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Abstract

Scene segmentation is a challenging task as it need
label every pixel in the image. It is crucial to exploit
discriminative context and aggregate multi-scale features
to achieve better segmentation. In this paper, we first
propose a novel context contrasted local feature that not
only leverages the informative context but also spotlights
the local information in contrast to the context. The pro-
posed context contrasted local feature greatly improves the
parsing performance, especially for inconspicuous objects
and background stuff. Furthermore, we propose a scheme of
gated sum to selectively aggregate multi-scale features for
each spatial position. The gates in this scheme control the
information flow of different scale features. Their values are
generated from the testing image by the proposed network
learnt from the training data so that they are adaptive
not only to the training data, but also to the specific
testing image. Without bells and whistles, the proposed
approach achieves the state-of-the-arts consistently on the
three popular scene segmentation datasets, Pascal Context,
SUN-RGBD and COCO Stuff.

1. Introduction
Scene segmentation has been an essential component

of image understanding and is in intensely demand for
automation devices, virtual reality, self-driving vehicles and
etc. The goal of scene segmentation is parsing a scene
image into a set of coherent semantic regions and labeling
each pixel to one of classes including not only objects but
also stuff (e.g. road, grass, sky). It implicitly involves image
classification, object localization and boundary delineation.
Thus, scene segmentation demands multi-scale and multi-
level visual recognition.

The recent success of Deep Convolutional Neural Net-
works (DCNN) has greatly improved the performance of
computer vision tasks [20], such as image classification
[53, 55, 22, 39, 24] and object detection [45, 46, 15, 37,

Figure 1: Scene segmentation refers to labeling each pixel
including salient objects, inconspicuous objects and stuff.
However, the various forms of objects/stuff (e.g salient or
inconspicuous, foreground or background) and the existence of
multi-scale objects (e.g the multi-scale cows in third image) make
it challenging to parsing each pixel using DCNN.

16]. However, there are some limitations when applying
DCNN to dense prediction tasks like scene segmentation
[38, 51, 8, 29]. The success of DCNN is closely related
with its inherent invariance to feature deformations [62].
This invariance lets the DCNN learn very abstract feature
representation of the whole image, therefore the network
can obtain information of dominated/salient objects at any
position, which is desirable for image classification. But
for scene segmentation, spatial information is essential and
pixel-level discriminative features are desired. Most state-
of-the-arts scene segmentation frameworks are based on
image classification networks pre-trained on [49], but it
remains an open question of how to better adopt DCNN on
scene segmentation. Herein, we mainly consider two hand-
icaps when applying DCNN on dense prediction tasks: the
various forms of objects/stuff (e.g. salient or inconspicuous)
and the existence of multi-scale objects.

First, different from object segmentation and image
classification, scene segmentation aims to labeling every
pixel to one of many classes including stuff and object
classes, thus not only the dominated salient objects but



also the stuff and inconspicuous objects should be parsed
well. DCNN pre-trained on [49] prefers image-level
abstract features, which is not equally discriminative for
every spatial position. Meanwhile, due to the various
forms of objects/stuff in scene segmentation, a pixel may
belong to salient object, inconspicuous object or stuff.
Therefore, when directly applying DCNN on scene segmen-
tation, inconspicuous objects and stuff will be dominated
by salient objects and its information will be somewhat
weakened or even disregarded, which is contradictory
with the goal of scene segmentation. To address this
issue, locally discriminative features are desired. Context
is essential for scene segmentation and lots of works
devote to get informative context, e.g. [8, 51, 36, 61].
However, contexts often have smooth representation and are
dominated by features of salient objects, which is harmful
for labeling inconspicuous objects and stuff. Better features
for scene segmentation are discriminative context aware
local features, i.e., the features for pixel position p will
not be dominated by other parts of image while being
aware of the context information. For this purpose, we
propose a context contrasted local feature, which benefits
from both context and local information. Context contrasted
local features could not only exploit the informative context
but also spotlights the local information in contrast to
the context. Further, we use a context contrasted local
(CCL) model to obtain multi-scale and multi-level context
contrasted local features.

