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Abstract

We present a fast inverse-graphics framework for
instance-level 3D scene understanding. We train a deep
convolutional network that learns to map image regions to
the full 3D shape and pose of all object instances in the
image. Our method produces a compact 3D representation
of the scene, which can be readily used for applications like
autonomous driving. Many traditional 2D vision outputs,
like instance segmentations and depth-maps, can be obtai-
ned by simply rendering our output 3D scene model. We
exploit class-specific shape priors by learning a low dimen-
sional shape-space from collections of CAD models. We
present novel representations of shape and pose, that strive
towards better 3D equivariance and generalization. In or-
der to exploit rich supervisory signals in the form of 2D
annotations like segmentation, we propose a differentiable
Render-and-Compare loss that allows 3D shape and pose
to be learned with 2D supervision. We evaluate our method
on the challenging real-world datasets of Pascal3D+ and
KITTI, where we achieve state-of-the-art results.

1. Introduction

The term “scene understanding” has been used in com-
puter vision to broadly describe high-level understanding
of image content. A scene understanding algorithm builds
a compact representation of the image that is well-suited
for subsequent tasks. Traditional scene understanding algo-
rithms have primarily been used to assign semantic labels to
pixels or to output 2D bounding boxes around objects of in-
terest. However, such 2D representations are insufficient for
tasks like planning and 3D spatial reasoning. In this work,
we argue for the importance of a rich 3D scene model which
can reason about object instances.

A 2D image is a complex function of multiple attribu-
tes, such as the lighting, shape, and surface properties of
objects in the scene. An instance level 3D model provi-
des a representation of the scene that disentangles the 2D
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projection. This disentangled 3D representation makes our
method more suitable for real-world applications. The out-
put from our system can be directly used for tasks like path-
planning, or accurately predicting an object’s 3D location
in the future. Another major benefit of doing scene under-
standing with a rich 3D scene model is that traditional 2D
scene representations like segmentation, bounding box, and
2D depth-maps are all available for free. They can be gene-
rated by simply rendering the output 3D scene model. But
how do we invert the complex image formation process to
obtain the 3D scene model?

One classical approach to solving inverse problems
is analysis-by-synthesis. It consists of using a model that
describes the data generation process (synthesis), which is
then used to estimate the parameters of the model that ge-
nerated the particular observed data (analysis). Analysis-
by-synthesis with a 3D scene model is like “solving vision
as inverse-graphics”. Synthesis describes the process of
generating image content from the 3D scene model in the
style of computer graphics. Vision is then like analysis by
searching the best 3D scene configuration to explain the
observed image. The idea of analysis-by-synthesis can be
traced back to Helmhotz’s 1867 work on unconscious in-
ference [21], and it has a long history [3, 26, 61, 23, 9].
While conceptually elegant, it has only been successful for
a limited set of problems. This is due to the fact that useful
3D scene representations are high-dimensional. So analysis
then becomes a difficult search problem over a vast, high-
dimensional space of scene variables.

Recently there has been a re-emergence of the inverse-
graphics approach [11, 27, 44, 60, 51, 24, 25, 34], in which
an efficient, discriminative bottom-up method like a convo-
lutional network is used to cut down on the search space.
However, most of these approaches are still restricted to
simple scenes often containing only one object. In this work
we present an inverse-graphics approach which is capable
of handling complex real-world 3D scenes. Our approach
uses a deep convolutional network to map image regions to
3D representations of all object instances in an image.

To enable the inverse graphics approach to scale to com-
plex scenes, we made four key design choices: (i) Instead of
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using separately-trained models for the bottom-up and infe-
rence stages [25, 60, 34, 51], we employ a single unified
end-to-end trained network for inverse-graphics. We pro-
pose a differentiable Render-and-Compare loss that allows
the bottom up process to also obtain supervision from 2D
annotations. (ii) We factorize the scene into object instan-
ces with associated shape and pose, so the network can be
bootstraped with direct 3D supervision of shape and pose
whenever such data is available. This helps with network
convergence. Our method provides a disentangled repre-
sentation (shape and pose) of an object instance by design.
In contrast, other methods [27] have to explicitly train the
network to encourage disentanglement and interpretability
in latent parameters. We do not explicitly model lighting
and material properties, which are nuisance parameters for
our intended application of autonomous driving. (iii) We
exploit rich shape priors by learning a class-specific low-
dimensional embedding of shapes from CAD model col-
lections [5, 1]. The low-dimensionality of shape-space ma-
kes the learning task easier and allows for efficient back-
propagation through the Render-and-Compare loss. Additi-
onally, the shape prior enables a complete (amodal) recon-
struction of an object, even for parts of the object which are
occluded. (iv) We carefully study equivariance [18, 28, 22]
demands for predicting 3D shape and pose from an image
region of interest (RoI). Since shape and pose are 3D en-
tities, normalization of these parameters w.r.t. to 2D RoI
transformations is not possible in the same manner as is
done for 2D entities like bounding box parameters and in-
stance segmentation [18]. Instead, we capture the 2D trans-
formations performed by RoI pooling layers and feed them
to shape and pose classifiers.

