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Abstract

Visual question answering (VQA) and visual question
generation (VQG) are two trending topics in the computer
vision, but they are usually explored separately despite their
intrinsic complementary relationship. In this paper, we pro-
pose an end-to-end unified model, the Invertible Question
Answering Network (iQAN), to introduce question genera-
tion as a dual task of question answering to improve the
VQA performance. With our proposed invertible bilinear fu-
sion module and parameter sharing scheme, our iQAN can
accomplish VQA and its dual task VQG simultaneously. By
jointly trained on two tasks with our proposed dual regu-
larizers (termed as Dual Training), our model has a better
understanding of the interactions among images, questions
and answers. After training, iQAN can take either ques-
tion or answer as input, and output the counterpart. Evalu-
ated on the CLEVR and VQA2 datasets, our iQAN improves
the top-1 accuracy of the prior art MUTAN VQA method
by 1.33% and 0.88% (absolute increase) respectiely. We
also show that our proposed dual training framework can
consistently improve model performances of many popular
VQA architectures. 1

1. Introduction
Question answering (QA) and question generation (QG)

are two fundamental tasks in natural language process-
ing [24, 25]. Recently, two homogenous tasks, Visual Ques-
tion Answering (VQA) [38, 36, 2, 21] and Visual Ques-
tion Generation (VQG) [27, 37], have been introduced to
the computer vision field as cross-modality learning tasks.
VQA refers to answering questions based on the image,
while VQG aims at generating reasonable questions given
the image contents. Both VQA and VQG involve reasoning
between the question text and the answer text based on the
content of the given image.

In previous works, VQA and VQG are studied indepen-
dently. As shown in Fig. 1, the VQA model usually en-
codes the question sentence as an embedding q, then fuses
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Figure 1. Problem solving schemes of VQA (top) and VQG (bot-
tom), both of which utilize the 〈encoder-fusion-decoder〉 pipeline
with Q and A in inverse order. v, q and a respectively denote
the encoded features of input image, question, and answer, while
â and q̂ represent the predicted answer/question features.

q with the image feature v to infer the answer embedding
â, which is decoded as the distribution over the answer vo-
cabulary. In this work, we consider answer-based visual
question generation (termed as VQG for simplicity) as an
inverse form of VQA, which is to generate a question cor-
responding to the given image and answer. The VQG model
merges the answer embedding a and the image feature v to
get the question embedding q̂. Then q̂ is decoded to gener-
ate the question sentence. We can see that these two tasks
are intrinsically correlated, i.e. sharing visual input and tak-
ing encoder-fusion-decoder pipeline with inverse input and
output. Thus, we refer them as “Dual” tasks.

Duality reflects the inherent complementary relation be-
tween question answering and generation. Intuitively, learn-
ing to answer questions may boost the question generation
and vice versa, as both of them require similar abilities: im-
age recognition, question reasoning, cross-modal informa-
tion association, etc. Taking an image with Q/A pair “What
is around the man’s neck? Tie” as an example. Inspired
by the previous works on visual relationships [17, 18], the
image can be viewed as a visual relationship 〈tie-around-
neck〉. VQA is to infer 〈tie〉 given the description 〈around-
neck〉, while VQG is to generate a question describing the
visual information most related to the answer 〈tie〉. VQG
and VQA can be viewed as two inverse reasoning processes
on related semantics. Thus, joint learning through these two
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tasks can utilize the training data in a more efficient way,
and bring mutual improvements to both VQA and VQG. So
we formulate the dual training of VQA and VQG as learn-
ing an invertible cross-modality fusion model that can infer
Q or A when given the counterpart conditioned on the given
image.

From this perspective, we derive an invertible fusion
module, Dual MUTAN, based on a popular VQA model
MUTAN [3]. The module can complete the feature infer-
ence in a bidirectional manner, i.e. it can infer the answer
embeddings from image+question and the question embed-
dings from image+answer. Furthermore, by sharing the vi-
sual encoder as well as the encoder and decoder of the ques-
tion and answer, VQG and VQA models can be viewed as
the two inverse forms of one model. When the model is
jointly trained on the two tasks, the invertibility brought by
our parameter sharing schemes can help to regularize the
training process to learn more general representations. In
addition, besides the label-level matching, we also intro-
duce the similarity of the question/answer embeddings of
the two tasks as extra regularizations to guide the training
process.

