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Figure 1: Two agents in Gibson Environment for real-world perception. The agent is active, embodied, and subject to constraints of physics and space
(a,b). It receives a constant stream of visual observations as if it had an on-board camera (c). It can also receive additional modalities, e.g. depth, semantic
labels, or normals (d,e,f). The visual observations are from real-world rather than an artificially designed space.

Abstract

Developing visual perception models for active agents
and sensorimotor control in the physical world are cum-
bersome as existing algorithms are too slow to efficiently
learn in real-time and robots are fragile and costly. This
has given rise to learning-in-simulation which consequently
casts a question on whether the results transfer to real-
world. In this paper, we investigate developing real-world
perception for active agents, propose Gibson Environment
! for this purpose, and showcase a set of perceptual tasks
learned therein. Gibson is based upon virtualizing real
spaces, rather than artificially designed ones, and currently
includes over 1400 floor spaces from 572 full buildings.
The main characteristics of Gibson are: I. being from the
real-world and reflecting its semantic complexity, II. hav-
ing an internal synthesis mechanism “Goggles” enabling
deploying the trained models in real-world without needing
domain adaptation, Ill. embodiment of agents and making
them subject to constraints of physics and space.

'Named after JJ Gibson, the author of Ecological Approach to Visual
Perception, 1979. “We must perceive in order to move, but we must also
move in order to perceive” — JJ Gibson [36]

* Authors contributed equally.

1. Introduction

We would like our robotic agents to have compound
perceptual and physical capabilities: a drone that au-
tonomously surveys buildings, a robot that rapidly finds
victims in a disaster area, or one that safely delivers our
packages, just to name a few. Apart from the applica-
tion perspective, the findings supportive of a close relation-
ship between visual perception and motion are prevalent
on various fronts: evolutionary and computational biolo-
gists have hypothesized a key role for intermixing percep-
tion and locomotion in development of complex behaviors
and species [61, 91, 22]; neuroscientists have extensively
argued for a hand in hand relationship between develop-
ing perception and being active [83, 42]; pioneer roboticists
have similarly advocated entanglement of the two [14, 15].
This all calls for developing principled perception models
specifically with active agents in mind.

By perceptual active agent, we are generally referring to
an agent that receives a visual observation from the environ-
ment and accordingly effectuates a set of actions which can
lead a physical change in the environment (~manipulation)
and/or the agent’s own particulars (~locomotion). Devel-
oping such perceptual agents entails the questions of how
and where to do so.
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On the how front, the problem has been the focus of
a broad set of topics for decades, ranging from classical
control [64, 12, 50] to more recently sensorimotor con-
trol [33, 54, 55, 5], reinforcement learning [6, 73, 74], act-
ing by prediction [28], imitation learning [23], and other
concepts [59, 100]. These methods generally assume a sen-
sory observation from the environment is given and subse-
quently devise one or a series of actions to perform a task.

A key question is where this sensory observation should
come from. Conventional computer vision datasets [32, 20,

] are passive and static, and consequently, lacking for this
purpose. Learning in the physical world, though not im-
possible [38, 7, 55, 63], is not the ideal scenario. It would
bound the learning speed to real-time, incur substantial lo-
gistical cost if massively parallelized, and discount rare yet
important occurrences. Robots are also often costly and
fragile. This has led to popularity of learning-in-simulation
with a fruitful history going back to decades ago [64] and
remaining an active topic today. The primary questions
around this option are naturally around generalization from
simulation to real-world: how to ensure I. the semantic
complexity of the simulated environment is a good enough
replica of the intricate real-world, and II. the rendered visual
observation in simulation is close enough to what a camera
in real-world would capture (photorealism).

We attempt to address some of these concerns and pro-
pose Gibson, a virtual environment for training and testing
real-world perceptual agents. An arbitrary agent, e.g. a hu-
manoid or a car (see Fig. 1) can be imported, it will be then
embodied (i.e. contained by its physical body) and placed
in a large and diverse set of real spaces. The agent is subject
to constraints of space and physics (e.g. collision, gravity)
through integration with a physics engine, but can freely
perform any mobility task as long as the constraints are sat-
isfied. Gibson provides a stream of visual observation from
arbitrary viewpoints as if the agent had an on-board cam-
era. Our novel rendering engine operates notably faster than
real-time and works given sparsely scanned spaces, e.g. 1
panorama per 5-10 m?2.

