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Abstract

Local feature detection is a fundamental task in com-

puter vision, and hand-crafted feature detectors such as

SIFT have shown success in applications including image-

based localization and registration. Recent work has used

features detected in texture images for precise global local-

ization, but is limited by the performance of existing fea-

ture detectors on textures, as opposed to natural images.

We propose an effective and scalable method for learning

feature detectors for textures, which combines an existing

“ranking” loss with an efficient fully-convolutional architec-

ture as well as a new training-loss term that maximizes the

“peakedness” of the response map. We demonstrate that our

detector is more repeatable than existing methods, leading

to improvements in a real-world texture-based localization

application.

1. Introduction

Many computer vision tasks require computing local fea-

tures as the first step. These tasks include but are not limited

to image alignment [33, 3], image retrieval [17, 9], image-

based localization and reconstruction [24, 25]. A pipeline

used for computing local features given a single input image

typically consists of a feature detector and a feature de-

scriptor, which are often performed sequentially. For both

of these two important components, there is a substantial

amount of work on designing hand-crafted solutions, and

some of the best-performing hand-crafted pipelines such as

SIFT [11] have become gold standards in real applications.

Nevertheless, nearly all existing hand-crafted solutions are

optimized for and evaluated on natural images. There are,

however, many more types of images that are outside the

scope of natural images, but also require a well-performing

feature pipeline. A recent project named Micro-GPS [31]

has demonstrated that precise global localization can exploit

textures (such as those present on ground surfaces ranging

from carpet to asphalt), because textures globally exhibit

many distinctive and persistent features that can be used for

unique identification. While a hand-crafted feature pipeline

such as SIFT indeed works properly in most of the textures
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Figure 1. From each test image, our proposed detector extracts

highly repeatable features, which can be utilized by Micro-GPS to

achieve precise global localization in a pre-built map, such as the

asphalt map being shown. Note that Micro-GPS locates each test

image independently in the map (ignoring temporal coherence).

demonstrated in that work, its robustness varies on different

textures. We observe that different textures consist of differ-

ent “basic elements” that are not always ideal for a partic-

ular feature detector. For example, a typical blob or corner

detector will find few features on the stripes present in a

wood texture. In this paper, we propose a learning-based

feature detector optimized for texture images, and demon-

strate its effectiveness in the Micro-GPS system(Figure 1).

In recent years, machine learning techniques have shown

success in improving feature pipelines. Most of this pre-

vious work, however, focuses on learning feature descrip-

tors [23, 5, 22, 30], which we argue is a more straightfor-

ward problem than learning a feature detector. While it is

difficult to obtain ground-truth labels for both feature detec-

tion and feature description, learning a feature descriptor of-

ten relies on self-supervision, which is usually achieved by

training with corresponding and non-corresponding image

patches. Exploiting such self-supervision is more natural

for learning a feature descriptor, because it exactly matches

how a descriptor is evaluated — minimizing the distance be-

tween corresponding descriptors and maximizing the dis-

tance between non-corresponding descriptors. In contrast,

it is less obvious how to perform similar self-supervision



when learning a feature detector, because the criteria used

for evaluating a detector are very different. In general, a

detector is considered well-performing if the interest points

output by the detector 1) can be repeatedly detected even

when the image undergoes certain transformations such as

rotation; 2) are locally distinctive, which means that they

cannot be easily confused with other nearby points; and 3)

are sufficiently numerous to be useful in applications such

as retrieval, registration, and localization. The combination

of these criteria cannot be easily translated into a loss func-

tion to be used in (self-supervised) training.

Recent work has demonstrated that a feature detector can

indeed be learned in an unsupervised manner [10, 20] with-

out using existing feature detectors for supervision. Specif-

ically, these methods attempt to output a “response map”

with each pixel indicating how interesting the pixel is, and

the only constraint used in these methods is that the re-

sponse map should be consistent under certain criteria when

the image undergoes transformations. Because this leads to

only weak constraints, some work has proposed to add su-

pervision by, for example, constraining the response map

to fire on points output by a hand-crafted detector [32]. Al-

though this approach was shown to work, it is limited by the

effectiveness of the underlying TILDE detector [26], which

our experiments show has only moderate performance for

the texture images on which we focus.

