
Vision-and-Language Navigation: Interpreting visually-grounded
navigation instructions in real environments

Peter Anderson1 Qi Wu2 Damien Teney2 Jake Bruce3 Mark Johnson4

Niko Sünderhauf3 Ian Reid2 Stephen Gould1 Anton van den Hengel2

1Australian National University 2University of Adelaide 3Queensland University of Technology 4Macquarie University
1firstname.lastname@anu.edu.au, 3jacob.bruce@hdr.qut.edu.au, 3niko.suenderhauf@qut.edu.au

2{qi.wu01,damien.teney,ian.reid,anton.vandenhengel}@adelaide.edu.au, 4mark.johnson@mq.edu.au

Abstract

A robot that can carry out a natural-language instruc-
tion has been a dream since before the Jetsons cartoon se-
ries imagined a life of leisure mediated by a fleet of attentive
robot helpers. It is a dream that remains stubbornly distant.
However, recent advances in vision and language meth-
ods have made incredible progress in closely related areas.
This is significant because a robot interpreting a natural-
language navigation instruction on the basis of what it sees
is carrying out a vision and language process that is simi-
lar to Visual Question Answering. Both tasks can be inter-
preted as visually grounded sequence-to-sequence transla-
tion problems, and many of the same methods are applica-
ble. To enable and encourage the application of vision and
language methods to the problem of interpreting visually-
grounded navigation instructions, we present the Matter-
port3D Simulator – a large-scale reinforcement learning
environment based on real imagery [11]. Using this simula-
tor, which can in future support a range of embodied vision
and language tasks, we provide the first benchmark dataset
for visually-grounded natural language navigation in real
buildings – the Room-to-Room (R2R) dataset1.

1. Introduction
The idea that we might be able to give general, verbal

instructions to a robot and have at least a reasonable prob-
ability that it will carry out the required task is one of the
long-held goals of robotics, and artificial intelligence (AI).
Despite significant progress, there are a number of major
technical challenges that need to be overcome before robots
will be able to perform general tasks in the real world. One
of the primary requirements will be new techniques for link-
ing natural language to vision and action in unstructured,
previously unseen environments. It is the navigation version

1https://bringmeaspoon.org

Instruction: Head upstairs and walk past the piano through an
archway directly in front. Turn right when the hallway ends at
pictures and table. Wait by the moose antlers hanging on the wall.

Figure 1. Room-to-Room (R2R) navigation task. We focus on
executing natural language navigation instructions in previously
unseen real-world buildings. The agent’s camera can be rotated
freely. Blue discs indicate nearby (discretized) navigation options.

of this challenge that we refer to as Vision-and-Language
Navigation (VLN).

Although interpreting natural-language navigation in-
structions has received significant attention previously [12,
13, 20, 38, 41, 52], it is the recent success of recurrent neu-
ral network methods for the joint interpretation of images
and natural language that motivates the VLN task, and the
associated Room-to-Room (R2R) dataset described below.
The dataset particularly has been designed to simplify the
application of vision and language methods to what might
otherwise seem a distant problem.

Previous approaches to natural language command of
robots have often neglected the visual information process-
ing aspect of the problem. Using rendered, rather than real
images [7, 27, 62], for example, constrains the set of vis-

whiteandblue

biketheiscolorWhat

a
0

tablediningformal...andinsideMove ...

a
1

a
2

a
3

.

?

a
T-2

a
T-1

a
T

VQA:

VLN:

Figure 2. Differences between Vision-and-Language Navigation (VLN) and Visual Question Answering (VQA). Both tasks can be formu-
lated as visually grounded sequence-to-sequence transcoding problems. However, VLN sequences are much longer and, uniquely among
vision and language benchmark tasks using real images, the model outputs actions 〈a0, a1, . . . aT 〉 that manipulate the camera viewpoint.

ible objects to the set of hand-crafted models available to
the renderer. This turns the robot’s challenging open-set
problem of relating real language to real imagery into a far
simpler closed-set classification problem. The natural ex-
tension of this process is that adopted in works where the
images are replaced by a set of labels [13, 52]. Limiting
the variation in the imagery inevitably limits the variation
in the navigation instructions also. What distinguishes the
VLN challenge is that the agent is required to interpret a
previously unseen natural-language navigation command in
light of images generated by a previously unseen real envi-
ronment. The task thus more closely models the distinctly
open-set nature of the underlying problem.

To enable the reproducible evaluation of VLN methods,
we present the Matterport3D Simulator. The simulator is a
large-scale interactive reinforcement learning (RL) environ-
ment constructed from the Matterport3D dataset [11] which
contains 10,800 densely-sampled panoramic RGB-D im-
ages of 90 real-world building-scale indoor environments.
Compared to synthetic RL environments [7, 27, 62], the
use of real-world image data preserves visual and linguis-
tic richness, maximizing the potential for trained agents to
be transferred to real-world applications.

Based on the Matterport3D environments, we collect
the Room-to-Room (R2R) dataset containing 21,567 open-
vocabulary, crowd-sourced navigation instructions with an
average length of 29 words. Each instruction describes a
trajectory traversing typically multiple rooms. As illus-
trated in Figure 1, the associated task requires an agent to
follow natural-language instructions to navigate to a goal
location in a previously unseen building. We investigate the
difficulty of this task, and particularly the difficulty of op-
erating in unseen environments, using several baselines and
a sequence-to-sequence model based on methods success-
fully applied to other vision and language tasks [4, 14, 19].