The main goal of Gibson is to facilitate transferring the
models trained therein to real-world, i.e. holding up the re-
sults when the stream of images switches to come from a
real camera rather than Gibson’s rendering engine. This is
done by: first, resorting to the world itself to represent its
own semantic complexity [81, 14] and forming the environ-
ment based off of scanned real spaces, rather than artificial
ones [84, 48, 46]. Second, embedding a mechanism to dis-
solve differences between Gibson’s renderings and what a
real camera would produce. As a result, an image coming
from a real camera vs the corresponding one from Gibson’s
rendering engine look statistically indistinguishable to the
agent, and hence, closing the (perceptual) gap. This is done
by employing a neural network based rendering approach
which jointly trains a network for making renderings look

more like real images (forward function) as well as a net-
work which makes real images look like renderings (inverse
function). The two functions are trained to produce equal
outputs. The inverse function resembles deployment-time
corrective glasses for the agent, thus we call it Goggles.

Finally, we showcase a set of active perceptual tasks (lo-
cal planning for obstacle avoidance, distant navigation, vi-
sual stair climbing) learned in Gibson. Our focus in this pa-
per is on the vision aspect only. The statements should not
be viewed to be necessarily generalizable to other aspects
of learning in virtual environments, e.g. physics simulation.

Gibson Environment and our software stack are available
to public for research purposes at http://gibson.vision/.

2. Related Work

Active Agents and Control: As discussed in Sec.1, op-
erating and controlling active agents have been the focus of
a massive body of work. A large portion of them are non-
learning based [50, 27, 49], while recent methods have at-

tempted learning visuomotor policies end-to-end [100, 54]
taking advantage of imitation learning [69], reinforcement
learning [74, 41, 73, 41, 5, 6], acting by prediction [28] or

self-supervision [38, 63, 28, 62, 43]. These methods are all
potential users of (ours and other) virtual environments.

Virtual Environments for Learning: Conventionally
vision is learned in static datasets [32, 26, 57] which are
of limited use when it comes to active agent. Similarly,
video datasets [53, 66, 95] are pre-recorded and still passive.
Virtual environments have been a remedy for this, classi-
cally [64] and today [100, 34, 29, 79, 44, , 92].
Computer games, e.g. Minecraft [46], Doom [48] and
GTAS [65] have been adapted for training and benchmark-
ing learning algorithms. While these simulators are deemed
reasonably effective for certain planning or control tasks,
the majority of them are of limited use for perception and
suffer from over simplification of the visual world due
to using synthetic underlying databases and/or rendering
pipeline deficiencies. Gibson addresses some of these con-
cerns by striving to target perception in real-world via using
real spaces as its base, a custom neural network based view
synthesizer, and a baked-in adaption mechanism, Goggles.

Domain Adaptation and Transferring to Real-World:
With popularity of simulators, different approaches for do-
main adaption for transferring the results to real world has
been investigated [ 1, 25, 85, 71, 89, 93], e.g. via domain
randomization [70, 89] or forming joint spaces [77]. Our
approach is relatively simple and makes use of the fact that,
in our case, large amounts of paired data for target-source
domains are available enabling us to train forward and in-
verse models to form a joint space. This makes us a baked-
in mechanism in our environment for adaption, minimizing
the need for additional and custom adaptation.