We propose an approach to feature detection that retains

self-supervision, augmenting the goal of consistency (as ex-

pressed by the “ranking loss” of Savinov et al. [20]) with the

desire to make the response map as “peaked” as possible.

This leads to more localized local extrema in the response

map, which in turn boosts the repeatability of the detector.

Our detector also utilizes a fully-convolutional network ar-

chitecture with a large receptive field, leading to both high

efficiency and suitability for a wide variety of textures. Fi-

nally, and most crucially, we demonstrate that textures are

sufficiently varied that optimal performance for each type

of texture can be achieved by training on that texture alone.

While we do evaluate the repeatability of detectors trained

on one texture and tested on another, our main focus is on

answering: given sufficient amount of images of a specific

texture, is it possible to learn a “perfect” feature detector

for this texture alone?

The major contributions of this paper are:

• Proposing a fully-convolutional network architecture

that can be efficiently applied on a full-sized image

without separate evaluation on each pixel.

• Describing a method to maximize the peakedness of

the response map and proving that it is critical to im-

proving the repeatability of the learned detector.

• Evaluating design choices, demonstrating that maxi-

mal effectiveness requires a large receptive field but is

relatively insensitive to the tuning of other parameters.

• Applying the learned detector in a real localization ap-

plication that requires features with high repeatability.

• Making our implementation (training and testing)

available for future work.

2. Related Work

While classic features detectors were hand-crafted us-

ing a human-specified definition of “interestingness”, recent

ones use learning to improve performance. These either se-

lect a subset of points output by a hand-crafted detector or

learn a definition of “interestingness” from scratch.

2.1. Hand­Crafted Feature Detectors

There is extensive work on designing a feature detec-

tor that performs well on natural images. Detecting cor-

ners is one of the earlier strategies [6, 13]. Alternatively,

one can detect “blobs”. The SIFT detector [11] uses Dif-

ferences of Gaussians (DoG) to approximate the Laplacian-

of-Gaussian (LoG) filter, and looks for local extrema over

scale and space. SIFT has shown great robustness in real-

world applications and remains a gold standard. A major

limitation of SIFT is its speed. While one can use GPUs to

accelerate SIFT [27], SURF [2] approximates LoG using a

box filter and significantly speeds up detection. As an alter-

native to SIFT, MSER [12] detects blobs by extracting co-

variant regions from the image and fitting ellipses to these

regions. In addition to detecting blobs, SFOP [4] also de-

tects junctions. WADE [18] demonstrates that salient sym-

metries can be leveraged to detect repeatable interest points

even in images related to untextured objects, which are dif-

ficult cases for a corner or blob detector.

2.2. Learned Feature Detectors

FAST [16] achieves fast corner detection, and machine

learning techniques are applied to accelerate detection. By

minimizing the pose estimation error for stereo visual

odometry, one can learn a convolutional filter (LCF) for fea-

ture detection [15]. A classifier can be learned from SIFT

features surviving matching tasks, and combining the clas-

sifier with the original SIFT detector helps achieve better

matchability [7]. TILDE [26] uses stack of pre-aligned im-

ages undergoing drastic brightness changes and learns a de-

tector to predict highly repeatable SIFT keypoints across

images. Similarly, LIFT [28] also uses patches correspond-

ing to SIFT keypoints to train their feature detector. Lenc

and Vedaldi [10] show that it is possible to train a feature

detector using the covariant constraint only, by forcing the

network to output covariant transformations given an image

patch and its transformed version. This work was extended

by using features detected by TILDE as guidance [32].