Our core contribution is a fast inverse-graphics network
called 3D-RCNN, capable of estimating the amodal 3D
shape and pose of all object instances in an image. Our met-
hod achieves state-of-the-art performance in the complex
real world datasets of PASCAL3D+ [58] and KITTI [13].

2. Related Work
Many recent works have addressed instance-level 3D

scene understanding [36, 4, 6, 29, 38, 33, 50, 47, 56,
64, 35, 2, 63, 62, 12]. However, most of these approa-
ches [47, 50, 33, 38] only predict object orientation. When
it comes to shape, most methods either estimate only 3D
bounding boxes [36, 6, 12], or coarse wire-frame skele-
tons [29, 54, 63, 62], or represent shape via an exemplar
mesh chosen from a small set of meshes [4, 56, 35, 2]. In
contrast, we jointly learn the detailed 3D shape along with
pose. We make use of a compact parametric shape-space
which has much more capacity than a small set of exemplar
meshes and can even represent articulated objects.

There are also several works devoted specifically to
shape modeling, which learn shape via auto-encoders [59,

48, 15], generative adversarial networks [55], and non-
linear dimensionality reduction [40, 39]. In this paper, we
choose to adopt PCA for modeling rigid objects, since it
is simple and efficient. Our method is flexible enough to
incorporate other parametric shape models including arti-
culated shapes, provided they are continuous and relatively
low dimensional. We demonstrate the use of the SMPL [31]
shape model for articulated persons.

Modern rasterized rendering approaches like OpenGL
are fast, but lack a closed-form expression which makes it
harder to compute derivatives. It is also discontinuous at
occlusion boundaries. However, the recent works [32, 25,
43] have demonstrated efficient ways of obtaining approx-
imate derivatives. Chain-rule along with screen-space ap-
proximation around occlusion boundaries is used in [32],
while [25] uses numerical derivatives. However, both these
approaches [32, 25] used differentiable rendering in the
context of test-time optimization for refining certain task
parameters, initialized from a separately trained learning al-
gorithm. We also use numerical derivatives, but we use it for
computing gradients to back-propagate an end-to-end lear-
ned deep convolutional network. In the unsupervised shape
reconstruction work of Rezende et al. [43], gradients of an
OpenGL renderer were computed using [53]. However, it
was only demonstrated for very simple meshes.

A good majority of the related approaches, such as
[29, 36, 49, 54, 50, 47], process only a single object at a
time. This requires multiple passes of their network to cover
all objects in the image, which is prohibitively expensive.
Our method computes the 3D shape and pose of all objects
within a single forward pass of the network, and does not
involve any costly post-processing step. With a ResNet-50
backend, our model reconstructs the 3D shape and pose of
all object instances in an image in under 200ms, and is thus
suitable for real-time applications like autonomous driving.

3. Method Overview
Our goal is to recover the 3D shapes and poses of all

object instances within a given image. We assume that ob-
ject category detector outputs are given, and focus on the
challenging task of recovering the 3D parameters of object
instances from their 2D observations. A basic challenge
which must be addressed is how to represent shape and pose
in 3D. We encode object shape using a class-specific shape
prior – a low-dimensional “shape space” constructed from a
collection of 3D CAD models. This representation encodes
3D shapes of an object class using a small set of parame-
ters. The problem of estimating shape is then framed as
predicting an appropriate set of low dimensional shape pa-
rameters for a particular object instance.