View Synthesis and Image-Based Rendering: Render-
ing novel views of objects and scenes is one of the classic

) b}


http://gibson.vision/

Point Cloud Renderer @View Selection and Interpolation

@ Neural Net Filler

Figure 2: Overview of our view synthesis pipeline. The input is a sparse set of RGB-D Panoramas with their global camera pose. (a,b) Each RGB-D
panorama is projected to the target camera pose and rendered. (b) View Selection determines from which panorama each target pixel should be picked,
favoring panoramas that provide denser pixels for each region. (c) The pixels are selected and local gaps are interpolated with bilinear sampling. (d) A

neural network (f) takes in the interpolated image and fills in the dis-occluded regions and fixes artifacts.

problems in vision and graphics [76, 80, 87, 21, 56]. A
number of relevantly recent methods have employed neu-
ral networks in a rendering pipeline, e.g. via an encoder-
decoder like architecture that directly renders pixels [30,
52, 88] or predicts a flow map for pixels [99]. When some
from of 3D information, e.g. depth, is available in the in-
put [39, 58, 18, 78], the pipeline can make use of geometric
approaches to be more robust to large viewpoint changes
and implausible deformations. Further, when multiple im-
ages in the input are available, a smart selection mechanism
(often referred to as Image Based Rendering) can help with
lighting inconsistencies and handling more difficult and non
lambertian surfaces [40, 60, 90], compared to rendering
from a textured mesh or as such entirely geometric meth-
ods. Our approach is a combination of above in which we
geometrically render a base image for the target view, but
resort to a neural network to correct artifacts and fill in the
dis-occluded areas, along with jointly training an inverse
function for mapping real images onto the synthesized one.

3. Real-World Perceptual Environment

Gibson includes a neural network based view synthesis
(described in Sec. 3.2) and a physics engine (described in
Sec. 3.3). The underlying scene database and integrated
agents are explained in sections 3.1 and 3.3, respectively.

3.1. Gibson Database of Spaces

Gibson’s underlying database of spaces includes 572 full
buildings composed of 1447 floors covering a total area
of 211k m?. Each space has a set of RGB panoramas
with global camera poses and reconstructed 3D meshes.
The base format of the data is similar to 2D-3D-Semantics
dataset [9], but is more diverse and includes 2 orders of
magnitude more spaces. This dataset is released as asset
files within Gibson”.

We have also integrated 2D-3D-Semantics dataset [9]
and Matterport3D [16] in Gibson for optional use.

2Stanford Al lab has the copyright to all models.

3.2. View Synthesis

Our view synthesis module takes a sparse set of RGB-D
panoramas in the input and renders a panorama from an ar-
bitrary novel viewpoint. A ‘view’ is a 6D camera pose of
x,y, z Cartesian coordinates and roll, pitch, yaw angles, de-
noted as 6, ¢, y. An overview of our view synthesis pipeline
can be seen in Fig. 2. It is composed of a geometric point
cloud rendering followed by a neural network to fix arti-
facts and fill in the dis-occluded areas, jointly trained with
an inverse function. Each step is described below:

Geometric Point Cloud Rendering. Scans of real
spaces include sparsely captured images, leading to a sparse
set of sampled lightings from the scene. The quality of sen-
sory depth and 3D meshes are also limited by 3D recon-
struction algorithms or scanning devices. Reflective sur-
faces or small objects are often poorly reconstructed or en-
tirely missing. All these prevent simply rendering from tex-
tured meshes to be a sufficient approach to view synthesis.

We instead adopt a two-stage approach, with the first
stage being geometrically rendering point clouds: the given
RGB-D panoramas are transformed into point clouds and
each pixel is projected from equirectangular coordinates to
Cartesian coordinates. For the desired target view v; =
(2,95, 25,05, ¢5,7;), we choose the nearest k views in the
scene database, denoted as vj 1,v;2,...,v;. For each
view v;;, we transform the point cloud from v, ; coordi-
nate to v; coordinate with a rigid body transformation and
project the point cloud onto an equirectangular image. The
pixels may open up and show a gap in-between, when ren-
dered from the target view. Hence, the pixels that are sup-
posed to be occluded may become visible through the gaps.
To filter them out, we render an equirectangular depth as
seen from the target view v; since we have the full recon-
struction of the space. We then do a depth test and filter out
the pixels with a difference > 0.1m in their depth from the
corresponding point in the target equirectangular depth. We
now have sparse RGB points projected in equirectangulars
for each reference panorama (see Fig. 2 (a)).