In summary, our main contributions are:
1. We introduce the Matterport3D Simulator, a software

framework for visual reinforcement learning using the

Matterport3D panoramic RGB-D dataset [11];
2. We present Room-to-Room (R2R), the first benchmark

dataset for Vision-and-Language Navigation in real,
previously unseen, building-scale 3D environments;

3. We apply sequence-to-sequence neural networks to the
R2R dataset, establishing several baselines.

The simulator, R2R dataset and baseline mod-
els are available through the project website at
https://bringmeaspoon.org.

2. Related Work

Navigation and language Natural language command of
robots in unstructured environments has been a research
goal for several decades [57]. However, many existing
approaches abstract away the problem of visual percep-
tion to some degree. This is typically achieved either by
assuming that the set of all navigation goals, or objects
to be acted upon, has been enumerated, and that each
will be identified by label [13, 52], or by operating in
visually restricted environments requiring limited percep-
tion [12, 20, 24, 29, 35, 38, 55]. Our work contributes for
the first time a navigation benchmark dataset that is both lin-
guistically and visually rich, moving closer to real scenarios
while still enabling reproducible evaluations.

Vision and language The development of new bench-
mark datasets for image captioning [14], visual question
answering (VQA) [4, 19] and visual dialog [17] has spurred
considerable progress in vision and language understand-
ing, enabling models to be trained end-to-end on raw pixel
data from large datasets of natural images. However, al-
though many tasks combining visual and linguistic reason-
ing have been motivated by their potential robotic appli-
cations [4, 17, 26, 36, 51], none of these tasks allow an
agent to move or control the camera. As illustrated in Fig-
ure 2, our proposed R2R benchmark addresses this limita-
tion, which also motivates several concurrent works on em-
bodied question answering [16, 18].

Navigation based simulators Our simulator is related to
existing 3D RL environments based on game engines, such
as ViZDoom [27], DeepMind Lab [7] and AI2-THOR [30],
as well as a number of newer environments developed
concurrently including HoME [10], House3D [58], MI-
NOS [47], CHALET [59] and Gibson Env [61]. The
main advantage of our framework over synthetic environ-
ments [30, 10, 58, 59] is that all pixel observations come
from natural images of real scenes, ensuring that almost ev-
ery coffee mug, pot-plant and wallpaper texture is unique.
This visual diversity and richness is hard to replicate using
a limited set of 3D assets and textures. Compared to MI-
NOS [47], which is also based on Matterport data [11], we
render from panoramic images rather than textured meshes.
Since the meshes have missing geometry – particularly for
windows and mirrors – our approach improves visual real-
ism but limits navigation to discrete locations (refer Sec-
tion 3.2 for details). Our approach is similar to the (much
smaller) Active Vision Dataset [2].

RL in navigation A number of recent papers use rein-
forcement learning (RL) to train navigational agents [31,
50, 53, 62, 21], although these works do not address lan-
guage instruction. The use of RL for language-based navi-
gation has been studied in [12] and [41], however, the set-
tings are visually and linguistically less complex. For ex-
ample, Chaplot et al. [12] develop an RL model to execute
template-based instructions in Doom environments [27].
Misra et al. [41] study complex language instructions in a
fully-observable blocks world. By releasing our simulator
and dataset, we hope to encourage further research in more
realistic partially-observable settings.

3. Matterport3D Simulator
In this section we introduce the Matterport3D Simulator,

a new large-scale visual reinforcement learning (RL) sim-
ulation environment for the research and development of
intelligent agents based on the Matterport3D dataset [11].
The Room-to-Room (R2R) navigation dataset is discussed
in Section 4.

3.1. Matterport3D Dataset

Most RGB-D datasets are derived from video sequences;
e.g. NYUv2 [42], SUN RGB-D [48] and ScanNet [15].
These datasets typically offer only one or two paths through
a scene, making them inadequate for simulating robot mo-
tion. In contrast to these datasets, the recently released
Matterport3D dataset [11] contains a comprehensive set of
panoramic views. To the best of our knowledge it is also the
largest currently available RGB-D research dataset.

In detail, the Matterport3D dataset consists of 10,800
panoramic views constructed from 194,400 RGB-D images
of 90 building-scale scenes. On average, panoramic view-

points are distributed throughout the entire walkable floor
plan of each scene at an average separation of 2.25m. Each
panoramic view is comprised of 18 RGB-D images captured
from a single 3D position at the approximate height of a
standing person. Each image is annotated with an accurate
6 DoF camera pose, and collectively the images capture the
entire sphere except the poles. The dataset also includes
globally-aligned, textured 3D meshes annotated with class
and instance segmentations of regions (rooms) and objects.

In terms of visual diversity, the selected Matterport
scenes encompass a range of buildings including houses,
apartments, hotels, offices and churches of varying size and
complexity. These buildings contain enormous visual diver-
sity, posing real challenges to computer vision. Many of the
scenes in the dataset can be viewed in the Matterport 3D
spaces gallery2.

3.2. Simulator

3.2.1 Observations

To construct the simulator, we allow an embodied agent to
virtually ‘move’ throughout a scene by adopting poses coin-
ciding with panoramic viewpoints. Agent poses are defined
in terms of 3D position v ∈ V , heading ψ ∈ [0, 2π), and
camera elevation θ ∈ [−π2 ,

π
2], where V is the set of 3D

points associated with panoramic viewpoints in the scene.
At each step t, the simulator outputs an RGB image obser-
vation ot corresponding to the agent’s first person camera
view. Images are generated from perspective projections of
precomputed cube-mapped images at each viewpoint. Fu-
ture extensions to the simulator will also support depth im-
age observations (RGB-D), and additional instrumentation
in the form of rendered object class and object instance seg-
mentations (based on the underlying Matterport3D mesh
annotations).