Contribution: In this work, by considering VQG and
VQA as dual tasks we propose a novel training framework
to introduce VQG as an auxiliary task to improve VQA
model performance. Correspondingly, we derive a uni-
fied model that can accomplish both VQA and VQG with
different forms, called Invertible Question Answering Net-
work (iQAN). The model is jointly trained with VQA and
VQG tasks and can be deployed for either task in the test-
ing stage. Additionally, a novel parameter sharing scheme
and duality regularization are proposed to explicitly lever-
age the intrinsic connections between the two tasks. Eval-
uated on VQA2 and CLEVR datasets, our proposed model
achieves better results on both VQA and VQG tasks than
MUTAN VQA method. Experimental results show that our
framework can also generalize to some other popular VQA
models and consistently improve their performances.

2. Related Work

Visual Question Answering is one of the most popular
cross-discipline tasks aiming at understanding both the im-
age, question and their interactions. Malinowski et al. pro-
pose an encoder-decoder framework to merge the visual and
textual information for answering prediction [23]. Shih et
al. introduce visual attention mechanism to highlight the
image regions relevant to answering the question [30]. Lu et
al. further apply attention to the language model, called co-
attention, to jointly reason about images and questions [20].
Apart from proposing new frameworks, some focus on de-
signing effective multimodal fusion schemes [5, 13]. The
bilinear model MUTAN proposed by Ben-younes et al. is
one of the state-of-the-art methods to model interactions be-

tween two modalities [3]. Additionally, several benchmark
datasets are proposed to facilitate the VQA research [22, 2].
VQA2 is the most popular open-ended Q-A dataset [6]
where each question is associated with a pair of similar
images that result in different answers. CLEVR was re-
cently proposed by Johnson et al. with rendered images
and automatically-generated questions to mitigate answer
biases and diagnose the reasoning ability of VQA mod-
els [10]. In the experiment part, we will evaluate our
method on these two datasets.

Visual Question Generation. Question generation
has been investigated for years in natural language pro-
cessing [1, 12, 29]. Recently, it has been introduced
to computer vision to generate image-related questions.
Mora et al. propose a CNN-LSTM model to simultane-
ously generate image-related questions and corresponding
answers [26]. Mostafazadeh et al. collect the first VQG
dataset, where each image is annotated with several ques-
tions [27]. Zhang et al. propose a model to automatically
generate visually grounded questions [37], where Dense-
cap [11] is used to generate region captions as extra infor-
mation to guide the question generation. Jain et al. combine
the variational autoencoder and LSTM to generate diverse
questions [9]. Different from the existing works to generate
question solely based on images, we provide an annotated
answer as an additional cue. Therefore, VQG can be mod-
eled as a multi-modal fusion problem like VQA.

Dual Learning. Utilizing cycle consistency to regular-
ize the training process has a long history. It has been used
as a standard trick for years in visual tracking to enforce
forward-backward consistency [31]. He et al. formulate the
idea as Dual Learning in machine translation [7], which
uses two translation models, A-to-B and B-to-A, to form two
closed translation loops A-B-A and B-A-B, and force them
translate the output of each other back to the original input.
So the models could learn the translation functions between
A and B from large quantities of unlabeled data. Tang et
al. introduce the idea to QA area, where question genera-
tion is modeled as dual task of QA, and leverage the proba-
bilistic correlation between QA and QG to guide the train-
ing [33]. Zhu et al. use the thought in the computer vision
area and propose CycleGAN to learn image-to-image trans-
lation functions in an unsupervised manner[39]. Different
from one-to-one translation problems, where there exists
large quantities of available unpaired data, visual question
answering is a multimodal fusion problem, which is hard to
model as an unsupervised learning problem. The most crit-
ical thing is to make full use of labeled data. Therefore, we
introduce VQG as a dual task of VQA and leverage their
inherent connections to boost VQA by training the model
on the two tasks.
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Figure 2. Overview of Invertible Question Answering Network (iQAN), which consists two components for VQA and VQG respectively.
The upper component is MUTAN VQA component [3], and the lower component is its dual VQG model. Input questions and answers are
encoded respectively by an RNN and a lookup table Ea into fixed-length features. With attention and MUTAN fusion module, predicted
features are obtained. The predict features are used for obtaining output (by LSTM and Wa for questions and answers respectively). A
duality and Q duality are duality regularizers to constrain the similarity between the answer and question representations in both models.
Two components share the MUTAN and Attention Modules. (·)∗ denotes the dual form. Ea also shares parameters with Wa.