The points from all reference panoramas are aggre-
gated to make one panorama using a locally weighted
mixture (see Density Map in Fig. 2 (b)). We calculate
the point density for each spatial position (average num-
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Figure 3: Loss configuration for neural network based view synthe-
sis. The loss contains two terms. The first is to transform the renderings
to ground truth target images. The second is to alter ground truth target
images to match the transformed rendering. A sample case is shown.

ber of points per pixel) of each panorama, denoted as
di,...,d;. For each position, the weight for view i is
exp(Aadi)/>_,, exp(Aadym ), Where \q is a hyperparameter.
Hence, the points in the aggregated panorama are adaptively
selected from all views, rather than superimposed blindly
which would expose lighting inconsistency and misalign-
ment artifacts.

Finally, we do a bilinear interpolation on the aggregated
points in one equirectangular to reduce the empty space be-
tween rendered pixels (see Fig. 2 (c)).

See the first row of Fig. 6 which shows the so-far out-
put still includes major artifacts, including stitching marks,
deformed objects, or large dis-occluded regions.

Neural Network Based Rendering. We use a neural
network, f, to fix artifacts and generate a more real looking
image given the output of the geometric point cloud ren-
dering. We employ a set of key novelties to produce good
results efficiently, including a stochastic identify initializa-
tion and adding color moment matching in perceptual loss.

Architecture: The architecture and hyperparameters of
our convolutional neural network f are detailed in the sup-
plementary material. We utilize dilated convolutions [96]
to aggregate contextual information. We use a 18-layer net-
work, with 3 x 3 kernels for dilated convolution layers. The
maximal dilation is 32. This allows us to achieve a large
receptive field but not shrink the size of the feature map by
too much. The minimal feature map size is § x % of the
original image size. We also use two architectures with the
number of kernels being 96 or 512, depending on whether
speed or quality is prioritized.

Identity Initialization: Though the output of the point
cloud rendering suffers from notable artifacts, it is yet quite
close to the ground truth target image numerically. Thus, an
identity function (i.e. input image=ouput image) is a good
place for initializing the neural network f at. We develop

a stochastic approach to initializing the network at identity,
to keep the weights nearly randomly distributed. We initial-
ize half of the weights randomly with Gaussian and freeze
them, then optimize the rest with back propagation to make
the network’s output the same as input. After convergence,
the weights are our stochastic identity initialization. Other
forms of identity initialization involve manually specifying
the kernel weights, e.g. [20], which severely skews the dis-
tribution of weights (mostly Os and some 1s). We found that
to lead to slower converge and poorer results.
Loss: We use a perceptual loss [45] defined as:

D(I1, o) = Y N[[Wu(Ih) = Wi(Da)lls +7 D [Ty = T2 |
1 i

For ¥, we use a pretrained VGG16 [82]. U;(]) denotes the
feature map for input image I at [-th convolutional layer.
We used all layers except for output layers. )\; is a scal-
ing coefficient normalized with the number of elements in
the feature map. We found perceptual loss to be inherently
lossy w.r.t. color information (different colors were pro-
jected on one point). Therefore, we add a term to enforce
matching statistical moments of color distribution. I; ; is
the average color vector of a 32 x 32 tile of the image which
is enforced to be matching between I and I using L1 dis-
tance and + is a mixture hyperparameter. We found our final
setup to produce superior rendering results to GAN based
losses (consistent with some recent works [19]).

3.2.1 Closing the Gap with Real-World: Goggles

With all of the imperfections in 3D inputs and point cloud
renderings, it is implausible to achieve a fully photo-
realistic rendering with neural network fixes. Thus a do-
main gap with real images would remain. Therefore, we
instead formulate the rendering problem as forming a joint
space ensuring a correspondence between rendered and real
images, and consequently, dissolving the gap [77].