Second, due to the huge scale variation of objects in
scene segmentation, it is irrational to classify all individual
pixels based on a single scale feature. There are several
ways to address this issue. One way is to resize the input
image to multiple resolutions and feed them to different (or
a shared) networks, then fuse the corresponding features
form multiple resolutions, such as [30, 12, 9, 44]. The
aggregation ability for multi-scale features of this strategy
is limited in practice due to expensive computation and the
finite scales of input images. Another way makes use of
features from middle layers, such as [38, 21, 48, 14]. The
intention of this strategy is to exploit multi-scale features
with multi-level information. We follow the way of FCN
[38] to adopt skip layers to utilize multi-scale features,
which is effective as well as economic. However, in
previous works, such as [38, 21, 40, 51, 7, 43], the score
maps of skip layers are integrated via a simple sum fusion
and hence the different importance of different scales are
ignored. To address this problem and find an optimal
integration choice, we propose a network that controls the
information flow of different scale features. It generates
control signals to perform a gated sum of the score maps
to aggregate multi-scale features selectively. As a selection
mechanism is embedded in the multi-scale fusion, more
skip layers can participate in the aggregation to provide

rich information for selection. This also improves the
aggregation ability of multi-scale features.

In summary, this paper makes the following contribu-
tions:

• We propose a novel context contrasted local feature
which is tailored for scene segmentation and propose a
context contrasted local (CCL) model to obtain multi-
scale and multi-level context contrasted local features.

• We further propose a gated sum to selectively ag-
gregate appropriate scale features for each spatial
location, which is an efficient and effective way
to address the issue of the existence of multi-scale
objects.

• We achieve new state-of-the-art performance consis-
tently on the three public scene segmentation bench-
marks, Pascal Context, SUN-RGBD and COCO Stuff.

2. Related work
2.1. Contextual Modeling

One direction is to apply new layers to enhance high-
level contextual aggregation. For example, Chen et al. [8]
introduced an atrous spatial pyramid pooling (ASPP) to
capture useful context information at multiple scales. Visin
et al.[56], Shuai et al. [51] and Byeon et al.[4] adopted
recurrent neural networks to capture long-range context.
Zhao et al.[63] employed multiple pooling to exploit global
information from different regions. Liu et al. [36] proposed
to model the mean field algorithm with local convolution
layers and incorporate it in deep parsing network (DPN).
Yu et al. [61] attached multiple dilated convolution layers
after class likelihood maps to exercise multi-scale context
aggregation. Another way is to use Conditional Random
Fields (CRF) [28] to model the context of score maps
[7, 8, 64, 30, 36]. For example, Chen et al. [8] adopted
CRF to post-process the unary predictions. Zheng et al.
[64] proposed CRF-RNN to jointly train CRF with their
segmentation networks.

Different with previous works, in this paper, we propose
a context contrasted local feature to perform discriminative
high-level feature modeling. Furthermore, a context con-
trasted local (CCL) model is proposed to collect multi-level
context aware local features.

2.2. Multi-scale Aggregation

Due to the huge scale variation of objects in scene seg-
mentation, it is difficult to achieve robust segmentation with
single scale features’ prediction. Multi-scale aggregation is
a crucial way to deliver detailed parsing maps. There are
several methods to achieve multi-scale aggregation. Farabet
et al. [12] and Lin et al. [30] adopted multi-resolution
input (image pyramid) approach and fuse the corresponding



features from multiple resolution. Liu et al. [34] generated
multi-scale patches and aggregated the results. Pinheiro
et al. [44] inputted multi-size images at different layers
of a recurrent convolutional neural networks. However,
the above approaches are computational expensive and
consume large GPU memory, thus their aggregation ability
for multi-scale features is limited in practice. The seminal
work FCN [38] introduced the skip layers to locally classify
multi-scale feature maps and aggregate their predictions
via sum fusion. This is an effective as well as efficient
method to integrate different scale features and our work
follows this way. Nonetheless, in previous works [38, 21,
40, 51, 7, 43], the score maps of skip layers are fused via a
simple sum and hence the different importance of different
scales are ignored. To address this issue, we propose a
network that facilitates a gated sum to selectively aggregate
different scale features. With gated sum fusion, the network
can exploit more skip layers from richer scale features in
DCNN and customize a suitable integration of different
scale features. To the best of our knowledge, our gated sum
is the first work to selectively aggregate appropriate scale
features in a single network.