3.2.2 Action Space

The main challenge in implementing the simulator is de-
termining the state-dependent action space. Naturally, we
wish to prevent agents from teleporting through walls and
floors, or traversing other non-navigable regions of space.
Therefore, at each step t the simulator also outputs a set
of next step reachable viewpoints Wt+1 ⊆ V . Agents
interact with the simulator by selecting a new viewpoint
vt+1 ∈ Wt+1, and nominating camera heading (∆ψt+1)
and elevation (∆θt+1) adjustments. Actions are determin-
istic.

To determine Wt+1, for each scene the simulator in-
cludes a weighted, undirected graph over panoramic view-
points, G = 〈V,E〉, such that the presence of an edge sig-
nifies a robot-navigable transition between two viewpoints,

2https://matterport.com/gallery/

and the weight of that edge reflects the straight-line distance
between them. To construct the graphs, we ray-traced be-
tween viewpoints in the Matterport3D scene meshes to de-
tect intervening obstacles. To ensure that motion remains
localized, we then removed edges longer than 5m. Finally,
we manually verified each navigation graph to correct for
missing obstacles not captured in the meshes (such as win-
dows and mirrors).

Given navigation graph G, the set of next-step reachable
viewpoints is given by:

Wt+1 =
{
vt
}
∪
{
vi ∈ V | 〈vt, vi〉 ∈ E ∧ vi ∈ Pt

}
(1)

where vt is the current viewpoint, and Pt is the region of
space enclosed by the left and right extents of the camera
view frustum at step t. In effect, the agent is permitted to
follow any edges in the navigation graph, provided that the
destination is within the current field of view, or visible by
glancing up or down3. Alternatively, the agent always has
the choice to remain at the same viewpoint and simply move
the camera.

Figure 3 illustrates a partial example of a typical naviga-
tion graph. On average each graph contains 117 viewpoints,
with an average vertex degree of 4.1. This compares favor-
ably with grid-world navigation graphs which, due to walls
and obstacles, must have an average degree of less than
4. As such, although agent motion is discretized, this does
not constitute a significant limitation in the context of most
high-level tasks. Even with a real robot it may not be prac-
tical or necessary to continuously re-plan higher-level ob-
jectives with every new RGB-D camera view. Indeed, even
agents operating in 3D simulators that notionally support
continuous motion typically use discretized action spaces
in practice [62, 16, 18, 47].

The simulator does not define or place restrictions on
the agent’s goal, reward function, or any additional context
(such as natural language navigation instructions). These
aspects of the RL environment are task and dataset depen-
dent, for example as described in Section 4.

3.2.3 Implementation Details

The Matterport3D Simulator is written in C++ using
OpenGL. In addition to the C++ API, Python bindings are
also provided, allowing the simulator to be easily used with
deep learning frameworks such as Caffe [25] and Tensor-
Flow [1], or within RL platforms such as ParlAI [39] and
OpenAI Gym [9]. Various configuration options are offered
for parameters such as image resolution and field of view.
Separate to the simulator, we have also developed a WebGL
browser-based visualization library for collecting text anno-
tations of navigation trajectories using Amazon Mechanical
Turk, which we will make available to other researchers.

3This avoids forcing the agent to look at the floor every time it takes a
small step.

Figure 3. Example navigation graph for a partial floor of one
building-scale scene in the Matterport3D Simulator. Navigable
paths between panoramic viewpoints are illustrated in blue. Stairs
can also be navigated to move between floors.

3.2.4 Biases

We are reluctant to introduce a new dataset (or simulator, in
this case) without at least some attempt to address its limita-
tions and biases [54]. In the Matterport3D dataset we have
observed several selection biases. First, the majority of cap-
tured living spaces are scrupulously clean and tidy, and of-
ten luxurious. Second, the dataset contains very few people
and animals, which are a mainstay of many other vision and
language datasets [14, 4]. Finally, we observe some cap-
ture bias as selected viewpoints generally offer command-
ing views of the environment (and are therefore not neces-
sarily in the positions in which a robot might find itself). Al-
leviating these limitations to some extent, the simulator can
be extended by collecting additional building scans. Refer
to Stanford 2D-3D-S [5] for a recent example of an aca-
demic dataset collected with a Matterport camera.

4. Room-to-Room (R2R) Navigation

We now describe the Room-to-Room (R2R) task and
dataset, including an outline of the data collection process
and analysis of the navigation instructions gathered.

4.1. Task

As illustrated in Figure 1, the R2R task requires an em-
bodied agent to follow natural language instructions to nav-
igate from a starting pose to a goal location in the Mat-
terport3D Simulator. Formally, at the beginning of each
episode the agent is given as input a natural language in-
struction x̄ = 〈x1, x2, . . . xL〉, where L is the length of the
instruction and xi is a single word token. The agent ob-
serves an initial RGB image o0, determined by the agent’s
initial pose comprising a tuple of 3D position, heading and
elevation s0 = 〈v0, ψ0, θ0〉. The agent must execute a se-
quence of actions 〈s0, a0, s1, a1, . . . , sT , aT 〉, with each ac-

Standing in front of the family picture,
turn left and walk straight through the
bathroom past the tub and mirrors. Go
through the doorway and stop when the
door to the bathroom is on your right
and the door to the closet is to your left.