If one wishes to create a mapping between domain S
and domain 7T using a function f, usually a loss with the
following form is optimized:

L =E[D(f(Z:), 1)) 6]

However, in our case the mapping from 7" (real images) to
S (renderings) is not bijective, or at least the two directions
S +— T and T — S do not appear to be equally difficult.
For example, there is no unique solution to dis-occlusion
filling, so the domain gap cannot reach zero exercising only
S +— T direction. Hence, we add another network wu to
jointly utilize 7' — S and define the objective to be mini-
mizing the distance between f(Z;) and u(Z;). Function u
is trained to alter the image taken in real-world, Z;, to look
like the corresponding rendered image after passing through
f network: f(Zs). Function u can be viewed as corrective
glasses of the agent, and hence, the naming of Goggles.
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Figure 4: Physics Integration and Embodiment. A Mujoco humanoid
model is dropped onto a stairway demonstrating a physically plausible fall
along with the corresponding visual observations by the humanoid’s eye.
The first and second rows show the physics engine view of 4 sampled time
steps and their corresponding rendered RGB views, respectively.

To avoid the trivial solution of all images collapsing to a
single point, we add the first term in the final loss to enforce
preserving a one-to-one mapping. The final loss for training
networks u and f is:

L=E[D(f(Z:), I)] + E[D(f(Zs), u(Zr))]. ()

See Fig. 3 for a visual example. D is the distance defined in
Sec 3.2. We use the same network architecture for f and u.

3.3. Embodiment and Physics Integration

Perception and physical constraints are closely related.
For instance, the perception model of a human-sized agent
should seamlessly develop the notion that it does not fit in
the gap under the door and hence should not attend such
areas when solving a navigation task; a mouse-sized agent
though could fit and its perception should attend such areas.
It is thus important for the agent to be constantly subject
to constraints of space and physics, e.g. collision, gravity,
friction, throughout learning.

We integrated Gibson with a physics engine based on
Bullet Physics [24] which supports rigid body and soft body
simulation with discrete and continuous collision detection.
We also use Bullet’s built-in fast collision handling system
to record agent’s certain interactions, such as how many
times it collides with physical obstacles. We use Coulomb
friction model by default, as scanned models do not come
with material property annotations and certain physics as-
pects, such as friction, cannot be directly simulated.

Agents: Gibson supports importing arbitrary agents with
URDFs. Also, a number of agents are integrated as entry
points, including humanoid and ant of Roboschool [4, 75],
husky car [1], drone, minitaur [3], Jackrabbot [2]. Agent
models are in ROS or Mujoco XML format.

Integrated Controllers: To enable (optionally) ab-
stracting away low-level control and robot dynamics for the
tasks that are wished to be approached in a more high-level
manner, we also provide a set of practical and ideal con-
trollers to deduce the complexity of learning to control from
scratch. We integrated a PID controller and a Nonholo-
nomic controller as well as an ideal positional controller
which completely abstracts away agent’s motion dynamics.

3.4. Additional Modalities

Besides rendering RGB images, Gibson provides addi-
tional channels, such as depth, surface normals, and seman-
tics. Unlike RGB images, these channels are more robust
to noise in input data and lighting changes, and we render
them directly from mesh files. Geometric modalities, e.g.
depth, are provided for all models and semantics are avail-
able for 52,561 m?2 of area with semantic annotations from
2D-3D-S [9] and Matterport3D [16] datasets.

Similar to other robotic simulation platforms, we also
provide configurable proprioceptive sensory data. A typical
proprioceptive sensor suite includes information of joint po-
sitions, angle velocity, robot orientation with respect to nav-
igation target, position and velocity. We refer to this typical
setup as “non-visual sensor” to distinguish from “visual”
modalities in the rest of the paper.

4. Tasks

Input-Output Abstraction: Gibson allows defining ar-
bitrary tasks for an agent. To provide a common abstrac-
tion for this, we follow the interface of OpenAl Gym [13]:
at each timestep, the agent performs an action at the envi-
ronment; then the environment runs a forward step (inte-
grated with the physics engine) and returns the accordingly
rendered visual observation, reward, and termination sig-
nal. We also provide utility functions to keyboard operate
an agent or visualize a recorded run.

4.1. Experimental Validation Tasks

In our experiments, we use a set of sample active percep-
tual tasks and static-recognition tasks to validate Gibson.
The active tasks include:

Local Planning and Obstacle Avoidance: An agent is
randomly placed in an environment and needs to travel to a
random nearby target location provided as relative coordi-
nates (similar to flag run [4]). The agent receives no infor-
mation about the environment except a continuous stream
of depth and/or RGB frames and needs to plan perceptually
(e.g. go around a couch to reach the target behind).

