The reason is
that tiny faces are often lacking detailed information and
blurring. In this paper, we proposed an algorithm to direct-
ly generate a clear high-resolution face from a blurry small
one by adopting a generative adversarial network (GAN).
Toward this end, the basic GAN formulation achieves it by
super-resolving and refining sequentially (e.g. SR-GAN and
cycle-GAN). However, we design a novel network to address
the problem of super-resolving and refining jointly. We also
introduce new training losses to guide the generator net-
work to recover fine details and to promote the discrimina-
tor network to distinguish real vs. fake and face vs. non-face

simultaneously. Extensive experiments on the challenging
dataset WIDER FACE demonstrate the effectiveness of our
proposed method in restoring a clear high-resolution face
from a blurry small one, and show that the detection perfor-
mance outperforms other state-of-the-art methods.

1. Introduction

Face detection is a fundamental and important prob-
lem in computer vision, since it is usually a key step to-
wards many subsequent face-related applications, including
face parsing, face verification, face tagging and retrieval,
etc. Face detection has been widely studied over the past
few decades and numerous accurate and efficient methods
have been proposed for most constrained scenarios. Recen-



t works focus on faces in uncontrolled settings, which is
much more challenging due to the significant variations in
scale, blur, pose, expressions and illumination. A thorough
survey on face detection methods can be found in [32].

Modern face detectors have achieved impressive results
on the large and medium faces, however, the performance
on small faces is far from satisfactory. The main difficul-
ty for small face (e.g. 10 × 10 pixels) detection is that s-
mall faces lack sufficient detailed information to distinguish
them from the similar background, e.g. regions of partial
faces or hands. Another problem is that modern CNN-based
face detectors use the down-sampled convolutional (con-
v) feature maps with stride 8, 16 or 32 to represent faces,
which lose most spatial information and are too coarse to
describe small faces. To detect small faces, [28] directly
up-samples images using bi-linear operation and exhaus-
tively searches faces on the up-sampled images. Howev-
er, this method will increase the computation cost and the
inference time will increase significantly too. Moreover,
images are often zoomed in with a small upscaling factors
(2× at most) in [28], otherwise, artifacts will be generat-
ed. Besides, [1, 14, 25, 37] use the intermediate conv fea-
ture maps to represent faces at specific scales, which keeps
the balance between the computation burden and the perfor-
mance. However, the shallow but fine-grained intermediate
conv feature maps lack discrimination, which causes many
false positive results. More importantly, these methods take
no care of other challenges, like blur and illumination.

To deal with the nuisances in face detection, we propose
a unified end-to-end convolutional neural network for better
face detection based on the classical generative adversarial
network (GAN) framework. There are two sub-networks in
our detector, a generator network and a discriminator net-
work. In the generator sub-network, a super-resolution net-
work (SRN) is used to up-sample small faces to a fine scale
for finding those tiny faces. Compared to re-sizing by bi-
linear operation, SRN can reduce the artifact and improve
the quality of up-sampled images with a large upscaling fac-
tors (4× in our current implementation), as shown in Figure
1 (b) and (c). However, even with such sophisticated S-
RN, up-sampled images are unsatisfactory (usually blurring
and lacking fine details) due to faces of very low resolutions
(10 × 10 pixels). Therefore, a refinement network (RN) is
proposed to recover some missing details in the up-sampled
images and generate sharp high-resolution images for clas-
sification. In the discriminator sub-network, we introduce a
new loss function that enforces the discriminator network to
distinguish the real/fake face and face/non-face simultane-
ously. The generated images and real images pass through
the discriminator network to JOINTLY distinguish whether
they are real images or generated high-resolution images
and whether they are faces or non-faces. More important-
ly, the classification loss is used to guide the generator to

generate clearer faces for easier classification.

Contributions. To sum up, this paper makes following
three main contributions. (1) A novel unified end-to-end
convolutional neural network architecture for face detection
is proposed, where super-resolution and refinement network
are used to generate real and sharp high-resolution images
and a discriminator network is introduced to classify faces
vs. non-faces. (2) A new loss is introduced to promote the
discriminator network to distinguish the real/fake image and
face/non-face simultaneously. More importantly, the clas-
sification loss is used to guide the generative network to
generate clearer faces for easier classification. (3) Finally,
we demonstrate the effectiveness of our proposed method
in restoring a clear high-resolution face from a blurry small
face, and show that the detection performance outperform-
s other state-of-the-art approaches on the WIDER FACE
dataset, especially on the most challenging Hard subset.