3. Invertible QA Network (iQAN)
In this section, we present the dual training framework

of the VQA and VQG, Invertible Question Answering Net-
work (iQAN). The overview of our proposed iQAN is
shown in Fig. 2, which consists of two components, VQA
component (top) and VQG component (bottom).

In the VQA component, given a question, an RNN is
used for obtaining the embedded feature q ∈ Rdq , and CNN
is used to transform the input image into a feature map v.
A MUTAN-based attention module is used to generate a
question-aware visual feature vq ∈ Rdv from the image and
the question. Then another MUTAN fusion module is used
for obtaining the answer features â ∈ Rda by fusing vq

and q. Finally, a linear classifier Wa is used to predict the
answer.

In the VQG component, given an answer, a lookup table
Ea is used for obtaining the embedded feature a ∈ Rda .
CNN with attention module is used for obtaining the visual
feature va ∈ Rdv from the input image and the answer fea-
ture a. Then the MUTAN in the dual form, which shares pa-
rameters with VQA MUTAN but in a different structure, is
used for obtaining the predicted question features q̂ ∈ Rdq .
Finally, an LSTM-based decoder is employed to translate q̂
to the question sentence.

We formulate the VQA and VQG components as inverse
process to each other by introducing a novel parameter shar-
ing scheme and the duality regularizer. Consequently, we

could jointly train one model with two tasks to learn the
dependencies between questions and answers in a bidirec-
tional way. The invertibility of the model could serve as a
regular term to guide the training process.

3.1. The VQA component

The VQA component of our proposed iQAN is based on
one of the state-of-the-art VQA models, MUTAN. We will
briefly review the core part, MUTAN fusion module, which
takes an image feature vq and a question feature q as input,
and predicts the answer feature â.

3.1.1 Review on MUTAN fusion module

Since language and visual representations are in different
modalities, merging visual and linguistic features is crucial
in VQA. Bilinear models are recently used in the multi-
modal fusion problem, which encodes bilinear interactions
between q and vq as follows:

â = (T ×1 q)×2 vq (1)

where the tensor T ∈ Rdq×dv×da denotes the fully-
parametrized operator for answer feature inference, and ×i

denotes the mode-i product between a tensorX and a matrix



M:

(X ×i M) [d1, ...di−1, j, di+1...dN ] =

Di∑
di=1

X [d1...dN ]M[di, j]

(2)
To reduce the complexity of the full tensor T , Tucker

decomposition [3] is introduced as an effective way to fac-
torize T as a tensor product between factor matrices Wq ,
Wv and Wa, and a core tensor Tc:

T = ((Tc ×1 Wq)×2 Wv)×3 Wa (3)

with Wq ∈ Rtq×dq , Wv ∈ Rtv×dv and Wa ∈ Rta×da ,
and Tc ∈ Rtq×tv×ta . Consequently, we can rewrite Eq. 1
as:

â = ((Tc ×1 (Wqq))×2 (Wvvq))×3 Wa (4)

where matrices Wq and Wv transform the question fea-
tures q and image features vq into dimensions tq and tv re-
spectively. The squeezed bilinear core Tc models the inter-
actions among the transformed features and projects them
to the answer space of size ta, which is used to infer the
per-class score by Wa.