Walk with the family photo on your
right. Continue straight into the
bathroom. Walk past the bathtub. Stop
in the hall between the bathroom and
toilet doorways.

Walk straight passed bathtub and stop
with closet on the left and toilet on the
right.

Pass the pool and go indoors using the
double glass doors. Pass the large table
with chairs and turn left and wait by the
wine bottles that have grapes by them.

Walk straight through the room and exit
out the door on the left. Keep going past
the large table and turn left. Walk down
the hallway and stop when you reach the
2 entry ways. One in front of you and one
to your right. The bar area is to your left.

Enter house through double doors,
continue straight across dining room, turn
left into bar and stop on the circle on the
ground.

Exit the office then turn left and then
turn left in the hallway and head down
the hallway until you get to a door on
your left and go into office 359 then
stop.

Go out of the room and take a left. Go
into the first room on your left.

Leave the office and take a left. Take
the next left at the hallway. Walk down
the hall and enter the first office on the
left. Stop next to the door to office 359.

Go up the stairs and turn right. Go past
the bathroom and stop next to the bed.

Walk all the way up the stairs, and
immediately turn right. Pass the
bathroom on the left, and enter the
bedroom that is right there, and stop
there.

Walk up the stairs turn right at the top
and walk through the doorway continue
straight and stop inside the bedroom.

Figure 4. Randomly selected examples of navigation instructions
(three per trajectory) shown with the view from the starting pose.

tion at leading to a new pose st+1 = 〈vt+1, ψt+1, θt+1〉,
and generating a new image observation ot+1. The episode
ends when the agent selects the special stop action, which
is augmented to the simulator action space defined in Sec-
tion 3.2.2. The task is successfully completed if the action
sequence delivers the agent close to an intended goal loca-
tion v∗ (refer to Section 4.4 for evaluation details).

4.2. Data Collection

To generate navigation data, we use the Matterport3D
region annotations to sample start pose s0 and goal location
v∗ pairs that are (predominantly) in different rooms. For
each pair, we find the shortest path v0 : v∗ in the relevant
weighted, undirected navigation graph G, discarding paths
that are shorter than 5m, and paths that contain less than
four or more than six edges. In total we sample 7,189 paths
capturing most of the visual diversity in the dataset. The
average path length is 10m, as illustrated in Figure 5.

For each path, we collect three associated navigation in-
structions using Amazon Mechanical Turk (AMT). To this

Figure 5. Distribution of instruction length and navigation trajec-
tory length in the R2R dataset.

end, we provide workers with an interactive 3D WebGL en-
vironment depicting the path from the start location to the
goal location using colored markers. Workers can interact
with the trajectory as a ‘fly-through’, or pan and tilt the cam-
era at any viewpoint along the path for additional context.
We then ask workers to ‘write directions so that a smart
robot can find the goal location after starting from the same
start location’. Workers are further instructed that it is not
necessary to follow exactly the path indicated, merely to
reach the goal. A video demonstration is also provided.

The full collection interface (which is included as sup-
plementary material) was the result of several rounds of
experimentation. We used only US-based AMT workers,
screened according to their performance on previous tasks.
Over 400 workers participated in the data collection, con-
tributing around 1,600 hours of annotation time.

4.3. R2R Dataset Analysis

In total, we collected 21,567 navigation instructions with
an average length of 29 words. This is considerably longer
than visual question answering datasets where most ques-
tions range from four to ten words [4]. However, given
the focused nature of the task, the instruction vocabulary
is relatively constrained, consisting of around 3.1k words
(approximately 1.2k with five or more mentions). As illus-
trated by the examples included in Figure 4, the level of
abstraction in instructions varies widely. This likely reflects
differences in people’s mental models of the way a ‘smart
robot’ works [43], making the handling of these differences
an important aspect of the task. The distribution of navi-
gation instructions based on their first words is depicted in
Figure 6. Although we use the R2R dataset in conjunction
with the Matterport3D Simulator, we see no technical rea-
son why this dataset couldn’t also be used with other simu-
lators based on the Matterport dataset [11].

4.4. Evaluation Protocol

One of the strengths of the R2R task is that, in contrast
to many other vision and language tasks such as image cap-
tioning and visual dialog, success is clearly measurable. We
define navigation error as the shortest path distance in the
navigation graph G between the agent’s final position vT

Figure 6. Distribution of navigation instructions based on their first
four words. Instructions are read from the center outwards. Arc
lengths are proportional to the number of instructions containing
each word. White areas represent words with individual contribu-
tions too small to show.

(i.e., disregarding heading and elevation) and the goal lo-
cation v∗. We consider an episode to be a success if the
navigation error is less than 3m. This threshold allows for
a margin of error of approximately one viewpoint, yet it is
comfortably below the minimum starting error of 5m. We
do not evaluate the agent’s entire trajectory as many instruc-
tions do not specify the path that should be taken.

Central to our evaluation is the requirement for the agent
to choose to end the episode when the goal location is iden-
tified. We consider stopping to be a fundamental aspect of
completing the task, demonstrating understanding, but also
freeing the agent to potentially undertake further tasks at
the goal. However, we acknowledge that this requirement
contrasts with recent works in vision-only navigation that
do not train the agent to stop [62, 40]. To disentangle the
problem of recognizing the goal location, we also report
success for each agent under an oracle stopping rule, i.e.
if the agent stopped at the closest point to the goal on its
trajectory. Misra et al. [41] also use this evaluation.

