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Abstract

To reduce the significant redundancy in deep Convo-
lutional Neural Networks (CNNs), most existing methods
prune neurons by only considering the statistics of an indi-
vidual layer or two consecutive layers (e.g., prune one layer
to minimize the reconstruction error of the next layer), ig-
noring the effect of error propagation in deep networks. In
contrast, we argue that for a pruned network to retain its
predictive power, it is essential to prune neurons in the en-
tire neuron network jointly based on a unified goal: min-
imizing the reconstruction error of important responses in
the “final response layer” (FRL), which is the second-to-
last layer before classification. Specifically, we apply fea-
ture ranking techniques to measure the importance of each
neuron in the FRL, formulate network pruning as a binary
integer optimization problem, and derive a closed-form so-
lution to it for pruning neurons in earlier layers. Based on
our theoretical analysis, we propose the Neuron Importance
Score Propagation (NISP) algorithm to propagate the im-
portance scores of final responses to every neuron in the
network. The CNN is pruned by removing neurons with least
importance, and it is then fine-tuned to recover its predictive
power. NISP is evaluated on several datasets with multiple
CNN models and demonstrated to achieve significant accel-
eration and compression with negligible accuracy loss.

1. Introduction

CNNs require a large number of parameters and high
computational cost in both training and testing phases. Re-
cent studies have investigated the significant redundancy
in deep networks [6] and reduced the number of neurons
and filters [3, 13, 22, 26] by pruning the unimportant ones.

∗This work was done while the author was at the University of Mary-
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Figure 1. We measure the importance of neurons in the final re-
sponse layer (FRL), and derive Neuron Importance Score Propa-
gation (NISP) to propagate the importance to the entire network.
Given a pre-defined pruning ratio per layer, we prune the neu-
rons/filters with lower importance score. We finally fine-tune the
pruned model to recover its predictive accuracy.

However, most current approaches that prune neurons and
filters consider only the statistics of one layer (e.g., prune
neurons with small magnitude of weights [22, 13]), or two
consecutive layers [26] to determine the “importance” of
a neuron. These methods prune the “least important” neu-
rons layer-by-layer either independently [13] or greedily
[22, 26], without considering all neurons in different layers
jointly.

One problem with such methods is that neurons deemed
unimportant in an early layer can, in fact, contribute signifi-
cantly to responses of important neurons in later layers. Our
experiments (see Sec.4.4) reveal that greedy layer-by-layer
pruning leads to significant reconstruction error propaga-
tion, especially in deep networks, which indicates the need
for a global measurement of neuron importance across dif-
ferent layers of a CNN.

To address this problem, we argue that it is essential
for a pruned model to retain the most important responses



of the second-to-last layer before classification—final re-
sponse layer (FRL)—to retrain its predictive power, since
those responses are the direct inputs of the classification
task (which is also suggested by feature selection meth-
ods, e.g., [31]). We define the importance of neurons in
early layers based on a unified goal: minimizing the recon-
struction errors of the responses produced in the FRL. We
first measure the importance of responses in the FRL by
treating them as features and applying some feature rank-
ing techniques (e.g., [31]), then we propagate the impor-
tance of neurons backwards from the FRL to earlier lay-
ers. We prune only nodes which have low propagated im-
portance (i.e., those whose removal does not result in large
propagated error). From a theoretical perspective, we for-
mulate the network pruning problem as a binary integer
programming objective that minimizes the weighted `1 dis-
tance (proportional to the importance scores) between the
original final response and the one produced by a pruned
network. We obtain a closed-form solution to a relaxed ver-
sion of this objective to infer the importance score of ev-
ery neuron in the network. Based on this solution, we de-
rive the Neuron Importance Score Propagation (NISP) al-
gorithm, which computes all importance scores recursively,
using only one feature ranking of the final response layer
and one backward pass through the network, as illustrated
in Fig. 1.

The network is then pruned based on the inferred neuron
importance scores and fine-tuned to recover the predictive
capability lost as a result of pruning. We treat the pruning
ratio per layer as a pre-defined hyper-parameter, which can
be determined based on different needs of specific applica-
tions (e.g., FLOPs, memory and accuracy constraints). The
pruning algorithm is generic, since feature ranking can be
applied to any layer of interest and the importance scores
can still be propagated. In addition, NISP is not hardware
specific. Given a pretrained model, NISP outputs a smaller
network of the same type, which can be deployed on the
hardware devices designed for the original model.