If we define q̃ = Wqq ∈ Rtq and ṽq = Wvvq ∈ Rtv ,
then we have:

ã = (Tc ×1 q̃)×2 ṽq ∈ Rta (5)

Thus, ã can be viewed as the answer feature where â =
ã> ×Wa.

To balance the complexity and expressivity of the inter-
action modeling, the low rank assumption is introduced, and
Tc [:, :, k] can be expressed as a sum of R rank-1 matrices:

Tc [:, :, k] =
R∑

r=1

mk
r ⊗ nk

r

>
(6)

with mk
r ∈ Rtq , nk

r ∈ Rtv and ⊗ denoting the outer prod-
uct. Then each element of ã can be written as:

ã [k] =

R∑
r=1

(
q̃>mk

r

) (
ṽ>q n

k
r

)
(7)

We can define R matrices Mr ∈ Rtq×ta and Nr ∈ Rtv×ta

such that Mr [:, k] = mk
r and Nr [:, k] = nk

r . Therefore,
with the low rank constraint, Eq. 5 is further simplified as:

ã =

R∑
r=1

(
q̃>Mr

)
�
(
ṽ>q Nr

)
(8)

where � denotes the element-wise product.
With MUTAN, low computational complexity and

strong expressivity of the model are both obtained for vi-
sual question answering part.
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Figure 3. The Dual MUTAN in the primal form (for VQA) and
dual form (for VQG). The two forms share one parameter set: the
core tensor T c, projection matrices of images, questions, and an-
swers. In our experiment, Wa at the top part and Wq at the bot-
tom part are merged with decoders.

3.2. The VQG component
The VQG component of our proposed iQAN is formu-

lated as generating a question (word sequence) given an im-
age and an answer label.

During training, our target is to learn a model such that
the generated question q̂ is similar to the referenced one q∗.
The generation of each word of the question can be written
as:

ŵt = argmax
w∈W

p
(
w
∣∣v, w0, ..., wt−1

)
(9)

where W denotes the word vocabulary. ŵt is the predicted
word at t step. wi represents the i-th ground-truth word.
Beam search will be used during inference.

VQG shares the visual CNN with VQA part. The an-
swer feature a ∈ Rda is directly retrieved from the answer
embedding table Ea. MUTAN is also utilized for visual at-
tention module and visual & answer representations fusion
at VQG. Similar to Eq. 8, the inference of question features
q̃ can be formulated as:

q̃ =

R∑
r=1

(
ã>M′r

)
�
(
ṽ>a N

′
r

)
(10)

with ã = Waa ∈ Rta and ṽa = Wvva ∈ Rtv . M′r and
N′r are defined as Eq. 8. The predicted question feature q̃
is fed into an RNN-based model to generate the predicted
question.

From the formulation in Eq. 8 and Eq. 10, the VQG MU-
TAN could be viewed as the conjugate form of the VQA
MUTAN. We will investigate the connection between the
two MUTAN modules in the next section.

3.3. Dual MUTAN
To leverage the duality of questions and answers, we

derive a Dual MUTAN from the original MUTAN to fin-



ish the primal (question-to-answer) and its dual (answer-
to-question) inference on the feature level with one fusion
kernel.

First we rewrite Eq. 5 and its dual form:

ã∗ = (Tc ×1 q̃)×2 ṽ

q̃∗ = (T ′c ×1 ã)×2 ṽ
′ (11)

where Tc ∈ Rtq×tv×ta , T ′c ∈ Rta×tv×tq , q̃ = Wqq,
ã = Waa, ṽ = Wvv, and ṽ′ = W′

vv. For simplicity, it is
assumed that both VQA and VQG adopt v as visual input,
which can be replaced by the post-attention feature va or
vq . Noticing both Tc and T ′c depict the interactions among
the image, question, and answer embeddings, but with dif-
ferent dimension arrangements, we assume the relationship
between T ′c and Tc as follows:

T ′c [:, i, :] = T >c [:, i, :] (12)

Additionally, the transform matrices for visual information
W′

v and Wv can also be shared. Therefore, we can unify
the question and answer embedding inference with single
three-way operator Tc:

ã∗ = (Tc ×1 q̃)×2 ṽ

q̃∗ = (Tc ×3 ã)×2 ṽ
(13)

Furthermore, since Tc[:, i, :] models the correlation between
the re-parameterized question and answer embeddings, con-
sidering the duality of Q and A, we introduce the symmetry
as an additional constraint for Tc[:, i, :]:{

ta = tq = t

Tc[:, i, :] = T >c [:, i, :], i ∈ {1, 2, ..., tv}
(14)

Correspondingly, Eq. 13 could be written as:

ã∗ = (Tc ×1 q̃)×2 ṽ

q̃∗ = (Tc ×1 ã)×2 ṽ
(15)

That is to say, we could infer ã or q̃ by just alternating the
mode-1 input of the kernel.

By introducing the low rank constraint like Eq. 8, the
inference of answer and question features ã∗ and q̃∗ can be
reformulated as:

ã∗ =

R∑
r=1

(
q̃>Mr

)
�
(
ṽ>Nr

)
q̃∗ =

R∑
r=1

(
ã>Mr

)
�
(
ṽ>Nr

) (16)

And the target answer and question embeddings are pro-
vided by:

â = ã∗> ×Wa

q̂ = q̃∗> ×Wq

(17)

As shown in Fig. 3, we unify the two MUTAN modules by
sharing parameters Wa, Wq , Wv , and Tc. And we call this
invertible module Dual MUTAN.

Furthermore, when the decoder after the dual MUTAN-
MUTAN are considered, the predicted answer embedding â
will be fed into another linear transform layer to get the per-
class score, and the question embedding q̂ will be decoded
by LSTM, both of which have linear transforms afterwards.
So the linear transforms in Eq. 17 can be skipped for effi-
ciency. And we can directly use ã∗ and q̃∗ as the predicted
features to feed into decoders.

3.4. Weight Sharing between Encoder and Decoder

Considering the duality of VQA and VQG, the encoder
and decoder of Q/A can be viewed as inverse transformation
to each other. Hence, we could employ these properties to
propose corresponding weight sharing scheme to learn bet-
ter representations through two processes.

In the VQG component, the input answer is embedded
into features a by the matrix Ea, which stores the embed-
dings of each answer. For the answer generation in the VQA
component, the predicted feature â is decoded for obtaining
the answer through a linear classifier Wa, which can be re-
garded as a set of per-class templates for the feature match-
ing. Thus, we can directly share the weights of Ea and Wa,
where Ea = WT

a , to reflect their intrinsic connections.
For input questions in the VQA component, RNN is ap-

plied to encode the question sentence into a fixed-size fea-
ture vector q. For the question generation in the VQG com-
ponent, RNN is also utilized to decode the vector back to a
word sequence. Sharing the weights of two RNNs can be
an option. But it makes no sense to use one RNN for two
different purposes. However, since question encoder and
decoder use identical word vocabulary, we can share their
word embeddings. So the two tasks could help to learn more
general word representations.

3.5. Duality Regularizer

With Dual MUTAN, we have reformulated the feature
fusion part of VQA and VQG (φ and φ∗) as the inverse
process to each other. φ and φ∗ are expected to form a
closed cycle on the feature level. Consequently, given a
question/answer pair (q,a), the predicted answer/question
representations are expected to have the following form:

a ≈ â = φ(q,v) and q ≈ q̂ = φ∗(a,v). (18)

To leverage the property above, we propose the Dual-
ity Regularizer, smoothL1 (q̂− q) and smoothL1 (â− a),
where the loss function smoothL1 is defined as:

smoothL1(x) =

{
0.5 ∗ x2, if |x| < 1

|x| − 0.5, otherwise
(19)



By minimizing Q/A duality loss, primal and dual ques-
tion/answer representations are unified, and VQG and VQA
are linked with each other. Moreover, the Duality Regular-
izer could also provide soft targets for the question/answer
features.