Dataset Splits We follow broadly the same train/val/test
split strategy as the Matterport3D dataset [11]. The test set
consists of 18 scenes, and 4,173 instructions. We reserve
an additional 11 scenes and 2,349 instructions for validat-
ing in unseen environments (val unseen). The remaining 61
scenes are pooled together, with instructions split 14,025
train / 1,020 val seen. Following best practice, goal loca-
tions for the test set will not be released. Instead, we will
provide an evaluation server where agent trajectories may
be uploaded for scoring.

5. Vision-and-Language Navigation Agents
In this section, we describe a sequence-to-sequence neu-

ral network agent and several other baselines that we use to
explore the difficulty of the R2R navigation task.

5.1. Sequence-to-Sequence Model

We model the agent with a recurrent neural network pol-
icy using an LSTM-based [23] sequence-to-sequence ar-
chitecture with an attention mechanism [6]. Recall that
the agent begins with a natural language instruction x̄ =
〈x1, x2, . . . xL〉, and an initial image observation o0. The
encoder computes a representation of x̄. At each step t,
the decoder observes representations of the current image ot
and the previous action at−1 as input, applies an attention
mechanism to the hidden states of the language encoder,
and predicts a distribution over the next action at. Using
this approach, the decoder maintains an internal memory of
the agent’s entire preceeding history, which is essential for
navigating in a partially observable environment [56]. We
discuss further details in the following sections.

Language instruction encoding Each word xi in the lan-
guage instruction is presented sequentially to the encoder
LSTM as an embedding vector. We denote the output of the
encoder at step i as hi, such that hi = LSTMenc (xi, hi−1).
We denote h̄ = {h1, h2, . . . , hL} as the encoder context,
which will be used in the attention mechanism. As with
Sutskever et al. [49], we found it valuable to reverse the
order of words in the input language instruction.

Model action space The simulator action space is state-
dependent (refer Section 3.2.2), allowing agents to make
fine-grained choices between different forward trajectories
that are presented. However, in this initial work we simplify
our model action space to 6 actions corresponding to left,
right, up, down, forward and stop. The forward
action is defined to always move to the reachable viewpoint
that is closest to the centre of the agent’s visual field. The
left, right, up and down actions are defined to move
the camera by 30 degrees.

Image and action embedding For each image observa-
tion ot, we use a ResNet-152 [22] CNN pretrained on Im-
ageNet [46] to extract a mean-pooled feature vector. Anal-
ogously to the embedding of instruction words, an embed-
ding is learned for each action. The encoded image and
previous action features are then concatenated together to
form a single vector qt. The decoder LSTM operates as
h

′

t = LSTMdec (qt, h
′

t−1).

Action prediction with attention mechanism To predict
a distribution over actions at step t, we first use an atten-
tion mechanism to identify the most relevant parts of the
navigation instruction. This is achieved by using the global,
general alignment function described by Luong et al. [34]

to compute an instruction context ct = f(h
′

t, h̄). When then
compute an attentional hidden state h̃t = tanh (Wc[ct;h

′

t]),
and calculate the predictive distribution over the next ac-
tion as at = softmax (h̃t). Although visual attention has
also proved highly beneficial in vision and language prob-
lems [60, 33, 3], we leave an investigation of visual atten-
tion in Vision-and-Language Navigation to future work.

5.2. Training

We investigate two training regimes, ‘teacher-forcing’
and ‘student-forcing’. In both cases, we use cross en-
tropy loss at each step to maximize the likelihood of the
ground-truth target action a∗t given the previous state-action
sequence 〈s0, a0, s1, a1, . . . , st〉. The target output action
a∗t is always defined as the next action in the ground-
truth shortest-path trajectory from the agent’s current pose
st = 〈vt, ψt, θt〉 to the target location v∗.

Under the ‘teacher-forcing’ [32] approach, at each step
during training the ground-truth target action a∗t is selected,
to be conditioned on for the prediction of later outputs.
However, this limits exploration to only states that are in
ground-truth shortest-path trajectory, resulting in a chang-
ing input distribution between training and testing [45, 32].
To address this limitation, we also investigate ‘student-
forcing’. In this approach, at each step the next action is
sampled from the agent’s output probability distribution.
Student-forcing is equivalent to an online version of DAG-
GER [45], or the ‘always sampling’ approach in scheduled
sampling [8]4.

Implementation Details We perform only minimal text
pre-processing, converting all sentences to lower case, tok-
enizing on white space, and filtering words that do not occur
at least five times. We set the simulator image resolution to
640× 480 with a vertical field of view of 60 degrees. We set
the number of hidden units in each LSTM to 512, the size of
the input word embedding to 256, and the size of the input
action embedding to 32. Embeddings are learned from ran-
dom initialization. We use dropout of 0.5 on embeddings,
CNN features and within the attention model.

As we have discretized the agent’s heading and eleva-
tion changes in 30 degree increments, for fast training we
extract and pre-cache all CNN feature vectors. We train in
PyTorch using the Adam optimizer [28] with weight decay
and a batch size of 100. In all cases we train for a fixed
number of iterations. As the evaluation is single-shot, at test
time we use greedy decoding [44]. Our test set submission
is trained on all training and validation data.

4Scheduled sampling has been shown to improve performance on tasks
for which it is difficult to exactly determine the best next target output a∗t
for an arbitrary preceding sequence (e.g. language generation [8]). How-
ever, in our task we can easily determine the shortest trajectory to the goal
location from anywhere, and we found in initial experiments that scheduled
sampling performed worse than student-forcing (i.e., always sampling).