We train a deep network that learns to solve the inverse
problem of mapping 2D image regions to the 3D shape and
pose parameters of an object. Fig.1 presents an overview of



Figure 1: Our network architecture for instance-level 3D object reconstruction. We use ResNet-50-C4 [20] as backbone feature extractor.
Layers colored in gray are shared across classes. Render-and-Compare loss is described in §5.3. H∞ concatenation with RoI features for
3D shape and pose prediction is described in §5.1. Shape and Pose prediction modules are expanded on the right and described in §5.2.

our network. Since the final pose and shape prediction are
done on fixed-size feature-map cropped from a Region of
Interest (RoI), it is important to re-parametrize the traditio-
nal ego-centric object pose representation to an allocentric
one. Equally important is to not ask the network to directly
predict the location (distance) of the object, since it is a fun-
damentally ill-posed problem. We present our novel object
pose representation in §4.2. Real-world 3D ground-truth
data is difficult to collect. So, we leverage a differentia-
ble render-and-compare operation to exploit large existing
datasets with image-level annotations during training. We
achieve equivariance in 3D shape and pose estimation by
modeling the geometric distortion induced by RoI pooling.
The resulting network for 3D shape and pose estimation
from 2D image regions is trained end-to-end, and can le-
arn from both synthetic and real image data. The first stage
of the pipeline performs de-rendering of the input image to
obtain a compact 3D parametrization of the scene, followed
by render-and-compare operation. Once trained, the model
requires only a single very efficient forward pass to obtain
the shape and pose of all objects.

4. 3D Object Instance Representation
4.1. Shape space

We make use of rich shape priors available in the form of
large collections of 3D CAD models [1, 5]. 3D models in
standard mesh or volumetric representations are very high
dimensional. However, object instances belonging to the
same category tend to have similar shapes. The 3D shapes
of instances of the same object category lie on a much
lower-dimensional manifold. We exploit this by learning
a class-specific, low dimensional shape embedding space
from a collection of 3D CAD models. With the learned em-
bedding, the problem of reconstructing shapes is simplified
to finding the corresponding point in the low dimensional
embedding space that best describes the observed data.

Given a collection of CAD models, we first axis-align
them to a common rest pose. We also normalize the shape

vertices, such that longest diagonal is of unit length. Since
CAD models in mesh representations have arbitrary dimen-
sionality and topology, we convert each model to a volume-
tric representation s ∈ Rn with a fixed number of voxels
n. Each voxel in the volumetric representation s, stores a
truncated signed distance function (TSDF) [8].

Given a collection of t TSDF volumes, S = [s1, . . . , st]
generated from CAD mesh models, we use PCA to find
a ten dimensional shape basis, SB ∈ Rn×10. Since n is
very large and n � t, it is important to use the dual form
of PCA [14]. Once we have learned SB, any TSDF shape
s, can be encoded to the low dimensional shape parameter
β = STB s. Likewise, given shape parameters β ∈ R10, we
can decode it to get back to TSDF space as s = SBβ. Some
points from our learned shape space of cars and motorcycles
are shown in Fig.2. We train our network to predict this low
dimensional shape parameter β ∈ R10 from images.

There are several different methods for modeling 3D
shape space [40, 39]. We chose to adopt PCA since it is
simple and efficient. Our method is flexible to any other
parametric shape model including articulated shapes, pro-
vided it is relatively low dimensional. We demonstrate the
use of SMPL [31] for articulated persons in addition to para-
metric TSDF shape-space described above for rigid objects.

Since TSDF object shapes have unit diagonal length, we
apply a class-specific fixed scale computed as average dia-
gonal length of 3D box annotations on KITTI. Although it is
possible to learn a per-instance scale parameter, we avoided
it in our current framework for simplicity, as object scale
and distance are better estimated using multiple views.

Figure 2: Samples from shape-space of Car and Motorcycle.



4.2. Pose Representation

We are interested in obtaining pose parameters for each
object instance in the full-image camera frame. This inclu-
des object root pose PE ∈ SE(3), made of an object’s 3D
orientation and position. For articulated objects, this inclu-
des additional joint angles j relative to the root pose PR.

Allocentric vs. Egocentric: Object orientation can be
egocentric (orientation w.r.t. camera), or allocentric (orien-
tation w.r.t. object). Since orientation is predicted on top
of an RoI feature-map (generated by cropping features on a
box centered on the object), it is better to choose an object-
centric (allocentric) representation for learning. We illus-
trate this with help of Fig.3. Consider a car moving across
the image from right to left in a straight line perpendicu-
lar to the camera axis. The azimuth of the car w.r.t. the
camera (egocentric) does not change, but the appearance
of the cropped RoI around the car changes significantly
as it moves from the right side of the image to the left.
Objects with similar allocentric orientation will also have
similar appearance. Therefore, an allocentric representa-
tion is equivariant w.r.t. to RoI image appearance, and is
better-suited for learning. We represent object orientation in
terms of viewpoint, which is an allocentric representation.
Viewpoint describes the relative camera orientation angles
v = [θ, φ, ψ] with the camera always looking towards the
center of the object (Fig.3(c)). θ, φ, ψ denotes the azimuth,
elevation, and tilt angles.