We evaluate our approach on MNIST [21], CIFAR10
[19] and ImageNet [5] using multiple standard CNN ar-
chitectures such as LeNet [21], AlexNet [20], GoogLeNet
[34] and ResNet [14]. Our experiments show that CNNs
pruned by our approach outperform those with the same
structures but which are either trained from scratch or ran-
domly pruned. We demonstrate that our approach outper-
forms magnitude-based and layer-by-layer pruning. A com-
parison of the theoretical reduction of FLOPs and number
of parameters of different methods shows that our method
achieves faster full-network acceleration and compression
with lower accuracy loss, e.g., our approach loses 1.43%
accuracy on Alexnet and reduces FLOPs by 67.85% while
Figurnov et al. [11] loses more (2%) and reduces FLOPs
less (50%). With almost zero accuracy loss on ResNet-56,

we achieve a 43.61% FLOP reduction, significantly higher
than the 27.60% reduction by Li et al. [22].

1.1. Contribution

We introduce a generic network pruning algorithm, for-
mulating the pruning problem as a binary integer optimiza-
tion and deriving a closed-form solution based on final re-
sponse importance. We present NISP to efficiently propa-
gate the importance scores from final responses to all other
neurons. Experiments demonstrate that NISP leads to full-
network acceleration and compression for all types of layers
in a CNN with small accuracy loss.

2. Related Work
There has been recent interest in reducing the redun-

dancy of deep CNNs to achieve acceleration and compres-
sion. In [6] the redundancy in the parameterization of deep
learning models has been studied and demonstrated. Cheng
et al. [2] exploited properties of structured matrices and
used circulant matrices to represent FC layers, reducing
storage cost. Han et al. [13] studied weight sparsity and
compressed CNNs by combining pruning, quantization, and
Huffman coding. Sparsity regularization terms have been
use to learn sparse CNN structure in [23, 35, 33]. Miao et
al. [27] studied network compression based on float data
quantization for the purpose of massive model storage.

To accelerate inference in convolution layers, Jaderberg
et al. [16] constructed a low rank basis of filters that are
rank-1 in the spatial domain by exploiting cross-channel or
filter redundancy. Liu et al. [25] imposed a scaling factor in
the training process and facilitated one channel-level prun-
ing. Figurnov et al. [11] speeded up the convolutional lay-
ers by skipping operations in some spatial positions, which
is based on loop perforation from source code optimization.
In [7, 39, 18], low-rank approximation methods have been
utilized to speed up convolutional layers by decomposing
the weight matrix into low-rank matrices. Molchanov et al.
[28] prune CNNs based on Taylor expansion.

Focusing on compressing the fully connected (FC) lay-
ers, Srinivas et al. [32] pruned neurons that are similar to
each other. Yang et al. [37] applied the “Fastfood” trans-
form to reparameterize the matrix-vector multiplication of
FC layers. Ciresan et al. [3] reduced the parameters by ran-
domly pruning neurons. Chen et al. [1] used a low-cost
hash function to randomly group connection weights into
hash buckets and then fine-tuned the network with back-
propagation. Other studies focused on fixed point computa-
tion rather than exploiting the CNN redundancy [4, 29]. An-
other work studied the fundamental idea about knowledge
distillation [15]. Wu et al. [36] proposed to skip layers for
speeding up inference. Besides the above work which fo-
cuses on network compression, other methods speedup deep
network inference by refining the pipelines of certain tasks



[30, 12, 38, 24]. Our method prunes a pre-trained network
and requires a fast-converging fine-tuning process, rather
than re-training a network from scratch. The exact impor-
tance of neurons in a CNN is very hard to obtain given
the complexity introduced by nonlinearities. Some previ-
ous works [8, 9, 10] approximate it using 2nd-order Taylor
expansion. Our work is a different approximation, based on
the Lipschitz continuity of a neural network.

Most similar to our approach, Li et al. [22] pruned filters
by their weight magnitude. Luo et al. [26] utilized statistics
information computed from the next layer to guide a greedy
layer-by-layer pruning. In contrast, we measure neuron im-
portance based not only on a neuron’s individual weight but
also the properties of the input data and other neurons in
the network. Meanwhile, instead of pruning layer-by-layer
in greedy fashion under the assumption that one layer can
only affect its next layer, which may cause error propaga-
tion, we measure the importance across the entire network
by propagating the importance from the final response layer.

3. Our Approach
An overview of NISP, our proposed algorithm, is illus-

trated in Fig. 1. Given a trained CNN, we first apply a fea-
ture ranking algorithm on the final response layer and ob-
tain the importance score of each neuron. Then, NISP prop-
agates importance scores throughout the network. Finally,
the network is pruned based on the importance scores of
neurons and fine-tuned to recover its accuracy.