3.6. Dual Training

With our proposed weight sharing schema (Dual MU-
TAN and Sharing De-/Encoder), our VQA and VQG mod-
els can be reconstructed to each other with parameters
shared. Hence, joint training on VQG and VQA tasks intro-
duces the invertibility of the model as an additional regular
term to regularize the training process. The overall training
loss including our proposed Q/A duality is as below:

Loss =L(vqa) (a, a
∗) + L(vqg) (q, q

∗)

+ smoothL1 (q− q̂) + smoothL1 (a− â)
(20)

where L(vqa) (a, a
∗) and L(vqg) (q, q

∗) adopt the multi-
nomial classification loss [3] and sequence generation
loss [35] as the unary loss for VQA and VQG components
respectively, and the latter two terms are our proposed Q/A
duality losses in Sec. 3.5. As every operation is differen-
tiable, the entire model can be trained in an end-to-end man-
ner.

4. Experiments
Model implementation details, data preparation and ex-

periment results will be introduced in this section. Besides,
we evaluate the effectiveness of the cycle-consistency in
VQA and show that our proposed dual training scheme is
more suitable for the supervised learning problem.

4.1. Implementation Details

Our iQAN is based on PyTorch implementation of MU-
TAN VQA [3]. We directly use the ImageNet-pretrained
ResNet-152 [8] as our base model, whose block 5c output
without the final average pooling is used as the visual fea-
tures. All images are resized to 448 × 448. Newly intro-
duced parameters are randomly initialized. Adam [14] with
fixed learning rate 0.0001 is used to update the parameters.
The training batch size is 512. All models are trained for 50
epochs.

4.2. Data Preparation

We evaluate the proposed method on two large-scale
VQA datasets, VQA2 [6] and CLEVR [10], both of which
provide images and labeled 〈Q,A〉 pairs. However, these
two datasets contain some of the questions with less infor-
mative answers as yes/no or number. It is nearly impos-
sible for a model to generate expected questions from an
answer like yes. Therefore, we filter out these question-
answer pairs for both the VQA2 and the CLEVR to fairly

explore the duality of Q and A: For VQA2, we only se-
lect the questions with annotated question type starts with
“what”, “where” or “who”. For CLEVR, the questions start-
ing with “what” and whose answer is not a number are se-
lected. Additionally, for VQA2, the answer vocabulary only
contains the top-2000 most frequent answers as in [3]. The
〈Q,A〉 pairs whose answer is not in the vocabulary will be
removed. Detailed statistics of cleansed datasets are shown
in Tab. 2.

4.3. Performance Metrics

VQA is commonly formulated as the multinomial classi-
fication problem while VQG is a sequence generation prob-
lem. Therefore, we use top-1 accuracy (Acc@1) and top-5
accuracy (Acc@5) as VQA metrics. CIDEr [34] is used to
indicate the quality of generated questions. Detailed evalu-
ation results with other metrics including BLEU [28], ME-
TEOR [16] and ROUGE-L [19] are shown in supplemen-
tary materials.

4.4. Component Analysis

We compare our proposed Dual Training scheme with
the baseline MUTAN model on the filtered VQA2 and
CLEVR datasets. Tab. 1 shows our investigation on differ-
ent settings. Model 1 is the baseline model with separated
VQA and VQG models.

First, we focus on the VQA2 dataset. By comparing the
model 1 and 2 in Tab. 1, our proposed Dual MUTAN can
help to improve VQA but not significantly. This is because
Dual MUTAN module may learn unreasonable parameters
if not appropriately regularized. Therefore, with the reg-
ularization from the duality regularizer and the encoder &
decoder weight sharing, the model performance is further
improved, and the full model (model 5 Tab. 1) outperforms
the baseline model by 0.88% absolute increase on top-1 ac-
curacy, which is a significant improvement for VQA. Ex-
periment results on the full VQA2 and CLEVR datasets are
shown in Sec. 4.6.

We also evaluate our proposed method on the CLEVR
dataset, which is designed to diagnose the reasoning abil-
ity of VQA models. Compared to VQA2, CLEVR dataset
have simpler rendered images and much harder questions
which require a strong reasoning ability, e.g.“What size is
the cylinder that is left of the brown metal thing that is left
of the big sphere”. By comparing our full model and base-
line model, 1.33% gains on overall Acc@1 show that our
dual training scheme could help to improve the reasoning
ability of the VQA model.