Savinov et al. [20] propose to learn a detector by rank-

ing image patches. This method is based on the assumption

that if a patch has a higher score than another patch in the



response map, this ranking relationship should remain un-

changed when the image is transformed. While this method

shows improvement over previous detectors, and we incor-

porate its ranking loss into our work, it has two major limi-

tations. First, the network is underconstrained because only

ranking loss is used. Guaranteeing a low ranking loss does

not necessarily imply high repeatability of the detector, and

we show that this is data-dependent. Second, all network

architectures demonstrated in the original paper are con-

strained by a small receptive field (17×17 kernel in their

work). The small receptive field is inadequate for many of

the textures we consider. In addition, the deep convolutional

architecture, which shows the best performance in the cross-

modal detection task, requires per-pixel traversal in the test

image. We ameliorate these problems by incorporating a

peakedness loss term that effectively improves repeatabil-

ity, and using an efficient fully-convolutional network that

can be directly applied to the test image.

2.3. Global Localization using Ground Textures

The recent Micro-GPS work [31] has shown that images

of ground textures can be used for global localization. The

key observation that drives the system is that seemingly ho-

mogeneous or random textures exhibit landmarks that can

enable unique identification. Even in some highly repeat-

ing textures where landmarks may look very similar, spatial

arrangements of the landmarks can also serve as useful vi-

sual cues. The Micro-GPS system consists of a downward-

facing camera and a image processing unit that quickly lo-

cates the input image in the database. To build the database,

texture images are densely captured in a target area and

stitched into a globally consistent map. Within each cap-

tured image, SIFT features are extracted, compressed and

indexed into a compact database that can be stored on a

mobile device. During testing, SIFT features are extracted

from the test image and matched against the database. The

matched features later go through an efficient Hough voting

procedure, and inliers are used for pose estimation.

Once the database is built, the original images could be

safely deleted. Therefore the size of the database only de-

pends on the number and dimensionality of the features

stored. The number of features can also affect the matching

performance because as the feature space becomes denser,

matching becomes not only slower but also more inaccurate

due to the larger number of false positives. In the origi-

nal paper, the authors specify that keeping 50 SIFT features

per image is sufficient to guarantee reasonably good per-

formance on across all types of textures. Therefore further

improvement of Micro-GPS is mainly constrained by fea-

ture detection. Due to the setup of Micro-GPS, there are

only three requirements that the feature detector needs to

satisfy: high repeatability, rotation invariance, and global

distinctiveness. Scale or lighting invariance is not required

here, because the images used by Micro-GPS are captured

at a constant height (constant scale) and with generally sta-

ble illumination. In this work, we show that by plugging

in a highly repeatable feature detector learned using our ap-

proach, Micro-GPS can achieve significantly better robust-

ness compared with the original SIFT-based version.

We focus on a range of ground textures displaying a va-

riety of phenomena. In general, they contain some “basic

element” that can be leveraged by a feature detector, but a

hand-crafted detector designed to handle a single type of

feature is not expected to work consistently well on all tex-

tures. Examples of the texture images are shown in first row

of Figure 5. Below we briefly discuss the visual character-

istics of the ground textures.

Carpet: The carpet texture is normally the least challenging

texture for a feature detector, since it contains knots with a

regular arrangement.

Asphalt: The asphalt texture is mainly random, with stains

and cracks that can be used as distinctive features.

Wood: The wood texture is usually the most challenging

because most detectors are not tuned to recognize its major

visual cue: the striped grain pattern.

Tiles: The tile texture contains randomly embedded color

chips that are easy to recognize, but a detector needs to have

large a receptive field to capture the chips.

Granite: The granite texture does not contain obvious dis-

tinctive elements, but local brightness variations can be used

for unique identification.

Concrete: Similarly to the asphalt texture, the concrete tex-

ture contains black stains. However, the size of the stains

varies significantly.

Coarse: The coarse asphalt texture contains large, distinc-

tive stones, making it relatively easy for a detector.