3.1. Feature Ranking on the Final Response Layer

Our intuition is that the final responses of a neural net-
work should play key roles in full network pruning since
they are the direct inputs of the classification task. So, in the
first step, we apply feature ranking on the final responses.

It is worth noting that our method can work with any
feature selection technique that scores features w.r.t. their
classification power. We employ the recently introduced fil-
tering method Inf-FS [31] because of its efficiency and ef-
fectiveness on CNN feature selection. Inf-FS utilizes prop-
erties of the power series of matrices to efficiently compute
the importance of a feature with respect to all the other fea-
tures, i.e., it is able to integrate the importance of a feature
over all paths in the affinity graph1.

3.2. Neuron Importance Score Propagation (NISP)

Our goal is to decide which intermediate neurons to
delete, given the importance scores of final responses, so
that the predictive power of the network is maximally re-
tained. We formulate this problem as a binary integer pro-

1Details of the method are introduced in [31] and its codes taken from
https://www.mathworks.com/matlabcentral/fileexchange/

54763-infinite-feature-selection-2016.

… …
…

…

FRL

… …
Input

Backward

0.18 0.98

0.75

0.23

0.62

0.87

0.56

0.71

0.12

0.56

0.91

0.81 0.20

0.11

0.07

0.88

0.71

0.92

0.61

0.79

Figure 2. We propagate the neuron importance from the final re-
sponse layer (FRL) to previous layers, and prune bottom-ranked
neurons (with low importance scores shown in each node) given
a pre-defined pruning ratio per layer in a single pass. The impor-
tance of pruned neurons (with backslash) is not propagated.

gramming (optimization) and provide a closed-form ap-
proximate solution. Based on our theoretical analysis, we
develop the Neuron Importance Score Propagation algo-
rithm to efficiently compute the neuron importance for the
whole network.

3.2.1 Problem Definition

The goal of pruning is to remove neurons while minimiz-
ing accuracy loss. Since model accuracy is dependent on
the final responses, we define our objective as minimizing
the weighted distance between the original final responses
and the final responses after neurons are pruned of a spe-
cific layer. We use bold symbols to represent vectors and
matrices.

Most neural networks can be represented as a nested
function. Thus, we define a network with depth n as a func-
tion F (n) = f (n) ◦ f (n−1) ◦ · · · ◦ f (1). The l-th layer f (l) is
represented using the following general form,

f (l)(x) = σ(l)(w(l)x+ b(l)), (1)

where σ(l) is an activation function and w(l),b(l) are weight
and bias, and f(n) represents the ”final response layer”. Net-
works with branch connections such as the skip connec-
tion in ResNet can be transformed to this representation by
padding weights and merging layers.

We define the neuron importance score as a non-negative
value w.r.t. a neuron, and use sl to represent the vector of
neuron importance scores in the l-th layer. Suppose Nl neu-
rons are to be kept in the l-th layer after pruning; we define
the neuron prune indicator of the l-th layer as a binary vec-
tor s∗l , computed based on neuron importance scores sl such
that s∗l,i = 1 if and only if sl,i is among top Nl values in sl.

3.2.2 Objective Function

The motivation of our objective is that the difference be-
tween the responses produced by the original network and

https://www.mathworks.com/matlabcentral/fileexchange/54763-infinite-feature-selection-2016
https://www.mathworks.com/matlabcentral/fileexchange/54763-infinite-feature-selection-2016


the one produced by the pruned network should be mini-
mized w.r.t. important neurons. Let F (n) be a neural net-
work with n layers. Suppose we have a dataset of M sam-
ples, and each is represented using x

(m)
0 . For the m-th sam-

ple, we use x
(m)
l to represent the response of the l-th layer

(which is the input to the (l + 1)-th layer). The final output
of the network is x

(m)
n and its corresponding non-negative

neuron importance is sn. We define

G(i,j) = f (j) ◦ f (j−1) ◦ · · · ◦ f (i) (2)

as a sub-network of F (n) starting from the i-th layer to the
j-th layer. Our goal is to compute for the l-th layer the neu-
ron prune indicator s∗l so that the influence of pruning the
l-th layer on the important neurons of the final response is
minimized. To accomplish this, we define an optimization
objective w.r.t. the l-th layer neuron prune indicator, i.e.,

argmin
s∗l

M∑
m=1

F(s∗l |x
(m)
l , sn;G

(l+1,n)) , (3)

which is accumulated over all samples in the dataset. The
objective function for a single sample is defined as

F(s∗l |x, sn;F ) = 〈 sn, |F (x)− F (s∗l � x)| 〉 , (4)

where 〈·, ·〉 is dot product, � is element-wise product and
| · | is element-wise absolute value. The solution to Eq. 3
indicates which neurons should be pruned in an arbitrary
layer.