Trajectory
Length (m)

Navigation
Error (m)

Success
(%)

Oracle
Success (%)

Val Seen:
SHORTEST 10.19 0.00 100 100
RANDOM 9.58 9.45 15.9 21.4
Teacher-forcing 10.95 8.01 27.1 36.7
Student-forcing 11.33 6.01 38.6 52.9

Val Unseen:
SHORTEST 9.48 0.00 100 100
RANDOM 9.77 9.23 16.3 22.0
Teacher-forcing 10.67 8.61 19.6 29.1
Student-forcing 8.39 7.81 21.8 28.4

Test (unseen):
SHORTEST 9.93 0.00 100 100
RANDOM 9.93 9.77 13.2 18.3
Human 11.90 1.61 86.4 90.2
Student-forcing 8.13 7.85 20.4 26.6

Table 1. Average R2R navigation results using evaluation metrics
defined in Section 4.4. Our seq-2-seq model trained with student-
forcing achieves promising results in previously explored environ-
ments (Val Seen). Generalization to previously unseen environ-
ments (Val Unseen / Test) is far more challenging.

5.3. Additional Baselines

Learning free We report two learning-free baselines
which we denote as RANDOM and SHORTEST. The RAN-
DOM agent exploits the characteristics of the dataset by
turning to a randomly selected heading, then completing a
total of 5 successful forward actions (when no forward
action is available the agent selects right). The SHORT-
EST agent always follows the shortest path to the goal.

Human We quantify human performance by collecting
human-generated trajectories for one third of the test set
(1,390 instructions) using AMT. The collection procedure is
similar to the dataset collection procedure described in Sec-
tion 4.2, with two major differences. First, workers are pro-
vided with navigation instructions. Second, the entire scene
environment is freely navigable in first-person by clicking
on nearby viewpoints. In effect, workers are provided with
the same information received by an agent in the simula-
tor. To ensure a high standard, we paid workers bonuses for
stopping within 3m of the true goal location.

6. Results
As illustrated in Table 1, our exploitative RANDOM

agent achieves an average success rate of 13.2% on the
test set (which appears to be slightly more challenging than
the validation sets). In comparison, AMT workers achieve
86.4% success on the test set, illustrating the high quality of
the dataset instructions. Nevertheless, people are not infalli-
ble when it comes to navigation. For example, in the dataset
we occasionally observe some confusion between right and

Figure 7. Validation loss, navigation error and success rate during training. Our experiments suggest that neural network approaches can
strongly overfit to training environments, even with regularization. This makes generalizing to unseen environments challenging.

Figure 8. In previously seen environments student-forcing training
achieves 38.6% success (< 3m navigation error).

left (although this is recoverable if the instructions contain
enough visually-grounded references). In practice, people
also use two additional mechanisms to reduce ambiguity
that are not available here, namely gestures and dialog.

With regard to the sequence-to-sequence model, student-
forcing is a more effective training regime than teacher-
forcing, although it takes longer to train as it explores more
of the environment. Both methods improve significantly
over the RANDOM baseline, as illustrated in Figure 8. Us-
ing the student-forcing approach we establish the first test
set leaderboard result achieving a 20.4% success rate.

The most surprising aspect of the results is the significant
difference between performance in seen and unseen valida-
tion environments (38.6% vs. 21.8% success for student-
forcing). To better explain these results, in Figure 7 we plot
validation performance during training. Even using strong
regularization (dropout and weight decay), performance in
unseen environments plateaus quickly, but further training
continues to improve performance in the training environ-
ments. This suggests that the visual groundings learned may
be quite specific to the training environments.

Overall, the results illustrate the significant challenges
involved in training agents that can generalize to perform
well in previously unseen environments. The techniques

and practices used to optimize performance on existing vi-
sion and language datasets are unlikely to be sufficient for
models that are expected to operate in new environments.

7. Conclusion and Future Work
Vision-and-Language Navigation (VLN) is important

because it represents a significant step towards capabilities
critical for practical robotics. To further the investigation of
VLN, in this paper we introduced the Matterport3D Simu-
lator. This simulator achieves a unique and desirable trade-
off between reproducibility, interactivity, and visual real-
ism. Leveraging these advantages, we collected the Room-
to-Room (R2R) dataset. The R2R dataset is the first dataset
to evaluate the capability to follow natural language naviga-
tion instructions in previously unseen real images at build-
ing scale. To explore this task we investigated several base-
lines and a sequence-to-sequence neural network agent.

From this work we reach three main conclusions. First,
VLN is interesting because existing vision and language
methods can be successfully applied. Second, the challenge
of generalizing to previously unseen environments is sig-
nificant. Third, crowd-sourced reconstructions of real loca-
tions are a highly-scalable and underutilized resource5. The
process used to generate R2R is applicable to a host of re-
lated vision and language problems, particularly in robotics.
We hope that this simulator will benefit the community by
providing a visually-realistic framework to investigate VLN
and related problems such as navigation instruction genera-
tion, embodied visual question answering, human-robot di-
alog, and domain transfer to real settings.

Acknowledgements This research is supported by a Face-
book ParlAI Research Award, an Australian Government Research
Training Program (RTP) Scholarship, the Australian Research
Council Centre of Excellence for Robotic Vision (project number
CE140100016), and the Australian Research Council’s Discovery
Projects funding scheme (project DP160102156).

5The existing Matterport3D data release constitutes just 90 out of more
than 700,000 building scans that have been already been collected [37].