3. Approach

Defining the desired appearance of a feature in texture

images is a non-trivial task because even humans cannot

reliably label repeatable features. Hand-crafted detectors

have one definition of “feature,” and fail to work when tex-

tures do not fit that definition. For example, wood textures

often contain stripes that cannot be identified by a blob de-

tector or a corner detector. Since there is no obvious way

to obtain labels to enable supervised learning, we choose to

perform unsupervised training, following the basic idea of

Savinov et al. [20].

3.1. Feature Detection by Ranking

The network we train will take as input an image, and

produce as output a response map. Each value in the re-

sponse map indicates how likely this pixel is to be a dis-

tinctive interest point. Specifically, we would like the deep-

neural-network to learn a scoring function F(.) that maps

the input image patch to a single-valued score. We want
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Figure 2. Illustration of the training pipeline. The network is pre-

trained with the ranking loss only, and tuned using both the ranking

loss and the peakedness loss.

this score to be consistent under transformations: if one

point is more “interesting” than another, then it should still

be more interesting when the image is transformed. That

is, given any pair of patches {P 1

a
, P 1

b
} and their randomly

transformed versions {P 2

a
, P 2

b
}, we want the scoring func-

tion to satisfy either of the following two cases:

{

F(P 1

a
) > F(P 1

b
) and F(P 2

a
) > F(P 2

b
)

F(P 1

a
) < F(P 1

b
) and F(P 2

a
) < F(P 2

b
)

. (1)

Combining into a single inequality:

R =
(

F(P 1

a
)−F(P 1

b
)
)(

F(P 2

a
)−F(P 2

b
)
)

> 0. (2)

This inequality ensures consistent ranking of Pa and Pb,

and we apply a hinge loss to obtain our ranking loss term:

Lrank(P
1

a
, P 2

a
, P 1

b
, P 2

b
) = max(0,Mrank −R), (3)

where Mrank is the margin and correlates to the confidence

of ranking consistency. We set Mrank = 1.0 throughout our

experiments. In each training iteration, the network takes

in two pairs of corresponding image patches which are ran-

domly rotated. An illustration of the ranking network is

shown in Figure 2.

In selecting an appropriate architecture for the ranking

network, we take into consideration both performance and

efficiency. Performance is strongly affected by the size of

the receptive field. While one could let the network see a

larger area by downsampling the original image, significant

downsampling erases subtle details. We show that while a

small window can indeed work in some “easy” texture im-

ages, a larger window is critical to better adaptability. Our

network has a receptive field of 65×65, leading to improved

performance relative to the original networks of Savinov et

al. [20], which have a receptive field of size 17×17. When

considering efficiency, we notice that the best-performing

architecture (Deep convolutional network) used by Savinov

Figure 3. From left to right: zoomed-in view of a stain in the as-

phalt texture, response map output by the network trained using

ranking loss only, and response map after optimizing the peaked-

ness. The latter response map is more robust against noise when

performing non-maximum suppression.

et al. requires per-pixel traversal of the input image. We

instead use a fully-convolutional network containing only

convolutional layers and rectified linear units (ReLU), with

no pooling or padding. This architecture is efficient because

the trained model can be directly applied to the whole im-

age, yielding a complete response map.

3.2. Optimizing Peakedness of the Response

Detection purely by ranking has several limitations due

to its unconstrained nature. First, the the loss is unchanged

if the ranking of image patches is flipped. In theory, this is

not a problem because we can consider both local maxima

and local minima as good candidates for features. In prac-

tice, however, we observe that each training run results in

a network in which either maxima or minima yield better

(and more visually plausible) results. Therefore, we use a

validation set to evaluate the repeatability of both maxima

and minima, and we negate the response map if the minima

perform better. In other words, we always end up with a

response map whose local maxima are the features we use.

Another, more serious, limitation of a ranking network is

that there are many functions that all result in the same rela-

tive rankings of different pixels, while yielding different re-

peatability in matching. For example, consider the patch in

Figure 3. The response map shown at center is broad, mean-

ing that the feature was not localized precisely. In contrast,

the response map at right is more “peaky,” which ultimately

results in more accurate matching across images.