3. Segmentation Networks
Challenges of applying DCNN on scene segmentation

are closely associate with the various forms of objects/stuff
(e.g. salient or inconspicuous, foreground or background)
and the existence of multi-scale objects. A robust seg-
mentation network should be able to handle huge scale
variation of objects and detect inconspicuous objects/stuff
from images overwhelmed by other salient objects.

3.1. Overall Framework

The overall framework of our network is shown in Figure
2. Our baseline is FCN-like architecture with ResNet-101
(pre-trained on ImageNet [49]) as backbone network. We
add more skip layers to fuse rich scale feature maps. The
proposed context contrasted local (CCL) model in Figure
2 generates multi-level and multi-scale context aware local
features. Furthermore, we propose a gated sum denoted by
g+ in Figure 2 to selectively aggregate rich scale features
in DCNN and CCL.

The proposed CCL and Gated Sum are presented in
details in the following sections.

3.2. Context Contrasted Local Feature

Context information is known being essential for scene
labeling that can greatly improve performance. In fact,
DCNN has already generated relatively high-level context
features for object recognition [53, 22], but these context
features penchant for abstract feature representation of
the whole image, which are not appropriate for scene
segmentation where labeling for each pixel is required.
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Figure 2: Overview of our network framework. The proposed
context contrasted local (CCL) model generates multi-level and
multi-scale context aware local features. Gated sum selectively
aggregate rich scale features in DCNN and CCL.

First, these context features generated for object recognition
focus on the dominated objects of the whole image and
cannot ensure useful context for inconspicuous objects and
stuff. Also, they are not discriminative at different spatial
positions. Therefore, it is significant to design tailored high-
level features for scene segmentation.

Lots of previous works devote to obtain informative
context for robust semantic segmentation, such as [8, 51,
57, 61]. Different from previous works, we introduce a
context contrasted local feature to perform high-level fea-
ture modeling. Compared with object segmentation, there
are richer categories and complex conjunctions between
categories in scene segmentation. Due to the complexity
of objects and stuff in scene segmentation, indiscriminately
collecting context information will bring harmful noise,
especially under clutter surroundings. For example, in
Figure 4, compared with the two persons, the cars behind
them are inconspicuous objects. The detailed local feature
collects information around pixel A and is discriminative
to other pixels, but it is not aware of global information
such as road and building, thus could not obtain robust
high level features for pixel A. However, aggregating
context will bring features of dominated objects like the
men, thus the features of pixels at the car, like pixel A,
will be dominated by the features of the men. Some
information of cars would be ignored in the final prediction,
resulting wrong labeling for pixels at that location. Also,
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Figure 3: Context Contrasted Local (CCL) is a convolutional
network integrating multi-level context aware local features. Each
block of CCL consists of two parallel parts: coarse context and
delicate local. The context aware local features are obtained
via making a contrast between the context and local information.
Several blocks are chained to make multi-level context contrasted
local features.

contexts for different position are apt to a consistency
representation of dominated features, thus are lacking
in discrimination. Therefore, it’s very hard to collect
appropriate and discriminative high level features for pixel
A. To address this issue, we propose to generate local
information and context separately and then fuse them via
making contrast between these two:

CL = Fl(F,Θl)−Fc(F,Θc) (1)

where F is the input features, Fl is the function of local
Conv, Fc is the function of context Conv, Θl and Θc

are respective parameters, and CL is the desired context
contrasted local features. They make a contrast between
the separated context and local information, thus could not
only exploit useful context but also foreground the local
information in contrast to the context. Function of context-
local forces the networks generating tailored features for
scene segmentation. It is a mechanism that imitates human
behavior. When our human beings look at one object we
always collect discriminative-context for that object in a
way that our eyes focus on that object in contrast to the
blurred surroundings [13]. In other word, we concentrate
on that object while we are aware of its surroundings.
Context Contrasted Local (CCL) Model. The architec-
ture of CCL is shown in Figure 3. The CCL consists of
several chained context-local blocks to make multi-level
context contrasted local features. Gated sum (presented in
the next section) is adopted in CCL to selectively aggregate
different levels of context contrasted local features.
Comparison with State-of-the-art Context Models.