References
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al.
Tensorflow: Large-scale machine learning on heterogeneous
distributed systems. arXiv preprint arXiv:1603.04467, 2016.
4

[2] P. Ammirato, P. Poirson, E. Park, J. Kosecka, and A. C. Berg.
A dataset for developing and benchmarking active vision. In
ICRA, 2017. 3

[3] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson,
S. Gould, and L. Zhang. Bottom-up and top-down atten-
tion for image captioning and visual question answering. In
CVPR, 2018. 7

[4] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L.
Zitnick, and D. Parikh. VQA: Visual question answering. In
ICCV, 2015. 2, 4, 5

[5] I. Armeni, A. Sax, A. R. Zamir, and S. Savarese. Joint 2D-
3D-Semantic Data for Indoor Scene Understanding. arXiv
preprint arXiv:1702.01105, 2017. 4

[6] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine trans-
lation by jointly learning to align and translate. In ICLR,
2015. 6

[7] C. Beattie, J. Z. Leibo, D. Teplyashin, T. Ward, M. Wain-
wright, H. Küttler, A. Lefrancq, S. Green, V. Valdés,
A. Sadik, et al. Deepmind lab. arXiv preprint
arXiv:1612.03801, 2016. 1, 2, 3

[8] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer. Scheduled
sampling for sequence prediction with recurrent neural net-
works. In NIPS, 2015. 7

[9] G. Brockman, V. Cheung, L. Pettersson, J. Schneider,
J. Schulman, J. Tang, and W. Zaremba. OpenAI gym. arXiv
preprint arXiv:1606.01540, 2016. 4

[10] S. Brodeur, E. Perez, A. Anand, F. Golemo, L. Celotti,
F. Strub, J. Rouat, H. Larochelle, and A. Courville. HoME:
A household multimodal environment. arXiv:1711.11017,
2017. 3

[11] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niessner,
M. Savva, S. Song, A. Zeng, and Y. Zhang. Matterport3d:
Learning from rgb-d data in indoor environments. Interna-
tional Conference on 3D Vision (3DV), 2017. 1, 2, 3, 5, 6

[12] D. S. Chaplot, K. M. Sathyendra, R. K. Pasumarthi, D. Ra-
jagopal, and R. Salakhutdinov. Gated-attention architec-
tures for task-oriented language grounding. arXiv preprint
arXiv:1706.07230, 2017. 1, 2, 3

[13] D. L. Chen and R. J. Mooney. Learning to interpret natural
language navigation instructions from observations. In AAAI,
2011. 1, 2

[14] X. Chen, T.-Y. L. Hao Fang, R. Vedantam, S. Gupta,
P. Dollar, and C. L. Zitnick. Microsoft COCO Captions:
Data Collection and Evaluation Server. arXiv preprint
arXiv:1504.00325, 2015. 2, 4

[15] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser,
and M. Nießner. Scannet: Richly-annotated 3d reconstruc-
tions of indoor scenes. In CVPR, 2017. 3

[16] A. Das, S. Datta, G. Gkioxari, S. Lee, D. Parikh, and D. Ba-
tra. Embodied Question Answering. In CVPR, 2018. 2, 4

[17] A. Das, S. Kottur, K. Gupta, A. Singh, D. Yadav, J. M. F.
Moura, D. Parikh, and D. Batra. Visual dialog. In CVPR,
2017. 2

[18] D. Gordon, A. Kembhavi, M. Rastegari, J. Redmon, D. Fox,
and A. Farhadi. IQA: Visual question answering in interac-
tive environments. In CVPR, 2018. 2, 4

[19] Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and
D. Parikh. Making the V in VQA matter: Elevating the role
of image understanding in Visual Question Answering. In
CVPR, 2017. 2

[20] S. Guadarrama, L. Riano, D. Golland, D. Go, Y. Jia,
D. Klein, P. Abbeel, T. Darrell, et al. Grounding spatial rela-
tions for human-robot interaction. In IROS, 2013. 1, 2

[21] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Ma-
lik. Cognitive mapping and planning for visual navigation.
In CVPR, 2017. 3

[22] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, 2016. 6

[23] S. Hochreiter and J. Schmidhuber. Long Short-Term Mem-
ory. Neural Computation, 1997. 6

[24] A. S. Huang, S. Tellex, A. Bachrach, T. Kollar, D. Roy,
and N. Roy. Natural language command of an autonomous
micro-air vehicle. In IROS, 2010. 2

[25] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-
tional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014. 4

[26] S. Kazemzadeh, V. Ordonez, M. Matten, and T. L. Berg.
Referit game: Referring to objects in photographs of natu-
ral scenes. In EMNLP, 2014. 2

[27] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and
W. Jaśkowski. ViZDoom: A Doom-based AI research plat-
form for visual reinforcement learning. In IEEE Conference
on Computational Intelligence and Games, 2016. 1, 2, 3

[28] D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014. 7

[29] T. Kollar, S. Tellex, D. Roy, and N. Roy. Toward under-
standing natural language directions. In Human-Robot Inter-
action (HRI), 2010 5th ACM/IEEE International Conference
on, pages 259–266. IEEE, 2010. 2

[30] E. Kolve, R. Mottaghi, D. Gordon, Y. Zhu, A. Gupta, and
A. Farhadi. AI2-THOR: An interactive 3d environment for
visual AI. arXiv:1712.05474, 2017. 3

[31] T. D. Kulkarni, A. Saeedi, S. Gautam, and S. J. Gersh-
man. Deep successor reinforcement learning. arXiv preprint
arXiv:1606.02396, 2016. 3