2. Related Work

2.1. Face Detection

As a classic topic, numerous face detection systems have
been proposed during the past decades or so. Existing
face detection methods can be broadly categorized as hand-
crafted feature based methods [24, 29, 30] and CNN-based
methods [34, 2, 14, 25, 37, 1]. However, most of the de-
tection systems based handcrafted features only train a sin-
gle scale model, which is applied to each level of a feature
pyramid, thus increasing the computation cost drastically,
especially for complicated features. Moreover, the limited
representation of handcrafted features restricts the perfor-
mance of detectors, particularly in uncontrolled settings.

Inspired by the great success of Faster RCNN, several
recent works [14, 25, 37] utilized this framework to detec-
t faces and showed impressive performance on the FDDB
benchmark [13]. However, performance drops dramatically
on the more challenging WIDER FACE dataset [31], which
contains a large number of faces with lower resolution. The
main reason for this disparity is that deep conv feature map-
s with lower spatial resolution are used for representation,
which is insufficient for handling small faces [34, 2]. To
overcome this problem, detectors [14, 25, 37] have to up-
sample by re-sizing input images to different scales dur-
ing training and testing, which inevitably increases memory
and computation costs. Furthermore, the re-size method of-
ten generates the images with large structural distortions,
as shown in Figure1 (b). Compared to these methods, our
method exploits the super-resolution and refinement net-
work to generate clear and fine faces with high resolution
(4× up-scaling), as shown in Figure1 (d), and then the dis-
criminator is trained to distinguish faces from input images.



2.2. Super-resolution and Refinement Network

With the development of deep learning, great improve-
ments have been achieved on super-resolution [5, 6, 15, 26].
However, when obtaining these promising results, there is a
precondition that the down-sampling kernel is known, and
most of these CNN-based super-resolution methods can not
be applied to uncontrolled settings (i.e. in the wild).

There are different refinement networks for differen-
t tasks, and the most similar refinement method to our re-
finement network is the deblur method. Most existing de-
blur methods heavily rely on prior models to solve the ill-
posed problem, and a prior assumes that gradients of natu-
ral images have a heavy-tailed distribution [21, 7]. Recent-
ly, conventional neural networks have also been used to de-
blur the blind image [36, 23, 3]. However, these deblurring
methods still involve explicit kernel estimation, and the re-
covered images usually have significant ringing artifacts if
the estimated kernels are inaccurate.

Although existing super-resolution methods and refine-
ment methods are effective at up-sampling and refining im-
ages respectively, it is not easy to extend to jointly super-
resolving and refining the low-resolution image. [28] pro-
posed a method to simultaneously reconstruct a clear high-
resolution image from a blurry low-resolution input. How-
ever, their blurry low-resolution images are obtained by us-
ing the bicubic interpolation down-sampling and a known
blur kernel from the high-resolution images (i.e. synthetic).
In this paper, we design a novel network to generate a clear
super-resolution face from a small blurry face which is col-
lected from the wild. We would like to note that our work is
the first work trying to jointly super-resolve and refine the
small blurry faces in the wild.

2.3. Generative Adversarial Networks

In the seminal work[8], generative adversarial network
(GAN) is introduced to generate realistic-looking images
from random noises. GANs have achieved impressive re-
sults in image generation [4], image editing [38], represen-
tation learning [18], image annotation [27], image super-
resolving [17] and character transferring [12]. Recently,
GAN has been applied to super-resolution (SRGAN) [17]
and has obtained promising results. Compared to super-
resolution on natural images, face images in the wild are of
arbitrary poses, illumination and blur, so super-resolution
on face images is much more challenging. More impor-
tantly, the high resolution images generated by SRGAN
are blurry and lack fine details especially for low-resolution
faces, which are unfriendly for the face classifier. Toward-
s this end, we design a refinement sub-network to recover
some detailed information. In the discriminator network,
the basic GAN [17, 12, 8] is trained to distinguish the real
and fake high resolution images. To classify faces or non-
faces, we extend the discriminator network to classify the

fake vs. real and face vs. non-face simultaneously. Further-
more, the classification loss is propagated back to the gen-
erator network, and guides generator network to reconstruct
clearer super-resolution images for easier classification.

