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Abstract

We present an efficient method for the semi-supervised
video object segmentation. Our method achieves accuracy
competitive with state-of-the-art methods while running in a
fraction of time compared to others. To this end, we propose
a deep Siamese encoder-decoder network that is designed
to take advantage of mask propagation and object detec-
tion while avoiding the weaknesses of both approaches. Our
network, learned through a two-stage training process that
exploits both synthetic and real data, works robustly with-
out any online learning or post-processing. We validate our
method on four benchmark sets that cover single and mul-
tiple object segmentation. On all the benchmark sets, our
method shows comparable accuracy while having the or-
der of magnitude faster runtime. We also provide extensive
ablation and add-on studies to analyze and evaluate our
framework.

1. Introduction

Video object segmentation — separating a foreground ob-
ject from a video sequence — is one of most important tasks
in video analysis and editing, and commercial applications
such as Adobe After Effects have dedicated tools for it.
However, automatic video object segmentation is far from
a solved problem, and post-production video editing often
requires significant manual interaction to achieve pleasing
results. While recent work has addressed this problem, per-
formance is still limited in terms of either the quality or the
speed. In this paper, our goal is to develop an accurate video
object segmentation algorithm that is also fast enough to be
used in interactive settings.

Video object segmentation methods typically rely on two
important cues. Propagation-based methods [13, 37, 28,

] mainly leverage the temporal coherence of object mo-
tion and formulate this problem as object mask propaga-
tion (i.e. pixel-level tracking) starting from a given anno-
tated frame. These methods rely on the spatiotemporal con-
nections between pixels, and thus can adapt to complex
deformation and movement of a target object as long as
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Figure 1: A comparison of the quality and the speed
of previous video object segmentation methods (DAVIS-
2016 benchmark). We visualize the intersection-over-union
(IoU) with respect to the frames-per-second (FPS). Note
that the FPS axis is in the log scale.

the changes in the appearance and the location are smooth.
However, these methods are vulnerable to temporal discon-
tinuities like occlusions and rapid motion, and can suffer
from drifting once the propagation becomes unreliable.

Detection-based methods [5, 27, 45] learn the appear-
ance of the target object from a given annotated frame, and
perform a pixel-level detection of the target object at each
frame. As they rarely depend on temporal consistency, they
are robust to occlusion and drifting. However, as their es-
timation is mostly based on the object appearance in an
annotated frame(s), they often fail to adapt to appearance
changes and have difficulty separating object instances with
similar appearances.

Recent approaches to this problem have utilized deep
networks. Most of these approaches heavily rely on online
learning, where a pre-trained deep network is fine-tuned on
the test video [45, 30, 40, 5,27, 18, 21]. While online train-
ing improves segmentation accuracy by letting the network
adapt to the target object appearance, it is computationally
expensive, thus limiting its practical use (e.g. it requires sev-
eral minutes of GPU-powered training for each test video).

In this paper, we present a new hybrid method for
semi-supervised video object segmentation. We construct
a Siamese encoder-decoder network that simultaneously



makes use of both the previous mask to be propagated to
the current frame and the reference frame which specifies
the target object to be detected in the current frame. Our
network is designed to generate a sharp object mask with-
out time-consuming post-processing. To address the lack of
large segmented training video datasets, we use a two-stage
scheme that pre-trains the network on synthetically gener-
ated image data and then fine-tunes it on video data.

Our network architecture and training scheme have been
carefully designed to take advantage of both propagation
and detection cues. Consequently, the network works ro-
bustly without any online learning or post-processing, lead-
ing to tremendous efficiency at test time. Our method not
only achieves state-of-the-art performance on public bench-
mark datasets, but also runs orders of magnitude faster than
previous methods that rely on online learning (as shown
in Fig. 1). We also provide extensive experimental analysis
and evaluation on the influence of each component through
the ablation and the add-on studies.

2. Related Work

Unsupervised methods. Unsupervised methods aim to
segment a foreground object in a fully automatic way with-
out any user annotation. The main sources of information
include visual saliency [42] and difference in motion (e.g.
optical flow [35] and long-term trajectory [4]). However,
the criteria for a foreground object are often ambiguous
and the unsupervised segmentation does not fit well with
the interactive video editing scenario. We focus on semi-
supervised methods in this paper.

Propagation-based methods. Many video segmentation
methods start from user annotations (e.g. segmentation
masks or scribbles at key-frames) that roughly specify the
object of interest. To propagate these sparse labels through
the entire video sequence, graph representations are often
used [13, 37, 28]. A spatiotemporal graph where pixels
(or superpixels) are connected with space-time neighbors is
built from a video. Energy-based optimization like graph-
cut is performed to assign the optimal label for each node.