4.5. Dual Training for Other VQA Models

Although the dual training method is derived from MU-
TAN, the core idea of dual training can be applied to other
latest VQA methods [38, 13] (shown in Tab. 3).



model Dual MUTAN
Duality

Regularizer
Sharing

De- & Encoder
VQA2-Filter [6] CLEVR-Filter [10]
acc@1 acc@5 size material shape color Overall

1 - - - 50.72 78.56 86.76 88.25 82.26 76.86 83.74
2 X - - 50.99 78.71 87.29 88.10 82.82 77.62 84.13
3 X - X 51.23 78.82 87.42 88.81 82.84 77.73 84.40
4 X X - 51.42 79.00 87.75 88.48 84.28 77.97 84.78
5 X X X 51.60 79.16 87.75 88.91 84.08 78.86 85.07

Table 1. Ablation study on the cleansed dataset. Dual MUTAN: our proposed sharing MUTAN scheme. Duality Regularizer: an
additional regular term defined in Eq. (19) and (20) to guarantee the similarity of dual pairs (q ≈ q̂ and a ≈ â). Sharing De- & Encoder:
parameter sharing scheme for decoders and encoders of Q and A. Model 1 is the baseline model with VQA and VQG models separated.
Additionally, the per-question-type top-1 accuracies on CLEVR are also listed.

Dataset
Train Validation

#images #Question #images #Question
VQA2-Filter 68,434 163,550 33,645 78,047
VQA2-Full 82,783 443,757 40,504 214,354
CLEVR-Filter 57,656 107,132 12,365 22,759
CLEVR-Full 70,000 699,960 15,000 150,000

Table 2. Statistics of the filtered-version and full VQA2 [6] and
CLEVR [10] datasets.

iBOWIMG is a simple VQA model with bag-of-
words (BOW) question encoder which simply concatenates
image and question embeddings to predict the answer. Cor-
respondingly, we implement a dual VQG model with iden-
tical feature concatenation fusion. Since there is no param-
eter for fusion part, Dual Training only requires decoder
& encoder weight sharing and duality regularizers. Ex-
periment results show that jointly training VQG and VQA
could bring mutual improvements to both, especially for
VQA model (1.39% on Acc@1). However, the improve-
ment for VQG is not significant, because iBOWIMG VQA
uses BOW to encode questions while the VQG model uses
LSTM to decode question features, where the compul-
sive similarity of predicted features for LSTM and BOW-
encoded feature will be too strong as a regularizer.
MLB is another latest bilinear VQA model that can be
viewed as the special case of MUTAN which sets the core
bilinear operator T c to identity. Therefore, the derived dual
training scheme can be applied to MLB model directly and
can bring mutual improvements on VQG and VQA tasks.
MUTAN: The original MUTAN model in [3] utilizes the
pretrained skip-thought model [15] as question encoder, so
we change that to LSTM (trained from scratch) to make it
sharable with decoder. For both versions, the dual train-
ing could consistently bring gains to VQA. Nevertheless,
the worse VQG performance of MUTAN + Sharing LSTM
shows that using one LSTM to finish decoding and encod-
ing may deteriorate the question generation result.

Experimental results on three latest VQA models show
that our proposed dual training strategy can be used for

other VQA models and bring concordant improvements.

4.6. Dual Training on the Full VQA Dataset
As we discussed in Sec. 4.2, generating questions from

less informative answers like yes/no or numer is almost im-
possible, where the training loss from the VQG part will
dominate the and deteriorate the model training. Thus,
we propose to apply the dual training only for the se-
lected QA pairs in Sec. 4.2, and employ the rest only for
the VQA training (Ours-Selective in Tab. 4). In addition,
we also list the results with baseline MUTAN [3] VQA
model (MUTAN) and applying our proposed dual training
directly to the full dataset (Ours-Full).