3. Proposed Method

In this section, we introduce our proposed method in de-
tails. First, we give a brief description on the classical GAN
network. Then, the whole architecture of our method is p-
resented, as shown in Figure 2. Finally, we introduce each
part of our network in details and define the loss function-
s for training the generator network and discriminator net-
work respectively.

3.1. GAN

GAN [8] learns a generative model G via an adversarial
process. It trains a generator network G and a discriminator
network D simultaneously. The training process alternately
optimizes the generator and discriminator, which compete
with each other. The generator G is trained for generating
the samples to fool the discriminator D, and the discrimi-
nator D is trained to distinguish the real image and the fake
image from the generator. The objective function can be
defined as follows:

LGAN (G,D) = Ex∼pdata(x)[logDθ(x)]+

Ez∼pz(z)[log(1−Dθ(Gω(z)))],
(1)

where z is the random noise and x denotes the real data, θ
and ω denote the parameters ofG andD respectively. Here,
G tries to minimize the objective function and adversarialD
tries to maximize it as Eq(2):

argmin
G

max
D
LGAN (G,D). (2)

Similar to [8, 17], we further design a generator net-
work GwG

which is optimized in an alternative method a-
long with a discriminator network DθD to solve the small
face super-resolution and classification problem, which is
defined as follows:

argmin
wG

max
θD

E(IHR,y)∼ptrain(IHR,y)[logDθD (I
HR, y)]+

E(ILR,y)∼pG(ILR,y)[log(1−DθD (GwG
(ILR, y)))],

(3)
where ILR denotes face candidates with low-resolution,
IHR represents the face candidates with high-resolution,
and y is the label (i.e. face or non-face). Unlike [8], the in-
put of our generator is low-resolution images rather than the
random noise. Different from [17], we up-sample and refine
the input image simultaneously in the generator network. In
the discriminator network, we distinguish the generated vs.
true high-resolution images and faces vs. non-faces jointly.



Figure 2. The pipeline of the proposed tiny face detector system. (A) The images are fed into the network; (B) MB-FCN detector is our
baseline, it crops the positive data (i.e. faces) and negative data (i.e. non-faces) from the input images for training the generator network
and the discriminator network, or generates the regions of interest (ROIs) for testing. (C) The positive data and negative data (or ROIs)
are generated by the MB-FCN detector. (D) The generator network is trained to reconstruct a clear super-resolution image (4× upscaling)
from the low-resolution input image, which includes the upsample sub-network and the refinement sub-network. (D) The discriminator
network is the vgg19 architecture with two parallel fc layers, and the first fc layer is to distinguish the natural real images or the generated
super-resolution images and the second one is to classify faces or non-faces.

3.2. Network Architecture

Our generator network includes two components (i.e. up-
sample sub-network and refinement sub-network), and the
first sub-network takes the low-resolution images as the in-
puts and the outputs are the super-resolution images. Since
the blurry small faces lack fine details and due to the in-
fluence of MSE loss Eq(4), the generated super-resolution
faces are usually blurring. So we design the second sub-
network to refine the super-resolution images from the first
sub-network. Furthermore, we add the classification branch
to the discriminator network for the purpose of detection,
which means our discriminator can classify faces and non-
faces as well as distinguish the fake and real images.

Generator network. As shown in Table 1 and Fig-
ure 2, we adopt a deep CNN architecture which has
shown effectiveness for image super-resolution in [17].
There are two fractionally-strided convolutional layers [20]
(i.e. de-convolutional layer) in the network, and each de-
convolutional layer consists of learned kernels which per-
form up-sampling a low-resolution image to a 2× super-
resolution image. In contrast to their network, our genera-
tor network includes refinement sub-network which is also
a deep CNN architecture. Similar to [20], we use the batch-
normalization [11] and rectified linear unit (ReLU) activa-
tion after each convolutional layer except the last layer.