Distant Visual Navigation: Similar to the the previous
task, but the target location is significantly further away and
fixed. Agent’s initial location is still randomized. This is
similar to the task of auto-docking for robots from a distant
location. Agent receives no external odometry or GPS in-
formation, and needs to form a contextual map to succeed.

Stair Climb: An (ant [4]) agent is placed on on top of a
stairway and the target location is at the bottom. It needs to
learn a controller for its complex dynamics to plausibly go
down the stairway without flipping, using visual inputs.

To benchmark how close to real images the renderings
of Gibson are, we used two static-recognition tasks: depth
estimation and scene classification. We train a neural net-
work using (rendering, ground truth) pairs as training



Figure 5: Sample spaces in Gibson database. The spaces are diverse in terms of size, visuals, and function, e. g businesses, construction sites, houses.
Upper: Sample 3D models. Lower: Sample images from Gibson database (left) and some of other environments [29, 46, 67, 79, 48, 94, 35, 100] (right).

data, but test them on (real image, ground truth). If Gib-
son renderings are close enough to real images and Goggles
mechanism is effective, test results on real images are ex-
pected to be satisfactory. This also enables quantifying the
impact of Goggles, i.e. using u(Z;) vs. Zs, f(Zs), and Z;.
Depth Estimation: Predicting depth given a single RGB
image, similar to [31]. We train 4 networks to predict the
depth given one of the following 4 as input images: Z (pre-
neural network rendering), f (Zs) (post-neural network ren-
dering), u(Z;) (real image seen with Goggles), and Z; (real
image). We compare the performance of these in Sec. 5.3.
Scene Classification: The same as previous task, but the
output is scene classes rather than depth. As our images do
not have scene class annotations, we generate them using a
well performing network trained on Places dataset [98].

5. Experimental Results
5.1. Benchmarking Space Databases

The spaces in Gibson database are collected using var-
ious scanning devices, including NavVis, Matterport, or
DotProduct, covering a diverse set of spaces, e.g. offices,
garages, stadiums, grocery stores, gyms, hospitals, houses.
All spaces are fully reconstructed in 3D and post processed
to fill the holes and enhance the mesh. We benchmark
some of the existing synthetic and real databases of spaces
(SUNCG [84] and Matterport3D [16]) vs Gibson’s using the
following metrics in Table 1:

Specific Surface Area (SSA): the ratio of inner mesh
surface and volume of convex hull of the mesh. This is a
measure of clutter in the models.

Navigation Complexity: Longest A* navigation dis-
tance between randomly placed two points divided by the

straight line distance. We compute the highest navigation
dax(si,55)

complexity maxs, . dia(s1:50)

for every model.

Dataset Gibson SUNCG Matterport3D
Number of Spaces 572 45622 90
Total Coverage m> 211k 5.8M 46.6K
SSA 1.38 0.74 0.92
Nav. Complexity 5.98 2.29 7.80
Real-World Transfer Err 0928 2.89" 2117

Table 1: Benchmarking Space Databases: Comparison of Gibson
database with SUNCG [84] (hand designed synthetic), and Matter-
port3D [16]. § Rendered with Gibson, T rendered with MINOS [72].

Real-World Transfer Error: We train a neural network
for depth estimation using the images of each database and
test them on real images of 2D-3D-S dataset [9]. Train-
ing images of SUNCG and Matterport3D are rendered us-
ing MINOS [72] and our dataset is rendered using Gibson’s
engine. The training set of each database is 20k random
RGB-depth image pairs with 90° field of view. The reported
value is average depth estimation error in meters.

Scene Diversity: We perform scene classification on
10k randomly picked images for each database using a net-
work pretrained on [98]. We report the entropy of the dis-
tribution of top-1 classes for each environment. Gibson,
SUNCG [84], and THOR [100] gain the scores of 3.72,
2.89, and 3.32, respectively (highest possible entropy =
5.90).