In order to encourage the network to learn the response

map at right, we include a peakedness term in our train-

ing loss. This is based on looking at all the responses in

a patch, and encouraging only a few of them to be large.

For example, if we look at the responses within the neigh-

borhood of a maximum, sorted from lowest to highest, dif-

ferent networks might produce any of the three curves in

Figure 4, left. We prefer the lowest curve, since it has the

most-peaked response. This is accomplished by maximiz-

ing the area above the curve (Figure 4, right): this forces

the values in the neighborhood to be as small as possible.

Specifically, during training we consider not just 65×65

input patches (which would result in a single output value

per patch), but rather patches P̂ of size (64+w)×(64+w).
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Figure 4. Illustration of response curves. Left: different response

curves can lead to same ranking. Right: peakedness of the re-

sponse curve can be evaluated as the area above the curve; specif-

ically, for the k highest values in a local window, we sum up the

difference between each value and the maximum.

Because our scoring network F is fully convolutional, this

results in an output response map of size w × w, where

w =7 in our experiments. We sort the scores in this map

to obtain a response curve F̃(P̂ ). The peakedness of the

patch is computed as the difference between the maximum

and the average of the largest k scores:

γ(P̂ ) = max
(

F̃(P̂ )
)

−
1

k

k
∑

i

F̃(P̂ )i. (4)

The peakedness loss function forces the peakedness to be

above a certain margin:

Lpeak(P̂ ) = max
(

0,Mpeak − γ(P̂ )
)

, (5)

where Mpeak is the desired peakedness (3.0 in our experi-

ments). We compute the total training loss by averaging the

peakedness loss of the four input patches, and combining

with the ranking loss:

Ltotal(P̂
1

a
, P̂ 2

a
, P̂ 1

b
, P̂ 2

b
) = Lrank(P

1

a
, P 2

a
, P 1

b
, P 2

b
) +

α · 1

4

(

Lpeak(P̂
1

a
)+Lpeak(P̂

1

b
)+Lpeak(P̂

2

a
)+Lpeak(P̂

2

b
)
)

,

(6)

where {P 1

a
, P 2

a
, P 1

b
, P 2

b
} are the center 65×65 patches of

{P̂ 1

a
, P̂ 2

a
, P̂ 1

b
, P̂ 2

b
} and α is a weighting parameter used to

balance the ranking loss and the peakedness loss. Note

that within each batch, not all the patches strongly corre-

late to good features, thus it can be harmful to maximize

the peakedness for patches with relatively weak responses.

Therefore we exclude the 25% of patches with the smallest

maximal scores when computing the peakedness loss.

3.3. Implementation

Datasets: The datasets used in Micro-GPS consist of tex-

ture images densely captured along overlapping paths and

registered to each other. Previous works usually train their

networks using patches cropped around SIFT features that

survive a structure-from-motion pipeline [28], because this

is perhaps the most efficient way to generate correspond-

ing image patches. Savinov et al. [20] use the DTU Robot

Image Dataset [1], for which ground truth 3D points are

available, but such a dataset is difficult to acquire and its

size is small considering the broad space of natural images.

The advantage of the texture datasets we use is that gener-

ating a pair of corresponding patches is as simple as crop-

ping around any point in the overlapping region, and, more

importantly, these patches are not biased to any existing fea-

ture detector. We use one region in each texture for training

and the others for validation and testing. We only crop im-

age patches from image pairs with an overlapping area over

40%. For training, we randomly crop 512k pairs of corre-

sponding image patches with random orientations, which

aims to make the scoring network rotation-invariant. In

each training iteration, the quadruple used is constructed by

randomly combining two pairs of corresponding patches.