The up-sampling sub-network first up-samples a low-
resolution image and outputs a 4× super-resolution image,
and this super-resolution image is blurring when the small
faces are far from the cameras or under fast motion. Then,
the refinement sub-network processes the blurring image,
and outputs a clear super-resolution image, which is easier
for the discriminator to classify the faces vs. non-faces.

Discriminator network. We employ VGG19 [22] as our
backbone network in the discriminator, as shown in Table
1. To avoid too many down-sampling operations for the
small blurry faces, we remove the max-pooling from the
“conv5” layer. Moreover, we replace all the fully connected
layer (i.e. fc6, fc7, fc8) with two parallel fully connected
layers fcGAN and fcclc. The input is the super-resolution
image, the output of fcGAN branch is the probability of the
input being a real image, and the output of the fcclc is the
probability of the input being a face.

3.3. Loss Function

We adopt the pixel-wise loss and adversarial loss from
some state-of-the-art approaches [17, 12] to optimize our
generator network. In contrast to [17], we remove the VGG
feature matching loss due to the calculation cost and we in-
troduce the classification loss to drive the generator network
to recover fine details from the blurry small faces.

Pixel-wise loss. The input of our generator network is
the small blurry images instead of random noise [8]. A nat-
ural way to enforce the output of the generator to be close to
the super-resolution ground truth is through the pixel-wise
MSE loss, and it is calculated as Eq(4):

LMSE(w) =
1

N

N∑
i=1

(||G1w1
(ILRi )− IHRi ||2+

||G2w2
(G1w1

(ILRi ))− IHRi ||2),

(4)

where ILR and IHR denote the small blurry images
and super-resolution images respectively, G1 means up-
sampling sub-network, G2 denotes the refinement sub-
network and w is the parameters of generator network.



Generator DiscriminatorUp-sample Sub-network Refinement Sub-network

Layer conv conv
x8 conv de-

conv
de-

conv conv conv conv
x8 conv conv conv conv conv conv conv conv conv fc

Kernel Num. 64 64 64 256 256 3 64 64 64 256 256 3 64 128 256 512 512 2
Kernel Size 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 -
Stride 1 1 1 2 3 1 1 1 1 1 1 1 2 2 2 2 1 -

Table 1. Architecture of the generator and discriminator network. “conv” represents a convolutional layer, “x8” denotes a residual block
which has 8 convolutional layers, “de-conv” means a fractionally-stride convolutional layer, “2x” denotes up-sampling by a factor of 2,
and “fc” indicates a fully connected layer.

However, while achieving less loss between the generated
and the neutral high-resolution image in pixel level, the so-
lution of the MSE optimization problem usually lacks the
high-frequency content which results in perceptual unsatis-
factory images with over-smooth texture. Also, this is one
reason why the generated image is blurry.

Adversarial loss. To achieve more realistic results, we
introduce the adversarial loss [17] to the objective loss, de-
fined as Eq(5):

Ladv =
1

N

N∑
i=1

log(1−Dθ(Gw(I
LR
i ))). (5)

Here, the adversarial loss encourages the network to gen-
erate sharper high-frequency details for trying to fool the
discriminator network. In Eq(5), the Dθ(Gw(I

LR
i )) is the

probability that the reconstruction image Gw(ILRi ) is a nat-
ural super-resolution image.

Classification loss. In order to make the reconstructed
images by the generator network easier to classify, we also
introduce the classification loss to the objective loss. Let
{ILRi , i = 1, 2, . . . , N} and {IHRi , i = 1, 2, . . . , N} denote
the small blurry images and the high-resolution real natu-
ral images respectively, and {yi, i = 1, 2, . . . , N} represents
the corresponding labels, where yn = 1 or yn = 0 indicates
the image is the face or non-face respectively. The formula-
tion of classification loss is like Eq(6):

Lclc =
1

N

N∑
i=1

( log(yi −Dθ(Gw(I
LR
i )))+

log(yi −Dθ(I
HR
i ))).

(6)

Our classification loss plays two roles, where the first is
to distinguish whether the high-resolution images, includ-
ing both the generated and the natural real high-resolution
images, are faces or non-faces in the discriminator network.
The other role is to promote the generator network to recon-
struct sharper images.