Figure 3: In (a) all cars in the image are at same egocentric orien-
tation w.r.t. camera, and yet there is significant appearance change.
The egocentric representation requires the network to predict the
same angle for different image appearances. In (b) all cars in the
image have the same allocentric orientation, and we do not see
any appearance change. Thus allocentric orientation is a better
representation for learning object orientation. In (c) and (d), we
illustrate the pose representation used in this paper (see §4.2).

Object Position: Directly estimating the 3D object posi-
tion from cropped and resized RoI features is fundamen-
tally an ill-posed problem. Humans are only able to esti-
mate depth from single image when the object is of a known

type, and is placed in context of a bigger background. For
this reason, we also do not task our network to directly esti-
mate the depth or 3D position of the object. We instead ask
our network to estimate the 2D projection of the canonical
object center c = [xc, yc, 1], and the 2D amodal bounding
box of the object a = [xa, ya, wa, ha] where (xa, ya) is the
center of the box and (wa, ha) denotes the size of the box.
These entities are easier to learn, and ground-truth data is
easy to obtain [30] or already available from real-world da-
tasets like KITTI [13] and Pascal3D+ [58].

Recovering Egocentric Pose: Given an object viewpoint
estimate v, the 2D projection of the object center c on the
image, an amodal box a around the object, and the camera
intrinsics Kc, we can easily obtain the egocentric 3D object
pose PE ∈ SE(3) w.r.t. to the camera. We first compute
the rotation Rc ∈ SO(3), between the camera principal axis
[0, 0, 1]T and the ray through the object center projection
K−1c c. ThenRc = Ψ([0, 0, 1]T ,K−1c c), where the function
Ψ(p, q) computes the rotation that takes vector p to align
with vector q: Ψ(p, q) = I + [r]× + [r]2×/ (1 + p · q),
where r = p × q. We denote Rv ∈ SO(3) as the rotation
matrix form of the viewpoint v. The object center distance
from camera d is computed such that the resulting shape
projection tightly fits the amodal box a. Then object pose
PE w.r.t. the camera is given by:

PE =

[
R t
0T 1

]
where R = RcRv , t = Rc[0, 0, d]T

5. 3D-RCNN Network Architecture
Our method adopts the Faster-RCNN/Network-on-

Convolution meta-architecture [41, 42, 16]. The network
consists of a shared backbone feature extractor for the full-
image, followed by region-wise sub-networks (heads) that
predict 3D shape and 3D pose in addition to traditional 2D
box and class label. Fig.1 provides an overview.

5.1. Striving for 3D Equivariance
As with any Fast-RCNN++ system, features from a RoI

of arbitrary size and location r = [xr, yr, wr, hr] are ex-
tracted from the shared feature-map and then resized to a
fixed resolution fw × fh (typically 14× 14). The fixed size
of the RoI features allows FC layers on top of the RoI featu-
res, to share weights in-between different RoIs performing
the same task. RoI feature extraction methods like RoI-
Pool [16] or RoI-Align [19], transform the original feature-
map with a 2D transformation to bring them to a fixed size.
This 2D transformation makes it necessary, for the targets
(e.g. 2D detection box targets) to be normalized w.r.t. RoI
box. Once we have a prediction of the target by the network,
they are un-normalized back for the final output. The same
is true for targets like 2D instance segmentation [18]. So for
the 2D targets amodal-box and center-proj in our network,



we normalize them w.r.t. to RoI box r similar to [41, 16]:

amodal-box â =

[
xa − xr

wr
,
ya − yr

hr
, log

wa
wr

, log
ha
hr

]
center-proj ĉ =

[
xc − xr

wr
,
yc − yr

hr

]
However, such 2D normalization is not possible for 3D tar-
gets like shape and pose. This is problematic and destroys
equivariance, which is important for the task of shape and
pose estimation. We illustrate this in Fig.4. Our solution to
this problem is to provide the underlying 2D transformation
information to the classifiers for shape and pose prediction,
so that it can undo this 2D transformation.