Training: Our network consists of 12 convolutional lay-

ers, with the first 11 followed by a ReLU activation: details

are provided in supplemental material. We train our net-

work on an NVIDIA M40 GPU using the PyTorch frame-

work [14], using the Adadelta algorithm [29] to minimize

loss. The batch size is 256 and the network is trained using

only the ranking loss for 10000 iterations. The network is

then tuned with both ranking and peakedness loss for 2000

iterations. We observe that this schedule leads to better per-

formance than training from scratch with both losses. We

also observe that batch normalization blurs the response

map and lowers repeatability, so we omit it. Training the

network typically takes three hours.

Feature Detection in a Test Image: Given a test image

of arbitrary size H×W, we first reflection-pad the image by

32 pixels on each side, because this is how much our net-

work removes from each border. Applying the network to

the padded image results in an output response map of size

H×W. We then follow the general interest point localization

pipeline detailed in [11]. Gaussian blurring with σ =2 is

performed before non-maximum suppression, which effec-

tively prevents multiple detections in a small neighborhood.

To limit the number of output interest points, we simply se-

lect the n largest local maxima based on score. Finally, we

apply sub-pixel localization based on the second-order Tay-

lor expansion of the scoring function to refine the integer-

valued interest point locations.

Computational Efficiency: The proposed architecture is

efficient, as compared to state-of-the-art methods that re-

quire evaluating each pixel separately (i.e., running the net-

work on the neighborhood around every pixel, indepen-

dently). Our full pipeline runs at 2.5fps (1288×964). In

comparison, QuadNet [20] (our implementation) runs at

0.00775fps with batch processing, while our network com-

puted independently per pixel (as opposed to over the entire

image at once) would run at 0.00408fps due to a larger re-

ceptive field. Hand-crafted detectors such as SIFT are faster:

the detector portion of SiftGPU [27] runs at 25fps.



4. Results

4.1. Evaluation Protocol

The test set we used for evaluating repeatability is gen-

erated by randomly sampling pairs of overlapping images

with an overlap area above 50%. However, the images in

the texture dataset tend to have similar orientation, which is

not sufficient for evaluating rotation-invariant feature detec-

tors. We therefore randomly rotate one image in each pair

and recompute the transformation between the two images.

Given two images and the transformation matrix between

them, we run the feature detector on each image, select fea-

tures in the overlapping region, and count detected features

as “repeatable” if they are found in both images, within 5

pixels after applying the transformation.

For a fair evaluation, we must ensure that methods are

not rewarded for finding too many features (in which case

finding a matching feature by chance would be too easy)

or too few (in which case the matching percentage may be

high even though the number of detected features may be

too low for many applications). We therefore keep only the

200 strongest features (if that many exist) in the overlapping

region for each image, similarly to what has been done in

Zhang et al. [32]. We perform bidirectional matching to pre-

vent multiple features from matching to the same feature in

the other image. Finally, we report the number of matches,

rather than the fraction of matching features, to penalize

methods that could not detect at least 200 features (in origi-

nal images of resolution 1288×964 and 1280×720).

4.2. Performance

We compare our detector to hand-crafted detectors in-

cluding SIFT [11], SURF [2], MSER [12], WADE [18],

SFOP [4], Harris Laplace [13] (HarrLap), Hessian

Laplace [13] (HessLap), Harris Affine [13] (HarrAff)

and Hessian Affine [13] (HessAff). We also compare

our detector to learned detectors including FAST [16],

LCF [15], TILDE [26] (TILDE-P, TILDE-P24), and Quad-

networks [20] (Linear17, DCNN17). The TILDE detector is

trained using time-lapse image sequences, thus we directly

use their trained model. TILDE-P24 is an approximation of

TILDE-P. Linear17 stands for the one-convolutional-layer

network that regresses a 17×17 patch to a single-valued

score. DCNN17 stands for the deep-convolutional network

which was originally designed for cross-modal detection; it

requires per-pixel traversal of the input image.

We also attempted to retrain the covariant detector [10]

and its extended version assisted by “standard patches” us-

ing the publicly available code [32], but training did not con-

verge, even on the relatively simple carpet texture. This

might be due to the significant difference between natu-

ral images used by their methods and texture images. We

observe that the image patches cropped from natural im-

Table 1. Number of repeatable features detected by each method

(across 20 images, keeping a maximum of 200 features per image).