3.2.3 Solution

The network pruning problem can be formulated as a binary
integer program, finding the optimal neuron prune indicator
in Eq. 3. However, it is hard to obtain efficient analytical so-
lutions by directly optimizing Eq. 3. So, we derive an upper
bound on this objective, and show that a sub-optimal solu-
tion can be obtained by minimizing the upper bound. Inter-
estingly, we find a feasible and efficient formulation for the
importance scores of all neurons based on this sub-optimal
solution.

Recall that the k-th layer is defined as f (k)(x) =
σ(k)(w(k)x+b(k)). We assume the activation function σ(k)

is Lipschitz continuous since it is generally true for most
of the commonly used activations in neural networks such
as Identity, ReLU, sigmoid, tanh, PReLU, etc. Then we
know for any x,y, there exists a constant C(k)

σ such that
|σ(k)(x)− σ(k)(y)| ≤ C(k)

σ |x− y|. Then it is easy to see

|f (k)(x)− f (k)(y)| ≤ C(k)
σ |w(k)| · |x− y| , (5)

where | · | is the element-wise absolute value. From Eq. 2,
we see that G(i,j) = f (j) ◦G(i,j−1). Therefore, we have,

|G(i,j)(x)−G(i,j)(y)|
≤ C(j)

σ |w(j)||G(i,j−1)(x)−G(i,j−1)(y)| . (6)

Applying Eq. 5 and Eq. 6 repeatedly, we have, ∀i ≤ j ≤ n,

|G(i,n)(x)−G(i,n)(y)| ≤ C(i,n)
Σ W(i,n)|x− y|, (7)

where W(i,j) = |w(j)||w(j−1)| · · · |w(i)|, and C
(i,j)
Σ =∏j

k=i C
(k)
σ . Substituting x = x

(m)
l ,y = s∗l�x

(m)
l , i = l+1

into Eq. 7, we have

|G(l+1,n)(x
(m)
l )−G(l+1,n)(s∗l � x

(m)
l )|

≤ C(l+1,n)
Σ W(l+1,n)|x(m)

l − s∗l � x
(m)
l | . (8)

Since sn is a non-negative vector,

F(s∗l |x
(m)
l , sn;G

(l+1,n))

= 〈sn, |G(l+1,n)(x
(m)
l )−G(l+1,n)(s∗l � x

(m)
l )|〉 (9)

≤ 〈sn, C(l+1,n)
Σ W(l+1,n)|x(m)

l − s∗l � x
(m)
l |〉 (10)

= C
(l+1,n)
Σ 〈W(l+1,n)ᵀsn, (1− s∗l )� |x

(m)
l |〉 . (11)

Let us define rl = W(l+1,n)ᵀsn; then∑M
m=1 F(s∗l |x

(m)
l , sn;G

(l+1,n))

≤ C(l+1,n)
Σ

∑M
m=1〈rl, (1− s∗l )� |x

(m)
l |〉 (12)

≤ C(l+1,n)
Σ

∑M
m=1

∑
i rl,i(1− s∗l,i)|x

(m)
l,i | (13)

= C
(l+1,n)
Σ

∑
i rl,i(1− s∗l,i)

∑M
m=1 |x

(m)
l,i | . (14)

Since |x(m)
l,i | is bounded, there must exist a constantCx such

that
∑M
m=1 |x

(m)
l,i | ≤ Cx,∀i. Thus, we have

M∑
m=1

F(s∗l |x
(m)
l , sn;F

(l+1)) ≤ C
∑
i

rl,i(1− s∗l,i), (15)

where C = C
(l+1,n)
Σ Cx is a constant factor.

Eq. 15 reveals an upper-bound of our objective in Eq. 3.
Thus, we minimize this upper-bound, i.e.,

argmin
s∗l

∑
i

rl,i(1− s∗l,i)⇔ argmax
s∗l

∑
i

s∗l,irl,i . (16)

The optimal solution to Eq.16 is sub-optimal with respect
to the original objective in Eq. 3, however it still captures
the importance of neurons. It is easy to see that if we keep
Nx neurons in the l-th layer after pruning, then the solution
to Eq. 16 is that s∗l,i = 1 if and only if rl,i is among the
highest Nx values in rl. According to the definition of neu-
ron prune indicator in Sec. 3.2.1, rl = W(l+1,n)ᵀsn is a
feasible solution to the importance scores of the l-th layer
response. This conclusion can be applied to every layer in
the network. Based on this result, we define the neuron im-
portance of a network as follows.