Figure 4: All three persons in left image have the exact same
shape. In right, we show the corresponding RoI transformations
when done on the raw image. Since normalization of 3D para-
meters w.r.t. RoI is not possible, simply training the network to
predict same shape from these RoI features is sub-optimal.

We interpret the RoI crop and resize process, as an image
formed by a secondary, virtual RoI camera, that is rotated
from the original full-image camera to look directly at a ob-
ject, and having different intrinsics (zoomed-in with aspect-
ratio change). Assuming known full-image camera intrin-
sics Kc, we compute the RoI camera intrinsics Kr as:

Kc =

fx 0 px
0 fy py
0 0 1

 ,Kr =

fxfw/rw 0 fw/2
0 fyfh/rh fh/2
0 0 1


The rotation between the full-image camera and RoI camera
Rc is computed in same way as described in §4.2, using the
prediction of object center projection center-proj. The two
cameras Kc and Kr, under pure rotation Rc, is related by
the infinite homography matrix [17], H∞ = KrR

−1
c K−1c .

H∞ captures the 2D transformation done by RoI pooling
layer, in addition to perspective distortion due to the ori-
ginal camera not directly looking at the center of the RoI.
We then concatenate the 9 parameters of H−1∞ to the orgi-
nal RoI features before using them for 3D shape and pose
prediction. We denote this as H∞ concat. (see Fig.1). The
shape and pose targets, that our network learns to predict
are the original 3D shape and pose parameters [vT , jT ]T .
With the additional information of H−1∞ they have a better
chance of learning the 3D shape and pose targets.

5.2. Direct 3D supervision

While it is possible to just use continuous regression
loss for pose and shape, classification loss obtained by first

discretizing the output-space into bins performs much bet-
ter [33, 36]. Classification over-parametrizes the problem,
and thus allows the network more flexibility to learn the
task. It also naturally allows us to bound the range of out-
puts. Pose angles need to be bounded in [−π, π] and each
shape parameters are bounded to [−3σ, 3σ]. However, one
disadvantage of classification is that the accuracy is limited
to the discretization granularity, set by the finite number of
bins used. We take best of the both by combining classifi-
cation and regression loss. We first perform soft arg max
with an additional temperature T on activations of the FC
layer. We then have a cross-entropy classification loss, and
L1 regression loss over expectation of the soft arg max pro-
babilities.

Assuming b bins for each shape parameter β ∈ β, and
β̃p to be the center of p-th bin, we compute β as

β =

b∑
p=1

P pβ β̃p, P pβ =
exp(FCpshape/Tshape)∑b
q=1 exp(FCqshape/Tshape)

(1)

where Pβ is the result of applying soft arg max with tem-
perature Tshape on activations of FCshape.

Since pose targets are actually angles which are periodic,
we have to instead take the complex expectation. Thus each
angle estimate θ ∈ [vT , jT ]T is computed as

θ = arg

(
b∑

p=1

P pθ e
iθ̃p

)
, θ̃p = 2π

p− 0.5

b
− π (2)

where Pθ like before is the result of applying soft max with
temperature on activations of FCpose. θ̃p is the center of the
p-th bin.

For both the shape and pose targets, we combine a cross-
entropy loss on the soft max output, along with L1 loss on
the continuous output after expectation:

Lshape = − log(P ∗β ) + ‖β − β∗‖L1 (3)

Lpose = − log(P ∗θ ) + ‖θ − θ∗‖L1 (4)

where β∗ and θ∗ are the continuous ground-truth shape
and pose parameters, and P ∗β and P ∗θ are the corresponding
soft max probabilities for the ground-truth bin.

Note that center-proj and amodal-bbx targets, are not re-
quired to be bounded like angles. Also, these targets are
normalized w.r.t. RoI, which has already gone through a dis-
cretization process via anchors [41] in the detection module.
So we simply use L1 loss fo these two 2D targets:

Lcenter-proj = ‖ĉ− ĉ∗‖L1 , Lamodal-bbx = ‖â− â∗‖L1

Equations (1) and (2) can also be interpreted as
soft arg max, and it approaches arg max as T → 0. We ini-
tialize the temperature parameters at 0.5 during training. An



arg max estimate of shape and pose instead of soft arg max
would have prevented us to back-propagate gradients from
the Render-and-Compare layer, which is on top of shape
and pose parameters. Our loss formulation is different from
that of [36], which combines classification loss along with
regression of orientation offset, thus requiring additional
FC layers on top of classification FC layers. Our formula-
tion avoids non-differentiable operations like arg max, and
only introduces a scalar soft arg max temperature parame-
ter, which is much less than parameter-heavy FC layers.