Method carpet asphalt wood tile granite concrete coarse

HarrAff 394 350 34 706 223 495 466

HarrLap 390 351 35 702 224 494 468

HessAff 447 247 507 84 233 149 799

HessLap 444 249 490 126 230 150 803

MSER 590 475 68 1556 404 952 799

FAST 1708 1524 1017 2276 1574 1802 1583

SIFT 2022 1474 610 1510 1385 1869 1456

SURF 2451 2879 1455 2271 2496 2738 2125

LCF 811 779 740 1068 817 795 1093

SFOP 2504 1831 1074 2328 1993 2219 1989

WADE 2898 2296 20 1230 2254 1870 1992

TILDE-P24 2029 2185 2380 2770 2607 3244 2093

TILDE-P 1777 1869 2182 2625 2329 3039 1975

Linear17 3550 3106 1567 2730 3143 3304 3182

DCNN17 3589 3304 2260 2650 3079 3006 2755

Pretrained 3290 3332 1892 3383 3384 2716 3188

Tuned 3715 3344 2906 3397 3431 3607 3314

ages have obvious variations in appearance, but the patches

cropped from texture images appear similar to each other.

Table 1 shows the total number of repeatable features

detected using the above detectors (more detailed statistics

can be found in the supplemental material). Each detector

is applied to 20 pairs of images for each type of texture,

which means that at most 4000 repeatable features can be

retained. As expected, none of the hand-crafted detectors

perform consistently well on all types of textures, which

motivates the need for a texture-specific detector. Similarly

to the original Quad-network detectors, our pretrained de-

tectors also suffer from the drawbacks of using only ranking

loss. However, on textures which contain large elements,

such as the colored chips in the tile texture, our pretrained

detector outperforms Quad-network detectors since our ar-

chitecture has a much larger receptive field. After tuning our

detectors by introducing the peakedness loss, our detectors

outperform all other detectors on every texture, with partic-

ular gains on difficult textures such as wood. It is also worth

pointing out that the TILDE detectors, which are trained us-

ing natural images, achieve reasonably good performance

on all textures although surprisingly they perform worse on

the easiest carpet texture.

The good performance of our tuned detectors can be bet-

ter understood through the response maps shown in Fig-

ure 5. Although training using the ranking loss is sufficient

on “easy” textures, the network tends to output smooth re-

sponse maps for challenging textures such as wood and con-

crete. Adding the peakedness loss forces the network to

output a sharper response map, making feature localization

more robust to noise. Also note that the response map is

reversed on the concrete texture, which explains the signifi-

cant repeatability gain.
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Figure 5. Top to bottom: input, response maps (ranking loss only), response maps (ranking and peakedness loss), top 200 features.

4.3. Impact of Parameters

There are three major parameters that can influence the

performance of the detector: the weight assigned to the

peakedness loss (α), the size of the window used to com-

pute the peakedness loss (w), and the number of pixels used

to compute the area above the curve (k). We investigate the

effects of these parameters by, without loss of generality, be-

ginning with α=0.5, w=7, and k=20, then varying each pa-

rameter independently around this configuration. For each

parameter setting, we report how much repeatability the de-

tector gains after the tuning stage.
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Figure 6. Repeatability gain of detectors tuned with different α.
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Figure 7. Repeatability gain of detectors tuned with different w.
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Figure 8. Repeatability gain of detectors tuned with different k.

Varying α: The weight assigned to the peakedness loss

influences how much the network is willing to increase the

ranking loss in order to improve the peakedness of the re-

sponse function. Figure 6 shows that the tuned detector typ-

ically reaches the best performance when the weight is set

to 0.5. Beyond this, repeatability often decreases because

the detector starts to overlook the ranking loss.

Varying w: The network must see a sufficiently-large lo-

cal window in order to learn to maximize local peakedness.