Objective function. Based on above analysis, we in-
corporate the adversarial loss Eq(5) and classification loss
Eq(6) into the pixel-wise MSE loss Eq(4). The GAN net-

work can be trained by the objective function Eq(7):

max
θ

min
w

1

N

N∑
i=1

α(log(1−Dθ(Gw(I
LR
i ))) + logDθ(I

HR
i ))

+ (||G1w1
(ILRi )− IHRi ||2 + ||G2w2

(G1w1
(ILRi ))− IHRi ||2)

+ β(log(yi −Dθ(Gw(I
LR
i ))) + log(yi −Dθ(I

HR
i ))),

(7)
where α and β are trade-off weights.

For better gradient behavior, we optimize the objective
function in an alternative way as in [17, 12, 10] and modify
the loss function of generatorG and the discriminatorD as:

min
w

1

N

N∑
i=1

α log(1−Dθ(Gw(I
LR
i )))+

(||G1w1
(ILRi )− IHRi ||2 + ||G2w2

(G1w1
(ILRi ))− IHRi ||2)+

β log(yi −Dθ(Gw(I
LR
i ))),

(8)
and

min
θ

1

N

N∑
i=1

−((log(1−Dθ(Gw(I
LR
i ))) + logDθ(I

HR
i ))+

(log(yi −Dθ(Gw(I
LR
i ))) + log(yi −Dθ(I

HR
i )))).

(9)
The loss function of generator G in Eq(8) consists of ad-

versarial loss Eq(5), MSE loss Eq(4) and classification loss
Eq(6), which enforce the reconstructed images to be sim-
ilar to the real natural high-resolution image on the high-
frequency details, pixel, and semantic level respectively.
The loss function of discriminatorD in Eq(9) introduces the
classification loss to classify whether the high-resolution
images are faces or non-faces, which is parallel to the ba-
sic formulation of GAN [8] to distinguish whether the high-
resolution images are fake or real. By introducing the classi-
fication loss, the recovered images from generator are more
realistic than the results optimized by the adversarial loss
and MSE loss. Further ablation analysis on the influence of
each loss function is presented in Section 4.3.

4. Experiments
In this section, we experimentally validate our pro-

posed method on two public face detection benchmarks (i.e.



WIDER FACE [31] and FDDB [13]). First, we conduct
an ablation experiment to prove the effectiveness of GAN.
Then, we give a detailed analysis on the importance of each
loss in the generator and discriminator network. Finally, our
proposed face detector is evaluated on both of these public
benchmarks, while comparing the performance against oth-
er state-of-the-art approaches.

4.1. Training and Validation Datasets

We use a recently released large-scale face detection
benchmark, the WIDER FACE dataset [31]. It contains
32,203 images, which are selected from the publicly avail-
able WIDER dataset. 40%/10%/50% of the data is random-
ly selected for training, validation, and testing, respective-
ly. Images in WIDER FACE are categorized into 61 so-
cial event classes, which have much more diversities and
are closer to the real-world scenario. Therefore, we use this
dataset for training and validating the proposed generator
and discriminator networks.

The WIDER FACE dataset is divided into three subsets,
Easy, Medium, and Hard, based on the heights of the ground
truth faces. The Easy/Medium/Hard subsets contain faces
with heights larger than 50/30/10 pixels respectively. Com-
pared to the Medium subset, the Hard one contains many
faces with a height between 10−30 pixels. As expected, it
is quite challenging to achieve good detection performance
on the Hard subset.

4.2. Implementation Details

In the generator network, we set the trade-off weights
α = 0.001 and β = 0.01. During training, we use the Adam
optimizer [16] with momentum term β1 = 0.9. The genera-
tor network is trained from scratch and the weights in each
layer are initialized with a zero-mean Gaussian distribu-
tion with standard deviation 0.02, and biases are initialized
with 0. To avoid undesirable local optima, we first train an
MSE-based SR network to initialize the generator network.
For the discriminator network, we employ the VGG19 [22]
model pre-trained on ImageNet as our backbone network
and we replace all the fc layers with two parallel fc lay-
ers. The fc layers are initialized by a zero-mean Gaussian
distribution with standard deviation 0.1, and all biases are
initialized with 0.