5.2. Evaluation of View Synthesis

To train the networks f and w of our neural network
based synthesis framework, we sampled 4.3k 1024 x 2048
T—1I; panorama pairs and randomly cropped them to
256 x 256. We use Adam [51] optimizer with learning rate
2 x 10~*. We first train f for 50 epochs until convergence,
then we train f and u jointly for another 50 epochs with
learning rate 2 x 10~°. The learning finishes in 3 days on 2
Nvidia Titan X GPUs.
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Figure 6: Qualitative results of view synthesis and Goggles. Top to bottom rows show images before neural network correction, after neural network
correction, target image seen through Goggles, and target image (i.e. ground truth real image). The first column shows a pano and the rest are sample
zoomed-in patches. Note the high similarity between 2% and 37¢ row, signifying the effectiveness of Goggles.

Resolution 128x128  256x256  512x512
Non-Visual Sensor 427.9 427.9 427.9
Depth Only 159.4 113.3 79.2
RGBD Pre Network f 81.5 50.9 33.3
RGBD Post Network f 73.6 427 18.3
Semantic Only 93.1 79.5 50.9
Surface Normal 89.3 73.7 45.4

Table 2: Rendering speed (FPS) of Gibson for different resolutions and
configurations. Tested on a single NVIDIA GeForce GTX1070 card.

Sample renderings and their corresponding real image
(ground truth) are shown in Fig. 6. Note that pre-neural
network renderings suffer from geometric artifacts which
are partially resolved in post-neural network results. Also,
though the contrast of the post-neural network images is
lower than real ones and color distributions are still differ-
ent, Goggles could effectively alter the real images to match
the renderings (compare 2" and 3" rows). In additional,
the network f and Goggles u jointly addressed some of the
pathological domain gaps. For instance, as lighting fixtures
are often thin and shiny, they are not well reconstructed in
our meshes and usually fail to render properly. Network f
and Goggles learned to just suppress them altogether from
images to not let a domain gap remain. The scene out the
windows also often have large re-projection errors, so they
are usually turned white by f and .

Appearance columns in Table 3 quantify view synthe-
sis results in terms image similarity metrics L1 and SSIM.
They echo that the smallest gap is between f(Z) and u(Z;).

Rendering Speed of Gibson is provided in Table 2.

5.3. Transferring to Real-World

We quantify the effectiveness of Goggles mechanism in
reducing the domain gap between Gibson renderings and
real imagery in two ways: via the static-recognition tasks
described in Sec. 4.1 and by comparing image distributions.

Evaluation of transferring to real images via scene clas-
sification and depth estimation are summarized in Table. 3.

| Static Tasks

Test
Scene Depth Est.
Class Acc.  Error

7. 7, 0280  1.026 | 0.627 0.09%
(T | T 0266 1560 | 0.480 0.10
F(Z) | w(T) | 0291 0915 | 0.816 0.051

Appearance

Train SSIM L1

Table 3: Evaluation of view synthesis and transferring to real-world.
Static Tasks column shows on both scene classification task and depth es-
timation tasks, it is easiest to transfer from f(Zs) to u(Z¢) compared with
other cross-domain transfers. Appearance columns compare L1 and SSIM
distance metrics for different pairs showing the combination of network f
and Goggles u achieves best results.

Also, Fig. 7 (a) provides depth estimation results for all fea-
sible train-test combinations for reference. The diagonal
values of the 4 X 4 matrix represent training and testing on
the same domain. The gold standard is train and test on
T; (real images) which yields the error of 0.86. The clos-
est combination to that in the entire table is train on f(I;)
(f output) and test on u([;) (real image through Goggles)
giving 0.91, which signifies the effectiveness of Goggles.

In terms of distributional quantification, we used two
metrics of Maximum Mean Discrepancy (MMD) [37] and
CORAL [86] to test how well f(Z) and u(Z;) domains are
aligned. The metrics essentially determine how likely it is
for two samples to be drawn from different distributions.
We calculate MMD and CORAL values using the features
of the last convolutional layer of VGG16 [82] and kernel
k(z,y) = xTy. Results are summarized in Fig. 7 (b) and
(c). For each metric, f(Zs) - u(Z;) is smaller than other
pairs, showing that the two domains are well matching.