Definition 1 (Neuron importance score). Given a neural
network F (n) containing n layers and the importance score
s(n) of the last layer response, the importance score of the
k-th layer response can be computed as

sk = |w(k+1)|ᵀ|w(k+2)|ᵀ · · · |w(n)|ᵀsn, (17)

where w(i) is the weight matrix of the i-th layer.

An important property of neuron importance is that it can
be computed recursively (or propagated) along the network.

Proposition 2 (Neuron importance score propagation). The
importance score of the kth layer response can be propa-
gated from the importance score of the (k + 1)th layer by

sk = |w(k+1)|ᵀsk+1, (18)

where w(k+1) is the weight matrix of the (k + 1)th layer.

3.2.4 Algorithm

We propose the Neuron Importance Score Propagation
(NISP) algorithm (shown in Fig. 2) based on Proposition 2.
Initially, we have the importance score of every neuron in
the final response layer of the network. Definition 1 shows
that the importance score of every other layer in the network
is directly correlated with the importance of the final re-
sponse. However, instead of computing the importance ex-
pensively using Definition 1, we see from Eq. 18 that the
importance score of a lower layer can be propagated di-
rectly from the adjacent layer above it. An equivalent form
of Eq. 18 is

sk,j =
∑
i |w

(k+1)
i,j |sk+1,i, (19)

where sk,j is the importance score of the j-th neuron in the
k-th layer response.

We conclude from Eq. 19 that the importance of a neu-
ron is a weighted sum of all the subsequent neurons that are
directly connected to it. This conclusion also applies to nor-
malization, pooling and branch connections in the network
(i.e., a layer is directly connected with multiple layers)2.
The NISP algorithm starts with the importance in FRL and
repeats the propagation (Eq. 19) to obtain the importance
of all neurons in the network with a single backward pass
(Fig. 1).

3.3. Pruning Networks Using NISP

Given target pruning ratios for each layer, we propagate
the importance scores, compute the prune indicator of neu-
rons based on their importance scores and remove neurons
with prune indicator value 0. The importance propagation
and layer pruning happens jointly in a single backward pass,

2See supplementary material for more details and proofs.

and the importance of a pruned neuron is not propagated to
any further low-level layers. For fully connected layers, we
prune each individual neuron. For convolution layers, we
prune a whole channel of neurons together. The importance
score of a channel is computed as the summation of the im-
portance scores of all neurons within this channel2.

4. Experiments
We evaluate our approach on standard datasets with pop-

ular CNN networks. We first compare to random prun-
ing and training-from-scratch baselines to demonstrate the
effectiveness of our method. We then compare to two
other baselines, magnitude-based pruning and layer-by-
layer pruning to highlight the contributions of feature rank-
ing and neuron importance score propagation, respectively.
Finally, we benchmark the pruning results and compare to
existing methods such as [11, 18, 33, 22].

4.1. Experimental Setting

We conduct experiments on three datasets, MNIST [21],
CIFAR10 and ImageNet [5], for the image classification
task. We evaluate using five commonly used CNN archi-
tectures: LeNet [21], Cifar-net3, AlexNet [20], GoogLeNet
[34] and ResNet [14].

All experiments and time benchmarks are obtained us-
ing Caffe [17]. The hyper-parameter of Inf-FS is a loading
coefficient α ∈ [0, 1], which controls the influence of vari-
ance and correlation when measuring the importance. We
conduct PCA accumulated energy analysis (results shown
in the supplementary material) as suggested in [39] to guide
our choice of pruning ratios.

4.2. Comparison with Random Pruning and Train-
from-scratch Baselines

We compare to two baselines: (1) randomly pruning the
pre-trained CNN and then fine-tuning, and (2) training a
small CNN with the same number of neurons/filters per
layer as our pruned model from scratch. We use the same
experimental settings for our method and baselines except
for the initial learning rate. For training from scratch, we set
the initial learning rate to the original one, while for fine-
tuning tasks (both NISP and random pruning), the initial
learning rate is reduced by a factor of 10.