Our baseline MB-FCN detector is based on ResNet50
network [9], which is pre-trained on ImageNet. All hyper-
parameters of the MB-FCN detector are the same as [1]. For
training our generator and discriminator network, we crop
face samples and non-face samples from WIDER FACE
[31] training set with our baseline detector. The correspond-
ing low-resolution images are generated by down-sampling
the high-resolution images using the bicubic interpolation
with a factor 4. During testing, 600 regions of interest
(ROIs) are cropped and these ROIs are fed to our GAN net-

Method Easy Medium Hard

Baseline[1] 0.932 0.922 0.858
w/o Refinement Network 0.940 0.929 0.863

w/o adv loss 0.935 0.925 0.867
w/o clc loss 0.936 0.927 0.865

Ours(Baseline+MES+adv+clc) 0.944 0.933 0.873

Table 2. Performance of the baseline model trained with and with-
out GAN, refinement network, adversarial loss and classification
loss on the WIDER FACE invalidation set. “adv” denotes ad-
versarial loss Eq(5), “clc” represents classification loss Eq(6) and
“MES” means pixel-wise loss Eq(4).

work to give the final detection performance.
All the GAN variants are trained with first 3 epochs at a

learning rate of 10−4 and another 3 epochs at a lower learn-
ing rate of 10−5. We alternately update the generator and
discriminator network, which is equivalent to k = 1 as in
[8]. Our implementation is based on tensorflow, and all the
experiments are done on an NVIDIA TITAN X GPU.

4.3. Ablation Studies

We first compare our proposed method with the base-
line detector to prove the effectiveness of GAN. Moreover,
we perform the ablation study by removing the refinement
network to validate the effectiveness of refinement network.
Finally, to validate the contribution of each loss, including
adversarial loss and classification loss in the loss function
of generator network, we also conduct ablation studies by
cumulatively adding each of them to the pixel-wise loss.

Influence of the GAN. Table 2 (the 1st and the 5th row)
shows the detection performance (AP) of the baseline de-
tector and our method on WIDER FACE validation set. Our
baseline detector is a multi-branch RPN face detector with
skip connection of feature maps, and please refer to [1]for
more detailed information . From Table 2 we observe that
the performance of our detector outperforms the baseline
detector by a large margin (1.5% in AP) on the Hard subset.
The reason is that the baseline detector performs the down-
sampling operations (i.e. convolution with stride 2) on the
small faces. The small faces themselves contain limited in-
formation, and the majority of the detailed information will
be lost after several convolutional operations. For exam-
ple, the input is a 16×16 face, and the result is 1×1 on the
C4 feature map and nothing is reserved on the C5 feature
map. Based on those limited features, it is normal to get the
poor detection performance. In contrast, our method first
learns a super-resolution image and then refines it, which
solves the problem that the original small blurry faces lack
detailed information and blurring simultaneously. Based on
the super-resolution images with fine details, the boosting
of the detection performance is inevitable.

Influence of the refinement network. From Table 2



Figure 3. On the WIDER FACE validation set, we compare our method with several state-of-the-art methods: MSCNN[31], MTTCNN[33],
CMS-RCNN[37], HR[10], SSH[19], SFD[35]. The average precision (AP) is reported in the legend. Best viewed in color.

(the 2nd and 5th row), we see that the AP performance
increases by 1% on the Hard subset by adding the refine-
ment sub-network to the generator network. Interestingly,
the performances of Easy and Medium subset also have an
improvement (0.4%). We visualize the reconstructed faces
from the generator network and find that our refinement net-
work can reduce the influence of illumination and blur as
shown in Figure 4. In some cases, the baseline detector fails
to detect the faces if those faces are heavily blurred or illu-
minated. However, our method reduces influence of such
attributions and can find these faces successfully. Here, we
would like to note that our framework is not specific and
any off-the-shelf face detectors can be used as our baseline.

Influence of the adversarial loss. From Table 2 (the
3rd and 5th row), we see that the AP performance drops by
about 1% without the adversarial loss. The reason is that
the generated images derived by pixel-wise loss and clas-
sification loss are over smooth. Upon close inspecting the
generated images, we find that the fine details around eyes
are of low quality. Since these details are not important fea-
tures for the discriminator, the generator can still fool the
discriminator when making mistakes in this region. To en-
courage the generator to restore the high-quality images, we
include the adversarial loss in our generator loss function.