5.3. Render-and-Compare Loss

Once we have a compact 3D representation of the object,
it can be readily rendered from known camera calibration,
and compared with 2D annotations like instance segmenta-
tion, depth-map. This allows the network to obtain supervi-
sion from more easily obtainable 2D ground-truth data.

For each RoI, we have ground-truth 2D segmentation
mask Gs and/or 2D depth-map Gd. From the 3D shape and
pose prediction of each RoI, we render the corresponding
segmentation mask Rs, and depth-map Rd. In addition we
have known binary ignore masks Is and Id, which have va-
lue of one at pixels which does not contribute to loss. This
is useful to ignore pixels with no label, being occluded, or
with undefined depth value. In its generic form Render-
And-Compare loss measures the discrepancy between the
rendered and ground-truth image:

Lrender-and-compare = dJ(Rs, Gs; Is) + dL2(Rd, Gd, ; Id)

where dJ = 1 − J(Rs, Gs; Is) is the Jaccard distance,
complementary to the Jaccard index (segmentation IoU)
J(Rs, Gs; Is) between Rs and Gs.

However, standard 3D rendering is not differentiable.
We use finite difference to approximate the gradients. This
is feasible since non-photorealistic rendering is fast with
GPUs (∼10k FPS), and dimensionality of our 3D object re-
presentation (§4) is rather small. There exists other schemes
like OpenDR [32], SPSA [46] but we found simple central
derivatives to be effective and fast, since we avoid all CPU-
GPU memory transfer by making use of CUDA-OpenGL
interop functionality available in all recent GPUs. When
using TSDF shape space, we use volume ray-casting, while
SMPL shapes are rendered with traditional mesh rendering.

Render-and-Compare loss does not introduce any new
learn-able parameters, yet provides a joint structured loss
over all the shape and pose parameters of an object. Since
both shape and pose representations are low dimensional
and they can be readily rendered, computing gradients using
numerical derivatives is feasible. We note that compactness
(low dimensionality) of object representation, and fast ren-
dering are desirable properties in itself.

5.4. Training and Inference

Joint Multi-task Loss: The final joint loss objectiveLjoint
that our network minimizes is the combination of los-
ses of all the prediction targets = {shape, pose, center-
proj, amodal-bbx, render-and-compare}. So, Ljoint =∑
τ∈targets λτLτ where the hyper-parameters λτ balances

individual terms. Depending on the data source, certain loss
terms will be unavailable. For example, we do not have
ground-truth shape for real-world data-samples.

Training: Starting with ImageNet [10] pre-training, we
first train our network on the synthetic images rendered
from CAD models similar to [47, 52]. Bootstrapping the
learning process with synthetic data helps in stabilizing and
speeding-up the learning, since we have ground-truth for all
shape and pose targets . Unlike [47, 52], we render mul-
tiple objects per-image and we use roughly 20K synthetic
images per class, compared to a million images per class
as in [47, 52]. After this bootstrapping, we then fine-tune
the network on KITTI and PASCAL datasets for our ex-
periments along with Render-and-Compare loss, whenever
such data is available. We use SGD for all our experiments,
and the network is trained end-to-end.

Inference: Our inference step is efficient and only invol-
ves a feed forward pass through the network, without any
post-processing or costly test time optimization steps. With
ResNet-50 backbone, our method produces full 3D shape
and pose of all objects in an image in under 200ms. In com-
parison to previous methods [50, 47], our method is >30x
faster (without considering the time for object detection),
and provides richer 3D outputs (both shape and pose)

6. Experiments
We benchmark our method on challenging PAS-

CAL3D+ [58] and KITTI [13] dataset. Apart from evalu-
ating on joint detection and pose estimation task, we also
provide controlled study for 3D pose estimation with fixed
object detection input. Our method achieves superior per-
formance on both PASCAL3D+ [58] and KITTI [13] da-
tasets, and outperformed all recent methods by a signifi-
cant margin. We focus our experiments on the two most
common object categories in urban scene: Car and Person.
These two object classes also covers both rigid (Car) and
articulated (Person) objects and thus demonstrates our met-
hod’s applicability to diverse shape and pose models. Fig.5
shows qualitative results on [52], by training our pipeline
for Person using our synthetic dataset (see §5.4). Additional
results, source code, shape-space models, and the synthetic
data are available at our project-page1.