LeNet on MNIST: We prune half of the neurons in FC
layers and half of the filters in both convolution layers in
Fig. 3(a). Our method is denoted as NISPHalf, while the
baseline methods that prune randomly or train from scratch
are denoted as RandomHalf and ScratchHalf. Our method out-
performs the baselines in three aspects. First, for fine-tuning
(after pruning), unlike the baselines, our method has very
small accuracy loss at iteration 0; this implies that it retains

3https://code.google.com/p/cuda-convnet/.

https://code.google.com/p/cuda-convnet/
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Figure 3. Learning curves of random pruning and training from scratch baselines and NISP using different CNNs on different datasets. The
pruning ratio of neurons and filters is 50%. Networks pruned by NISP (orange curves) converge the fastest with the lowest accuracy loss.

the most important neurons, pruning only redundant or less
discriminative ones. Second, our method converges much
faster than the baselines. Third, our method has the smallest
accuracy loss after fine-tuning. For LeNet on MNIST, our
method only decreases 0.02% top-1 accuracy with a prun-
ing ratio of 50% as compared to the pre-pruned network.

Cifar-net on CIFAR10: The learning curves are shown
in Fig. 3(b). Similar to the observations from the experiment
for LeNet on MNIST, our method outperforms the baselines
in the same three aspects: the lowest initial loss of accuracy,
the highest convergence speed and the lowest accuracy loss
after fine-tuning. Our method has less than 1% top-1 accu-
racy loss with 50% pruning ratio for each layer.

AlexNet on ImageNet: To demonstrate that our method
works on large and deep CNNs, we replicate experiments on
AlexNet with a pruning ratio of 50% for all convolution lay-
ers and FC layers (denoted as NISPCF when we prune both
conv and FC layers). Considering the importance of FC lay-
ers in AlexNet, we compare one more scenario in which our
approach only prunes half of the filters but without pruning
neurons in FC layers (denoted as NISPC). We reduce the ini-
tial learning rate by a factor of 10, then fine-tune 90 epochs
and report top-5 accuracy loss. Fig. 3(c) shows that for both
cases (pruning both convolution and FC layers and prun-
ing only convolution layers), the advantages we observed on
MNIST and CIFAR10 still hold. Layer-wise computational
reduction analysis that shows the full-network acceleration
can be found in supplementary materials.

GoogLeNet on ImageNet: We denote the reduction lay-
ers in an inception module as “Reduce”, and the 1×1 convo-
lution layer without reduction as “1×1”. We use the quick
solver from Caffe in training. We conduct experiments be-
tween our method and the baselines for 3 pruning strategies:
(Half ) pruning all convolution layers by half; (noReduce)
pruning every convolution layer except for the reduction
layers in inception modules by half; (no1x1 ) pruning every
convolution layer by half except the 1×1 layers in inception
modules. We show results for two of them in Fig. 3(d), and
observe similar patterns to the experiments on other CNN

networks4. For all GoogLeNet experiments, we train/fine-
tune for 60 epochs and report top-5 accuracy loss.

4.3. Feature Selection v.s. Magnitude of Weights

How to define neuron importance is an open problem.
Besides using feature ranking to measure neuron impor-
tance, other methods [22, 26, 13] measure neuron impor-
tance by magnitude of weights. To study the effects of dif-
ferent criteria to determine neuron importance, we conduct
experiments by fixing other parts of NISP and only compar-
ing the pruning results with different measurements of im-
portance: 1) using feature selection method in [31] (NISP-
FS) and 2) considering only magnitude of weights (NISP-
Mag). For Magnitude-based pruning, the importance of a
neuron in the final response layer equals the absolute sum
of all weights connecting the neuron with its previous layer.
To compare only the two metrics of importance, we rank
the importance of neurons in the final response layer based
on the magnitude of their weight values, and propagate their
importance to the lower layers. Finally, we prune and fine-
tune the model in the same way as the NISP method.

For the “NISP-Mag” baseline, we use both AlexNet and
Cifar-net architectures. The learning curves of those base-
lines are shown in Fig. 4. We observe that “NISP-FS” yields
much smaller accuracy loss with the same pruning ratio than
“NISP-Mag”, but “NISP-Mag” still outperforms the ran-
dom pruning and train-from-scratch baselines, which shows
the effectiveness of NISP with different measurement of im-
portance. We employ the feature ranking method proposed
in [31] in NISP.

4.4. NISP v.s. Layer-by-Layer Pruning

To demonstrate the advantage of the NISP’s importance
propagation, we compare with a pruning method that con-
ducts feature ranking on every layer to measure the neuron
importance and prune the unimportant neurons of each layer
independently. All other settings are the same as NISP. We
call this method “Layer-by-Layer” (LbL) pruning.