In order to quantitatively show the networks f and u do
not give degenerate solutions (i.e. collapsing all images
to few points to close the gap by cheating), we use f(Z;)
and u(Z;) as queries to retrieve their nearest neighbor using
VGG16 features from Z; and Z;, respectively. Top-1, 2 and
5 accuracies for f(Z;) — Z, are 91.6%, 93.5%, 95.6%.
Top-1, 2 and 5 accuracies for u(Z;) — Z; are 85.9%,
87.2%,89.6%. This indicates a good correspondence be-
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Figure 7: Evaluation of transferring to real-world from Gibson. (a)
Error of depth estimation for all train-test combinations. (b,c) MMD and
CORAL distributional distances. All tests are in support of Goggles.
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Figure 8: Visual Local planning and obstacle avoidance. Reward curves
for perceptual vs non-perceptual husky agents and a sample trajectory.

tween pre and post neural network images is preserved, and
thus, no collapse is observed.

5.4. Validation Tasks Learned in Gibson

The results of the active perceptual tasks discussed in
Sec. 4.1 are provided here. In each experiment, the non-
visual sensor outputs include agent position, orientation,
and relative position to target. The agents are rewarded by
the decrease in their distance towards their targets. In Lo-
cal Planning and Visual Obstacle Avoidance, they receive
an additional penalty for every collision.

Local Planning and Visual Obstacle Avoidance Re-
sults: We trained a perceptual and non-perceptual husky
agent according to the setting in Sec. 4.1 with PPO [74]
for 150 episodes (300 iterations, 150k frames). Both
agents have a four-dimensional discrete action space: for-
ward/backward/left/right. The average reward over 10 it-
erations are plotted in Fig 8. The agent with perception
achieves a higher score and developed obstacle avoidance
behavior to reach the goal faster.

Distant Visual Navigation Results: Fig. 9 shows the
target and sample random initial locations as well as the
reward curves. Global navigation behavior emerges after
1700 episodes (680k frames), and only the agent with visual
state was able to accomplish the task. The action space is
the same as previous experiment.

Also, we use the trained policy of distant navigation to
evaluate the impact of Goggles on an active task: we go to
camera locations where Z; is available. Then we measure
the policy discrepancy in terms of L2 distance of output ac-
tion logits when different renderings and Z; are provided
as input. Training on f(Z,) and testing on w(Z;) yields
discrepancy of 0.204 (best), while training on f(Zs) and
testing on Z; gives 0.300 and training on Z¢ and testing on
T, gives 0.242. After the initial release of our work, a pa-
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Figure 9: Distant Visual Navigation. The initial locations and target are
shown. The agent succeeds only when provided with visual inputs.

per recently reported an evaluation done on a real robot for
adaptation using inverse mapping from real images to ren-
derings [97], with positive results. They did not use paired
data, unlike Gibson, which would be expected to further en-
hance the results.

Stair Climb: As explained in Sec. 4.1, an ant [4] is
trained to perform the complex locomotive task of plausi-
bly climbing down a stairway without flipping. The action
space is eight dimensional continuous torque values. We
train one perceptual and one non-perceptual agent starting
at a fixed initial location, but at test time slightly and ran-
domly move their initial and target location around. They
start to acquire stair-climbing skills after 1700 episodes
(700k time steps). While the perceptual agent learned
slower, it showed better generalizability at test time cop-
ing with the location shifts and outperformed the non-
perceptual agent by 70%. Full details of this experiment
is privded in the supplementary material.

6. Limitations and Conclusion

We presented Gibson Environments for developing real-
world perception for active agents and validated it using a
set of tasks. While we think this is a step forward, there are
some limitations that should be noted. First, though Gibson
provides a good basis for learning complex navigation and
locomotion, it does not include dynamic content (e.g. other
moving objects) and does not allow manipulation at this
point. This can potentially be solved by integrating our
approach with synthetic objects [17, 47]. Second, we do
not have full material properties and no existing physics
simulator is optimal; this may lead to physics related
domain gaps. Finally, we provided quantitative evaluations
of Goggles mechanism for transferring to real world mostly
using static recognition tasks. The ultimate test would be
evaluating Goggles on real robots.
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