1http://abhijitkundu.info/projects/3D-RCNN
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Figure 5: Qualitative comparison of our approach with [52] on recently released SURREAL [52] dataset. Note that [52] trains two distinct
conv-nets specific to the task of depth prediction and body parts segmentation. Our method predicts the 3D shape and pose of each body.
Depth and body pats segmentation are generated by simply rendering the predicted output shape from camera view.

Bicycle Motorcycle CarMethod
AV P4 AV P8 AV P16 AV P24 AV P4 AV P8 AV P16 AV P24 AV P4 AV P8 AV P16 AV P24

Pepik et al. [37] 43.9 40.3 22.9 16.7 31.8 32.0 16.7 10.5 36.9 36.6 29.6 24.6
Viewpoints & KeyPoints [50] 59.4 54.8 42.0 33.4 61.1 59.5 38.8 34.3 55.2 51.5 42.8 40.0
RenderForCNN [47] 50.5 41.1 25.8 22.0 50.8 39.9 31.4 24.4 41.8 36.6 29.7 25.5
Poirson et al. [38] 62.1 56.4 39.6 29.4 62.7 58.6 40.4 30.3 51.4 45.2 35.4 35.7
Massa et al. [33] 67.0 62.5 43.0 39.4 71.5 64.0 49.4 37.5 58.3 55.7 46.3 44.2
Xiang et al. [57] 60.4 36.3 23.7 16.4 60.7 37.0 23.4 19.9 48.7 37.2 31.4 24.6
Our method 74.3 67.2 51.0 42.1 74.4 72.3 52.2 47.1 71.8 65.5 55.6 52.1

Table 1: Joint detection and viewpoint evaluation on Pascal3D+ dataset [58] for Bicycle, Motorcycle, and Car category.

Method Accπ/6 ↑ MedErr ↓
Viewpoints & KeyPoints (TNet) [50] 0.90 8.8◦

Viewpoints & KeyPoints (ONet) [50] 0.89 9.1◦

RenderForCNN [47] 0.88 6.0◦

Deep3DBox (VGG16) [36] 0.90 5.8◦

Our method (VGG16) 0.94 3.4◦

Our method (ResNet50) 0.96 3.0◦

Table 2: Evaluation of viewpoint estimation with ground-truth de-
tections on Pascal3D+ [58] for Car. We also get significant impro-
vement when using VGG16 as backbone.

6.1. Analysis on Pascal3D+ dataset

We first evaluate our method on the primary PAS-
CAL3D+ task of joint detection and viewpoint estimation.
We report results using Average Viewpoint Precision (AVP)
under different quantization of the angles, as proposed
by [58]. Our results are listed in Table 1. We additionally
include results for the categories of Bicycle and Motorcy-
cle. In summary, our system improves upon all previous
methods by at least 10 points over all quantizations.

To better understand the efficacy of pose estimation of
our network, we follow [50, 47, 36] to evaluate viewpoint
on ground-truth boxes. Evaluating viewpoint prediction on
ground-truth boxes provides an upper-bound of viewpoint
accuracy independent of the object detector used. The view-
point estimation error is measured as geodesic distance over
the rotation group SO(3). We report Accπ/6 which measu-
res accuracy thresholded at π

6 and the median angular er-

ror MedErr. This is the same evaluation metric originally
used in [50] and then in [47] and [36]. Please refer to [47]
or [50] for more details. Our results are summarized in
Table 2. Our method improves Accπ/6 by 5 points over the
previous best, and median angular error is reduced by ∼50%
from 5.8◦ to 3.0◦. We also experimented with VGG16 [45]
as our backbone and got similar improvements.

6.2. Analysis on KITTI dataset

In this section, we evaluate our method on KITTI ob-
ject detection and orientation benchmark [13]. We envision
our system for autonomous driving applications. So, KITTI
is a good test-bed as it involves many challenges of real-
world urban driving. Qualitative results on KITTI dataset
are shown in Fig.6. Note that our method also produces
accurate instance segmentation. We adopt the official eva-
luation metric of Average Precision (AP) for detection and
Average Orientation Similarity (AOS) for joint detection
and pose estimation. We also report Average Angular Error
(AAE) defined as arccos(2∗(AOS/AP )−1) which gives a
detection normalized measure of average orientation error.