From the experiment results in Tab. 4 we can see that the
gain brought by our proposed Dual Training mainly comes
from the Selected Questions, where the gains on the less
informative questions are rather marginal. Moreover, more
significant improvements are observed on Ours-Selective,
which shows that our Dual Training scheme is more suitable
for the QA pairs with comparable information.

4.7. Discussion
From the qualitative results of VQA and VQG generated

by the trained model in Fig. 4, we can see that the dual-
trained iQAN has learnt the interactions among answers,
questions and images in a bidirectional way. Its VQA form
can associate the question and image to find the answer,
while VQG form can generate questions corresponding to
the given answers although they are not identical to the la-
beled ones.

More interestingly, attention maps of VQA and VQG
also reflect the intrinsic duality of the two problems and
how they work. QA pairs usually involve a set of interacted
visual concepts within the image, where VQA and VQG fo-
cus on different parts. For example, the bottom-left image
shows “a man wearing a tie around his neck”. VQA con-
centrates on the “tie” given the “man’s neck”, while VQG
captures the contents related to the “tie”. The two pro-
cesses are both reasoning among the objects but with dif-
ferent cues. Therefore, dual training on VQG and VQA can



Model
iBOWIMG [38] MLB [13] MUTAN [3] MUTAN [3] + Sharing LSTM

Acc@1 Acc@5 CIDEr Acc@1 Acc@5 CIDEr Acc@1 Acc@5 CIDEr Acc@1 Acc@5 CIDEr
Baseline 42.05 72.79 2.224 50.23 77.64 2.236 50.72 78.56 2.203 49.91 77.47 2.217
Dual Training 43.44 74.27 2.263 50.83 78.12 2.271 51.60 79.16 2.379 50.78 78.16 2.117

Table 3. Evaluation of Dual Training Scheme on different VQA models. Acc@1 and Acc@5 are the VQA metrics, while CIDEr score is
used to measure the question generation quality. Baseline models are separately trained on filtered data. Dual Training is to employ our
proposed parameter sharing schemes and Dual Regularizer. The Dual Training version is to train one model with two tasks while Baseline
is to train two different models. Sharing LSTM denote the question encoder and decoder share one LSTM.

Q: what letters are on the
person’s shirt? A: b

A: 50 Q: what is the number
on the batter’s jersey?

Q: what are the
children doing? A: 

playing wii

A: playing wii Q: what
are the people doing?

Q: what is around the
man’s neck? A: tie

A: tie Q: what is the man
wearing around his neck?

VQGVQAInput Image VQGVQAInput Image

Q: where is the dog laying? 
A: sidewalk

A: sidewalk
Q: where is the dog?

Figure 4. Qualitative results of our proposed iQAN for VQA and VQG. Corresponding attention maps are also shown. Green and Red
indicate the correct and false model-generated results respectively.

Model
Dataset VQA2 [6]

CLEVR [10]
Selected Other All

MUTAN 51.58 57.02 54.85 70.89
Ours-Full 52.14 57.06 55.10 73.25
Ours-Selective 52.79 57.13 55.41 76.30

Table 4. Experiments on the full dataset. Ours-Full denotes our
proposed iQAN trained on the full dataset. Ours-Selective means
we use the selected questions for dual training and the rest only
to train VQA. Other denotes the results tested on the less infor-
mative questions like Yes/No and counting questions. Selected
denotes the results tested on the selected informative questions.
All denotes the overall results.

be read as helping the model learn to recognize their inter-
actions by shading different parts. So the same set of QA
pairs will provide nearly double training instances, which
explains why our proposed dual training strategy could im-
prove the model performance.

5. Conclusion

In this paper, we present the first attempt to consider
answer-based visual question generation as a dual task

of visual question answering and propose a generalizable
dual training scheme, Invertible Question Answering Net-
work (iQAN). The proposed method reconstructs VQA
model to its dual VQG form thus we can train a single
model jointly with two conjugate tasks. Experiments show
that our dual trained model outperforms the prior art model
on both VQA2 and CLEVR dataset. We further show the
proposed dual training scheme can be applied to some other
popular VQA models and brings consistent gains.
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