[32] A. M. Lamb, A. G. A. P. GOYAL, Y. Zhang, S. Zhang, A. C.
Courville, and Y. Bengio. Professor forcing: A new algo-
rithm for training recurrent networks. In NIPS, 2016. 7

[33] J. Lu, J. Yang, D. Batra, and D. Parikh. Hierarchical
question-image co-attention for visual question answering.
In NIPS, 2016. 7

[34] M.-T. Luong, H. Pham, and C. D. Manning. Effective ap-
proaches to attention-based neural machine translation. In
EMNLP, 2014. 6

[35] M. MacMahon, B. Stankiewicz, and B. Kuipers. Walk the
talk: Connecting language, knowledge, and action in route
instructions. In AAAI, 2006. 2

[36] J. Mao, H. Jonathan, A. Toshev, O. Camburu, A. Yuille, and
K. Murphy. Generation and comprehension of unambiguous
object descriptions. In CVPR, 2016. 2

[37] Matterport. Press release, October 2017. 8
[38] H. Mei, M. Bansal, and M. R. Walter. Listen, attend, and

walk: Neural mapping of navigational instructions to action
sequences. In AAAI, 2016. 1, 2

[39] A. H. Miller, W. Feng, A. Fisch, J. Lu, D. Batra, A. Bordes,
D. Parikh, and J. Weston. Parlai: A dialog research software
platform. arXiv preprint arXiv:1705.06476, 2017. 4

[40] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. Ballard,
A. Banino, M. Denil, R. Goroshin, L. Sifre, K. Kavukcuoglu,
et al. Learning to navigate in complex environments. In
ICLR, 2017. 6

[41] D. K. Misra, J. Langford, and Y. Artzi. Mapping instruc-
tions and visual observations to actions with reinforcement
learning. In EMNLP, 2017. 1, 3, 6

[42] P. K. Nathan Silberman, Derek Hoiem and R. Fergus. Indoor
segmentation and support inference from rgbd images. In
ECCV, 2012. 3

[43] D. A. Norman. The Design of Everyday Things. Basic
Books, Inc., New York, NY, USA, 2002. 5

[44] S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and V. Goel.
Self-critical sequence training for image captioning. In
CVPR, 2017. 7

[45] S. Ross, G. Gordon, and D. Bagnell. A reduction of imi-
tation learning and structured prediction to no-regret online
learning. In AISTATS, 2011. 7

[46] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. Imagenet large scale visual recog-
nition challenge. IJCV, 2015. 6

[47] M. Savva, A. X. Chang, A. Dosovitskiy, T. Funkhouser, and
V. Koltun. MINOS: Multimodal indoor simulator for navi-
gation in complex environments. arXiv:1712.03931, 2017.
3, 4

[48] S. Song, S. P. Lichtenberg, and J. Xiao. SUN RGB-D: A
rgb-d scene understanding benchmark suite. In CVPR, 2015.
3

[49] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence
learning with neural networks. In NIPS, 2014. 6

[50] L. Tai and M. Liu. Towards cognitive exploration through
deep reinforcement learning for mobile robots. arXiv
preprint arXiv:1610.01733, 2016. 3

[51] M. Tapaswi, Y. Zhu, R. Stiefelhagen, A. Torralba, R. Ur-
tasun, and S. Fidler. MovieQA: Understanding stories in
movies through question-answering. In CVPR, 2016. 2

[52] S. Tellex, T. Kollar, S. Dickerson, M. R. Walter, A. G. Baner-
jee, S. J. Teller, and N. Roy. Understanding natural language
commands for robotic navigation and mobile manipulation.
In AAAI, 2011. 1, 2

[53] C. Tessler, S. Givony, T. Zahavy, D. J. Mankowitz, and
S. Mannor. A deep hierarchical approach to lifelong learning
in minecraft. In AAAI, pages 1553–1561, 2017. 3

[54] A. Torralba and A. A. Efros. Unbiased look at dataset bias.
In CVPR, 2011. 4

[55] A. Vogel and D. Jurafsky. Learning to follow navigational
directions. In ACL, 2010. 2

[56] D. Wierstra, A. Foerster, J. Peters, and J. Schmidhuber. Solv-
ing deep memory pomdps with recurrent policy gradients.
In International Conference on Artificial Neural Networks,
2007. 6

[57] T. Winograd. Procedures as a representation for data in a
computer program for understanding natural language. Tech-
nical report, Massachusetts Institute of Technology, 1971. 2

[58] Y. Wu, Y. Wu, G. Gkioxari, and Y. Tian. Building gen-
eralizable agents with a realistic and rich 3d environment.
arXiv:1801.02209, 2018. 3

[59] C. Yan, D. Misra, A. Bennnett, A. Walsman, Y. Bisk, and
Y. Artzi. CHALET: Cornell house agent learning environ-
ment. arXiv:1801.07357, 2018. 3

[60] Z. Yang, X. He, J. Gao, L. Deng, and A. J. Smola. Stacked
attention networks for image question answering. In CVPR,
2016. 7

[61] A. R. Zamir, F. Xia, J. He, S. Sax, J. Malik, and S. Savarese.
Gibson Env: Real-world perception for embodied agents. In
CVPR, 2018. 3

[62] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-
Fei, and A. Farhadi. Target-driven visual navigation in in-
door scenes using deep reinforcement learning. In ICRA,
2017. 1, 2, 3, 4, 6