For professional video editing applications, interactive
methods are often preferred over automatic methods [41,

, 2, 25]. These methods focus on designing an efficient
way for users to specify segmentation constraints and to
quickly respond to these constraints.

Recent approaches have used deep learning for label
propagation in videos. A temporal bilateral network was
proposed for spatiotemporal dense filtering in [20]. In [30],
a deep network was trained to refine the previous frame
mask to create the current frame mask. They trained a net-
work for this task using only static images. They use online
fine-tuning using the first frame of the test video to memo-
rize target object appearance, leading to a boost in the per-
formance. Khoreva et al. [21] extended [30] by proposing

a heavy data augmentation strategy for online learning, to
achieve higher accuracy. In [18], Hu et al. developed a re-
current neural network framework for multi-instance seg-
mentation. With a recurrent network, they capture temporal
coherence effectively and take advantage of long-term tem-
poral structure of a video.

Detection-based methods. Another approach in the semi-
supervised setting is to exploit the appearance of the tar-
get object in a given reference frame. Methods in this cat-
egory frame video object segmentation as pixel-level ob-
ject detection in each frame, processing a video frame-by-
frame without considering temporal consistency. In [5],
Caelles et al. applied one-shot online learning that fine-
tunes a deep network on a labeled frame using a pre-trained
model and used that fined-tuned network as the detector.
Maninis et al. [27] extended this idea by incorporating ad-
ditional information from an auxiliary instance segmenta-
tion network [26]. Voigtlaender and Leibe [40] further de-
veloped the idea from [5] by employing an online adap-
tation mechanism originating from the box-level tracking.
Yoon et al. [45] proposed a Siamese network for the pixel-
level matching to detect a target object.

3. Method

Given a reference frame with an object mask, the goal
of our method is to automatically segment the target ob-
ject from the entire video sequence. The key idea of our
method is exposing both the reference frame with annota-
tion and the current frame with previous mask estimation to
a deep network, so that the network defects the target object
by matching the appearance at the reference frame and also
tracks the previous mask by referencing the previous target
mask in the current frame.

3.1. Network Structure

Fig. 2 depicts our network structure. We construct the
model as a Siamese encoder-decoder structure that can effi-
ciently handle four inputs and produce a sharp mask output.
The network consists of two encoders with shared param-
eters, a global convolution block, and a decoder. The net-
work is designed to be fully convolutional, which can han-
dle arbitrary input size and generate sharp output masks.
Siamese encoder. The encoder takes a pair of RGB images,
each with a mask map, as an input. The encoder includes
a reference and a target stream, and the filter weights are
shared between the streams. Inputs to the reference stream
include a reference image which is usually the first frame of
the video, and the groundtruth mask. For the target stream,
a target (current) image and a guidance mask correspond-
ing to the previous frame are provided. We concatenate the
image frame and the mask along the channel axis, then feed
it into the encoder. The parameter-shared encoders map the
two stream data into the same feature space.



Figure 2: Our network architecture. The network consists of two encoders with shared parameters, a global convolution
block, and a decoder. The network is fully convolutional. The relative spatial scales and channel dimensions of feature maps
are shown below each block.

Our encoder network is based on ResNet50 [16] and isgenerate the object mask. The size of the mask output is
modi ed to be able to take a 4-channel tensor by implant- 1=4 of the input image size. Every convolution layer in the
ing additional single channel Iters at the rst convolution re nement module produces a feature map with 256 chan-
layer. The network weights are initialized from the Ima- nels and the last one produces a two-channel mask map.
geNet pre-trained model, except for newly added lIters that
are initialized randomly.

Global convolution block. The outputs of the two encoder DAVIS-2017 [33, 31] is the largest public benchmark
streams are concatenated and fed into a global convolutiordataset for the video object segmentation, and provides a
block. This block is designed to perform global feature training set consisting of 60 videos. This is not enough to
matching between the reference and the target streams to lotrain our deep network from scratch even though we use
calize the target object. To overcome the locality of convo- pre-trained weights for the encoder. To address this issue,
lution operations, we adopt global convolution [29] thatef - we present a two-stage training scheme. Our network is rst
ciently enlarges the receptive eld by combiniigk+k 1 trained on simulated samples using static image datasets
andk 1+1 k convolution layersK=7in ourimplementa-  and then ne-tuned on video segmentation data.