4See supplementary materials for the results of noReduce.
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Figure 4. Comparison with layer-by-layer (LbL) and magnitude
based (Mag) pruning baselines. We prune 50% of neurons and fil-
ters in all layers for both CNNs. NISP-FS outperforms NISP-Mag
and LbL in terms of prediction accuracy.

One challenge for the “LbL” baseline is that the compu-
tational cost of measuring neuron importance on each layer
is huge. So we choose a small CNN structure trained on the
CIFAR10 dataset. Fig. 4(b) shows that although the “LbL”
method outperforms the baselines, it performs much worse
than NISP in terms of the final accuracy loss with the same
pruning ratio, which shows the need for measuring the neu-
ron importance across the entire network using NISP.

To further study the advantage of NISP over layer-by-
layer pruning, we define the Weighted Average Reconstruc-
tion Error (WARE) to measure the change of the important
neurons’ responses on the final response layer after pruning
(without fine-tuning) as:

WARE =

∑M
m=1

∑N
i=1 si ·

|ŷi,m−yi,m|
|yi,m|

M ·N
, (20)

where M and N are the number of samples and number of
retained neurons in the final response layer; si is the im-
portance score; yi,m and ŷi,m is the response on the mth

sample of the ith neuron before/after pruning.
We design different Cifar-net-like CNNs with different

numbers of Conv layers, and apply NISP and LbL prun-
ing with different pruning ratios. We report the WARE on
the retained neurons in the final response layer (“ip1” layer
in Cifar-net-like CNNs) in Fig. 5. We observe that: 1) As
network depth increases, the WARE of the LbL-pruned net-
work dramatically increases, which indicates the error prop-
agation problem of layer-by-layer pruning, especially when
the network is deep, and suggests the need for a global prun-
ing method such as NISP; 2) The WARE of the LbL method
becomes much larger when the pruning ratio is large, but
is more stable when using NISP to prune a network; 3)
NISP methods always reduce WARE on the retained neu-
rons compared to LbL. The small reconstruction errors on
the important neurons in the final response layer obtained by
NISP provides a better initialization for fine-tuning, which
leads to much lower accuracy loss of the pruned network.
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Figure 5. Weighted Average Reconstruction Error (WARE) on the
final responses without fine-tuning: we set pruning ratios as 25%
and 50% and evaluate the WARE on the final responses of models
with different depths pruned using NISP or LbL. It is clear that
networks pruned by NISP have the lowest reconstruction errors.

Model Accu.↓% FLOPs↓% Params.↓%

AlexNet NISP-A 1.43 67.85 33.77
on ImageNet Perforated [11] 2.00 50.00 -

NISP-B 0.97 62.69 1.96
Tucker [18] 1.70 62.55 -

NISP-C 0.54 53.70 2.91
Learning [33] 1.20 48.19 -

NISP-D 0.00 40.12 47.09

GoogLeNet NISP 0.21 58.34 33.76
on ImageNet Tucker [18] 0.24 51.50 31.88

ResNet NISP-56 0.03 43.61 42.60
on CIFAR10 56-A [22] -0.065 10.40 9.40

56-B [22] -0.02 27.60 13.70

NISP-110 0.18 43.78 43.25
110-A [22] 0.02 15.90 2.30
110-B [22] 0.23 38.60 32.40

ResNet NISP-34-A 0.28 27.32 27.14
on ImageNet NISP-34-B 0.92 43.76 43.68

Res34 [22] 1.06 24.20 -

NISP-50-A 0.21 27.31 27.12
NISP-50-B 0.89 44.01 43.82
Res50 [26] 0.84 36.79 33.67

Table 1. Compression Benchmark. [Accu.↓%] denotes the abso-
lute accuracy loss; [FLOPs↓%] denotes the reduction of computa-
tions; [Params.↓%] demotes the reduction of parameter numbers;

4.5. Comparison with Existing Methods

We compare our method with existing pruning methods
on AlexNet, GoogLeNet and ResNet, and show results in
Table 1.

We show benchmarks of several pruning strategies in
Table 1, and provide additional results in the supplemen-
tary materials. In Table 1, for AlexNet, the pruning ratio
is 50%. NISP-A denotes pruning all Conv layers; NISP-B

5A negative value here indicates an improved model accuracy.



denotes pruning all Conv layers except for Conv5; NISP-
C denotes pruning all Conv layers except for Conv5 and
Conv4; NISP-D means pruning Conv2, Conv3 and FC6 lay-
ers. For GoogLeNet, we use the similar the pruning ratios
of the 3×3 layers in [18], and we prune 20% of the reduce
layers. Our method is denoted as “NISP”.