Results on the KITTI test set is shown in Table 4. Since
test set labels are not publicly available, we follow [57, 36]
to divide the official training set into disjoint training and
validation set for a controlled study with fixed detection in-
put. For the controlled study, we use the same detection in-
put as Deep3DBox [36] and SubCNN [57] provided by the
authors. The results are summarized in Table 3. Our met-



Figure 6: Qualitative demonstration of our approach working on KITTI [13] dataset. Input images are shown in first column, and the
corresponding 3D object pose and shape output are shown in second column. Each object instance has been colored randomly. Third
column shows the projection of the 3D object instance reconstructions on the input image which demonstrates the capability of producing
accurate 2D instance segmentation, which comes for free due our holistic 3D representation.

Easy Moderate HardMethod
AP ↑ AOS ↑ AAE ↓ AP ↑ AOS ↑ AAE ↓ AP ↑ AOS ↑ AAE ↓

SubCNN [57] 90.5% - 85.9% - 12.2◦ - 85.7% - 84.2% - 15.2◦ - 72.7% - 70.6% - 17.1◦ -
Deep3DBox [36] - 97.8% - 97.5% - 5.7◦ - 96.8% - 96.3% - 8.3◦ - 81.1% - 80.4% - 10.2◦

Ours (orginal box) 90.5% 97.8% 90.5% 97.7% 2.0◦ 3.1◦ 85.7% 96.8% 85.6% 96.6% 4.5◦ 5.8◦ 72.7% 81.1% 72.0% 80.8% 6.5◦ 6.9◦

Ours (rendered box) 90.8% 97.8% 90.7% 97.7% 2.0◦ 3.1◦ 89.3% 96.8% 89.1% 96.5% 4.9◦ 5.6◦ 79.9% 81.0% 79.5% 80.7% 7.9◦ 6.8◦

Table 3: Controlled study on KITTI train/validation split of [56] with fixed detection input. We use two set of detections provided by authors
of SubCNN [57] and Deep3DBox [36]. Notice the big improvement in object detection AP when using rendered box, specifically for hard
category compared to SubCNN [57]. Our orientation estimate is also more accurate. Since the detections provided by Deep3DBox [36]
have been trained on additional data, they are already pretty good and so we do not see much improvement with rendered box.

Easy Moderate HardMethod
AP ↑ AOS ↑ AAE ↓ AP ↑ AOS ↑ AAE ↓ AP ↑ AOS ↑ AAE ↓

3DOP [7] 93.04% 91.44% 15.07◦ 88.64% 86.10% 19.49◦ 79.10% 76.52% 20.81◦

Mono3D [6] 92.33% 91.01% 13.73◦ 88.66% 86.62% 17.45◦ 78.96% 76.84% 18.86◦

SubCNN [57] 90.81% 90.67% 4.50◦ 89.04% 88.62% 7.88◦ 79.27% 78.68% 9.90◦

Deep3DBox [36] 92.98% 92.90% 3.36◦ 89.04% 88.75% 6.54◦ 77.17% 76.76% 8.36◦

DeepMANTA [4] 97.25% 97.19% 2.85◦ 90.03% 89.86% 4.98◦ 80.62% 80.39% 6.12◦

Our Method 90.02% 89.98% 2.42◦ 89.39% 89.25% 4.54◦ 80.29% 80.07% 6.00◦

Table 4: Joint detection and orientation evaluation on official KITTI test split. Apart from AP and AOS, we also report Average Angular
Error (AAE). AAE (lower is better) gives a measure of average angular error in orientation normalized by the detector precision and is
thus a better metric to study the performance of orientation prediction (see §6.2). Our method has the lowest AAE for all cases.

hods beats [36, 57] on both AOS and AAE metrics. Instead
of just using the input detector boxes as final box output
(original box), we can also generate 2D detection box by
simply rendering our output 3D scene representation (ren-
dered box). This significantly improves the detection AP
over the input detector of [57] (See Table 3).

7. Conclusion
We present a fast inverse-graphics approach for 3D scene

understanding from images. Our network reconstructs each
object instance in an image by predicting its full 3D shape

and pose. This rich 3D representation brings several ad-
vantages: (a) traditional vision outputs like 2D detection,
segmentation, and depth-maps comes free and; (b) allows
the network to be also trained with 2D supervision. We
present novel representation of shape and pose, that strives
towards better 3D equivariance and helps the deep model to
learn the mapping from input image region to full 3D shape
and pose. We evaluate on challenging real-world datasets
of Pascal3D+ and KITTI where our method achieves state-
of-the-art results in multiple tasks. Our work is suitable for
several real-world applications like autonomous driving.
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