tion). The output of the global convolution block is further Pre-training on simulated samples. In the rst stage,
processed by one residual block [17]. Note that we removewe used image datasets with instance object masks (Pascal
the batch normalization [19] from the original shape. All VOC[10, 14], ECSSD [34], and MSRA10K [8]) to simulate
convolution layers in this block produce a feature map with training samples. For our two-stream encoder, we need both
256 channelsd.g the number of Iters is 256). the reference and the target frame data that contain the same
object. To automatically generate the training samples, we

3.2. Two-Stage Training

Decoder.The decoder takes the output of the global convo- ; i
lution block and also features in the target encoder streamtS€d the following two strategies. _

through skip-connections to produce a mask output. Toef-  * Strategy 1: From an image with an object mask,
ciently merge features in different scales, we employ the re- W€ generate a pair of images by applying two dif-
nement module [32] as the building block of our decoder. ferent sets of rando_m transformations (rotation, scal-
We make several modi cations from the original structure ing, color perturbation). We used the Pascal VOC
by replacing convolution layers with residual blocks [17], as dataset [10, 14] as the source image database.
shown in Fig. 2. Our decoder consists of three re nement < Strategy 2: From a pair of a foreground object and
modules, a nal convolution layer, and a softmax layer to a background image, we applied two different sets



Figure 3: Training samples automatically generated from

static images. We have two different strategies for generat-Figure 4: Training with recurrence. We compute train-

ing training samples as described in Sec. 3.2. ing losses at every time step and update our model by the
BPTT [43].

of random transformations to the foreground object,

then generated a pair of images by blending the trans-instance if there are multiple instances in the video.
formed foreground images with the background im- ~ The naive ne-tuning explained above may not be com-
age. We used the saliency detection datasets [34, gJpatible with a real test scenario as it does not re ect the
to segment foreground objects and the Pascal VOCerror accumulation over time. To resolve this problem,
dataset [10, 14] for background images. In addition, we ne-tune our model with its own estimation that of-
we simulated occlusions by using the object mask in ten comes with mistakes. Speci cally, we recurrently con-
the background imagee(g the butter y in the target ~ nect our model through time similar to [15] and feed the
image (Fig. 3) is occluded by a person). softmax (not binarized) output of the previous frame as

For both strategies, we further deformed the mask of the the guidance mask of the current frame in order to pre-
target frame using a random af ne transform to simulate the S€Tve the uncertainty of the estimation. This enables us to
guidance mask from the previous frame similar to [30]. We US€ back-propagation-through-time (BPTT) for training the
then randomly crop a training sample that contains at least@currently-connected network [43]. For this training, we
50% of the target object from each generated image. Fig. 3USEN successive target frames from a random time index

shows some examples generated by the two strategies. of a video. Our recurrently-connected-through-time net-
. : work is depicted in Fig. 4. We will discuss the effect of
Strategy 1 simulates the environment changes (camera . . . . .

ne-tuning on video data with and without applying the re-

angle, zoom, illumination) of a static scene. Strategy 2 sim- .

.currence in Sec. 4.2.
ulates more complex changes and also covers a larger vari-
ety of object classes as the saliency detection datasets hav§ 3. Inference
more diverse class of objects than the Pascal VOC dataset.
The images from Strategy 2 sometimes look unnatural and We assume the groundtruth mask of the rst frame is
have blending artifacts, while the images from Strategy 1 given following the common semi-supervised setting of
are natural without the artifacts. We empirically found that video object segmentation. We set the rst frame as the
both strategies are helpful, thus we generate training samreference and estimate masks of the remaining frames se-
ples using both strategies with an equal probability. We an- quentially. Note that we pass the output probability map
alyze the effect of this pre-training stage in Sec. 4.2. of the previous frame as the guidance mask for the target
Fine-tuning on video data. After pre-training on the sim-  frame without binarization. When testing a video sequence,
ulated samples, we ne-tune the network with video seg- we compute the feature of the reference ( rst frame) stream
mentation data. By training on real video sequences, ourencoder only once and this makes our inference more ef-
network learns to adapt for long-term appearance changescient as shown in Fig. 4. To capture objects at different
(between the reference and the target frames) and shortsizes, we process frames in three different scale ingugs (
term motions (between the target frame and the previous0.5, 0.75, and 1) and average the results.
frame's mask). We trained our network on the DAVIS-2017 Multiple Objects. In the case of multiple objects, we still
training dataset [33, 31] that consists of 60 short HD videos use the same model but handle the scenario at the infer-
(4029 frames in total) with pixel-level instance label maps. ence time. Onaaiveway is to run each object indepen-
To prepare training samples from a video, we take referencedently and assign the label with the largest output proba-
and target frames at random time indices. We just select onebility. Another approach is thainner-take-allapproach