To compare theoretical speedup, we report reduction in
the number of multiplication and the number of parameters
following [18] and [11], and denote them as [FLOPs↓%]
and [Params.↓%] in the table. Pruning a CNN is a trade-
off between efficiency and accuracy. We compare different
methods by fixing one metric and comparing the other.

On AlexNet, by achieving smaller accuracy loss (1.43%
ours vs. 2.00% [11]), our method NISP-A manages to re-
duce significantly more FLOPs (67.85%) than the one in
[11] (50%), denoted as “Perforate” in the table; compared
to the method in [33] (denoted as “Learning”), our method
NISP-C achieves much smaller accuracy loss (0.54% ours
vs. 1.20%) and prunes more FLOPs (53.70% ours vs.
48.19%). We manage to achieve 0 accuracy loss and re-
duce over 40% FLOPs and 47.09% parameters (NISP-D).
On GoogLeNet, Our method achieves similar accuracy loss
with larger FLOPs reduction (58.34% vs. 51.50%) Using
ResNet on Cifar10 dataset, with top-1 accuracy loss similar
to [22] (56-A, 56-B. 110-A and 110-B), our method reduces
more FLOPs and parameters.

We also conduct our ResNet experiments on ImageNet
[5]. We train a ResNet-34 and a ResNet-50 for 90 epochs.
For both ResNet models, we prune 15% and 25% of fil-
ters for each layer (denote as “NISP-X-A” and “NISP-X-
B” (“X” indicates the ResNet model) in Table 1), and ob-
tain 27-44% FLOPs and parameter reduction with tiny top-
1 accuracy loss, which shows superior performance when
compared with the state-of-the-art methods [22, 26].

4.6. Additional Analysis

Below, we provide case studies and ablation analysis to
help understand the proposed NISP pruning algorithm.

Similar Predictive Power of Networks Before/After
Pruning. To check whether the pruned network performs
similarly with the original network, we compare the final
classification results of the original AlexNet and the pruned
one with fine-tuning using the ILSVRC2012 validation set.
85.9% of the top 1 predictions of the two networks agree
with each other, and 95.1% top 1 predictions of the pruned
network can be found in the top 5 predictions of the origi-
nal network. The above experiments show that the network
pruned by NISP performs similarly with the original one.

Sensitivity to pruning ratios. The selection of per-layer
pruning ratios given a FLOPs budget is a challenging open
problem with a large search space. Due to time limitation,
we either choose a single pruning ratio for all layers or repli-
cate the pruning ratios of baseline methods (e.g., [18]), and
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Figure 6. Evaluations for different pruning ratios (a) LeNet: prun-
ing 75% and 90%, (b) AlexNet: pruning 75%. CNNs pruned by
NISP converge fastest with the lowest accuracy loss.

NISP achieves smaller accuracy loss, which shows the ef-
fectiveness of NISP. In practice, if time and GPU resources
permit, one can search the optimal hyper-parameters by try-
ing different pruning ratio combinations on a validation set.

We also evaluate NISP with very large pruning ratios.
We test on pruning ratios of 75% (denoted as Quarter in the
figures) and 90% using LeNet (Fig. 6(a)) (denoted as Tenth)
for both Conv and FC layers. For AlexNet (Fig. 6(b)), we
test on pruning ratios of 75% (Quarter) for both convolu-
tion and FC layers, and we test two pruning strategies: (1)
prune 75% of neurons in FC layers and filters in Conv lay-
ers, denoted as FC; and (2) only prune 75% of the convolu-
tion filters without pruning FC layers, denoted as C.

The above experiments show that NISP still outperforms
all baselines significantly with large pruning ratios, in terms
of both convergence speed and final accuracy.

5. Conclusion
We proposed a generic framework for network compres-

sion and acceleration based on identifying the importance
levels of neurons. Neuron importance scores in the layer
of interest (usually the last layer before classification) are
obtained by feature ranking. We formulated the network
pruning problem as a binary integer program and obtained a
closed-form solution to a relaxed version of the formulation.
We presented the Neuron Importance Score Propagation al-
gorithm that efficiently propagates the importance to every
neuron in the whole network. The network is pruned by re-
moving less important neurons and fine-tuned to retain its
predicative capability. Experiments demonstrated that our
method effectively reduces CNN redundancy and achieves
full-network acceleration and compression.
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