Increasing window size too far, however, makes it more

likely that the window will contain multiple peaks. We ob-

serve that using w=7 results in the best repeatability gain on

average (Figure 7).

Varying k: It is often not a good idea to use all the pixels

in a local window for computing the area above the curve.

This is because the sorted scores only change drastically in

the first k pixels. In Figure 8, we observe that using 10 or

20 pixels results in the best repeatability gain on average.

Note that when using 20 pixels, the detector trained on the

concrete texture yields superior repeatability.

4.4. Cross Evaluation

An important question one may ask is: how does a detec-

tor trained on one texture perform on a completely different

texture? Another interesting question is: can we train a

good “universal” detector using the union of all texture im-

ages? Below we show the cross evaluation result of both

the pretrained models (Figure 9) and the tuned models (Fig-

ure 10). The universal model trained using the ranking loss

only is close to unusable. This is likely because the network

cannot find a consistent ranking across various textures.

However, with the peakedness loss which only requires the
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Figure 9. Cross evaluation result of the pretrained detectors.
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Figure 10. Cross evaluation result of the tuned detectors.

universal detector to optimize local maxima, the detector is

able to achieve reasonably good repeatability, although the

wood texture is still too challenging. Another interesting

finding is that the detector trained on the granite texture per-

forms much better than the universal detector on all types

of textures. We observe that both local maxima and local

minima found in the response map of the granite texture cor-

respond to very good interest points, which implies that the

detector trained on the granite texture potentially has better

adaptability. This experiment partially explains why hand-

crafted features are still preferred to learned features in real

applications in the domain of natural images [19, 21]: using

more data for training does not necessarily help learning-

based methods generalize well, and using a smaller set of

representative data might be a better solution.

4.5. Effectiveness in a Localization Application

To evaluate the performance of the proposed detector

in real applications, we combine our detector with the

SIFT descriptor [11] and plug into the Micro-GPS [31]

pipeline, which uses compressed 16-dimensional SIFT de-

scriptors. The feature orientation required by SIFT descrip-

tor is also computed using the orientation estimator of the

SIFT pipeline. We compare the SIFT detector and our de-

tector by sampling 50 and 20 features according to the re-

sponse from each database image, respectively, to build the

feature database. The success rate of the system demon-

strates the usefulness (distinctiveness and repeatability) of

the selected features. Figure 11 shows performance under

different configurations. The original Micro-GPS clusters

features based on their scales, and feature matching is per-

formed within each scale group, which effectively improves

the system performance (last bar in each column of Fig-
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Figure 11. Performance on Micro-GPS.

ure 11). For a fair comparison, the feature scale detected

by SIFT is not used, and the descriptor is computed for both

SIFT and our detector using a fixed scale of 6.0. Our learned

detector is a clear winner even with feature scale absent.

5. Conclusion and Future Work

We present a pipeline for training a feature detector spe-

cialized in detecting locally distinctive features in texture

images. Explicitly defining what a good feature should look

like in texture images is challenging, and so we choose

to learn the scoring function in an unsupervised manner.

We demonstrate that learning the scoring network purely

through a simple ranking loss makes the response curve

highly underconstrained, because the response curve corre-

sponding to a desired ranking is not unique. We propose to

tune the network by maximizing local peakedness, which

significantly improves the repeatability on challenging tex-

tures. Moreover, the network architecture we use allows the

network to see a much larger area than previous work while

guaranteeing testing efficiency by avoiding pixel traversal.

Lastly, we show that our detector outperforms SIFT in the

“Micro-GPS” texture-based global localization application.

In the future, several immediate directions can be pur-

sued. First, we would like to extend our approach to scale

space using a spatial transformer [8]. We experimented

with an approach from previous work based on image pyra-

mids [20] and found that some apparently-good features

are suppressed by failing to become local extrema in scale

space. Second, a locally-distinctive interest point does not

imply that the descriptor computed using the point is also

sufficiently globally-distinctive for applications that involve

feature matching. We believe that a feature descriptor can

be introduced to guide feature detection.
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