Influence of the classification loss. From Table 2 (the
4th and 5th row), we see that the AP performance increases
by about 1% with the classification loss. This is because the
classification loss promotes the generator to recover the fine
details for easier classification. We find that the generated
faces have clearer contour when adding the classification
loss. We think the contour information may be the most im-
portant evidence for the discriminator to classify face/non-
face when faces are too small and heavily blurred.

4.4. Comparison with the State-of-the-Art

We compare our proposed method with state-of-the-art
methods on two public face detection benchmarks (i.e.

Figure 4. Some examples of the clear faces generated by our gen-
erator network from the blurry ones. The top row shows the s-
mall faces influenced by blur and illumination, and the bottom
row shows the clearer faces generated by our method. The low-
resolution images in the top row are re-sized for visualization.

WIDER FACE [31] and FDDB [13]).

Evaluation on WIDER FACE. We compare the our
method with the state-of-the-art face detectors [31, 33, 37,
10, 19, 35]. Figure 3 shows the performance on WIDER
FACE validation set. From Figure 3, we see that our method
achieves the highest performance (i.e. 87.3%) on the Hard
subset, outperforming the state-of-the-art face detector by
more than 2%. Compared to these CNN-based methods,
the boosting of our performance mainly comes from three
contributions: (1) our up-sampling sub-network in the gen-
erator learns a super-resolution image, which reduces too
much information loss caused by down-sampling while im-
plementing convolution operations on small faces; (2) the
refinement sub-network in the generator learns finer details
and reconstructs clearer images. Based on the clear super-
resolution images, it is easier for the discriminator to classi-
fy faces or non-faces than depending on the low-resolution
blurry images; (3) the classification loss Eq(6) promotes the
generator to learn a clearer face contour for easier classifi-
cation. Furthermore, we also get the highest performance
(94.4%/93.3%) on the Easy/Medium subset, outperforming
the state-of-the-art face detector by 0.7% and 0.9% respec-
tively. This is because some big faces are heavily influenced
by illumination and blur, as shown in Figure 4. As a result,



Figure 5. Qualitative detection results of our proposed method. Green bounding boxes are ground truth annotations and red bounding boxes
are the results from our method. Best seen on the computer, in color and zoomed in.

Figure 6. On the FDDB dataset, we compare our method against
many state-of-the-art methods. The precision rate with 500 false
positives is reported. Best viewed in color and zoomed in.

CNN-based methods fail to detect these faces. However,
our method alleviates the influence of these attributions and
finds these faces successfully.

Evaluation on FDDB.We follow the standard metrics
(i.e. precision at specific false positive rates) of the FDDB
[13] and use this metric to compare with other methods.
There are many unlabeled faces in FDDB, making precision
not accurate at small false positive rates. Hence, we report
the precision rate at 500 false positives. Our face detector
achieves a superior performance (0.973) over all other state-
of-the-art face detectors except SFD [35] detector, as shown
in Figure 6. We would like to note that the performance of
SFD [35] is achieved after manually adding 238 unlabeled
faces on the test set. However, we test our model on the
original labeled test set. Under such an unfair condition,
our method still gets the comparable performance, which
further proves the effectiveness of our method.

4.5. Qualitative Results

In Figure 5, we show some detection results generated
by our proposed method. It can be found that our face de-
tector successfully finds almost all the faces, even though
some faces are very small and blurred. However, Figure 5
also shows some failure cases including some false positive
results. These results indicate that more progress is need-
ed to further improve the small face detection performance.
Future work will address this problem by adding the context
to detecting these more challenging small faces.

5. Conclusion

In this paper, we propose a new method by using GAN
to find small faces in the wild. In the generator network,
we design a novel network to directly generate a clear
super-resolution image from a blurry small one, and our
up-sampling sub-network and refinement sub-network are
trained in an end-to-end way. Moreover, we introduce
an extra classification branch to the discriminator network,
which can distinguish the fake/real and face/non-face simul-
taneously. Furthermore, the classification loss is brought to
generator network to restore a clearer super-resolution im-
age. Extensive experiments on WIDER FACE and FDDB
demonstrate the substantial improvements of our method
in the Hard subset, as well as in the Easy/Medium subset,
when compared to previous state-of-the-art face detectors.
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