Local

Coarse Context Context-Local E�ect of Contex-Local

Dense ContextPixel A

Pixel A

Figure 4: (Best viewed in color) Visualization of different feature
information. The local information of pixel A could not aggregate
useful contexts, such as road and other cars. However, its
contexts will be dominated by the features of the men in the both
schemes of dense context and coarse context. The context-local
scheme injects blur context to local feature of pixel A to make
discriminative context aware local feature.

ASPP[8] aggregates multi-scale contexts via combining
score maps generated by different context aggregation
branches, each of which uses dilated Conv kernels with
different stride rates to incorporate different scale contexts.
Compared with this type of context model, CCL first
contextualizes contrasted features at every block to obtain
context aware local features, which combines two different
scales in the feature level and take advantage of both
context and local information, then further aggregate
multi-scale context contrasted local features in score level.
Moreover, the score maps of CCL are fused via gated
sum instead of the simple sum. DAG-RNN [51] performs
contextual modeling by propagating local information
in feature maps to encode long-range context. Different
from DAG-RNN, CCL exploits multi-scale features for
segmentation, and the context aware local features of
CCL are different from those in DAG-RNN. CRF [28] is
ordinarily applied to score maps and boosts consistency of
low-level information like boundary, while CCL aims to
discriminative high-level features. In fact, CRF can also
be used as a post-processing step to promote performance
of our segmentation network. We compare these context
models in a controlled experiment and summarize their
performance on Pascal Context in Table 1. The proposed
CCL noticeably outperforms others, which demonstrates
the significance of CCL.

3.3. Gated Multi-scale Aggregation

In this section, we discuss how to select different scale
of features. One of the challenges in applying DCNN to
scene segmentation is that it is difficult to use a single scale
to obtain appropriate information for all pixels because of
the existence of objects at multiple scales. An efficient



and effective way to address this challenge is to add skip
layers from the middle layers of DCNN. Based on the
encoder-decoder architecture FCN [38], skip layers being as
classifiers are used to exploit multi-scale features in DCNN
to generate corresponding segmentation score maps.

However, in previous works such as [38, 21, 40, 51, 7],
the score maps of skip layers are mainly integrated via
sum fusion that does not take into account the individual
differences of these inputs. Sum fusion can only non-
selectively collect the score maps from different skip
layers, but some of them may not be appropriate or
even be harmful. If these score maps are aggregated
indiscriminately, the inapposite or incorrect scores will
harm the final prediction. To address this problem, we
propose an aggregation scheme called gated sum to select
different scale features. There are inherent position-wise
gates in this scheme to control the information flow of
skip layers. The primary motivation of gated sum is that
we need to adaptively decide the desirable receptive field
of each pixel in the image based on its scale, contextual
support, etc. A by-pass and simple approximated solution
is to pick different scale features for different pixel in
FCN framework, where skip layers are aimed to capture
multi-scale features. With gated sum fusion, the network
can customize a suitable aggregation choice of score maps
according to the information of images, corresponding to
choose which scale of feature is better and more desirable.
More importantly, with gated sum fusion, we can add
more skip layers to extract richer scale information without
posing problem of inapposite results.

The proposed scheme of gated sum is shown in Figure
5 where the values of gates are not directly learned from
the training data but are generated from the testing image
by a network learnt from the training data. In this way, the
values of the gates are adaptive to the different testing input
images. In order to obtain the information to control the
gates, such as scale and contextual support, info-skip layers
consisting of Conv+Sigmoid are introduced to extract the
information from corresponding feature maps and generate
information maps with size H×W×1, where H×W is the
spatial size of feature maps. Since these information
maps and score maps of skip layers are generated from
a same DCNN, the sequence relationship, e.g. from low
level to high level, among feature maps of DCNN should
also be considered. Recurrent Neural Networks (RNN)
[17, 18, 19, 33] is effective and efficient to learn such
sequence relationship, thus all of the information maps are
feeded to RNN in sequence to learn the relationship of
these information maps. Based on RNN, these information
maps can be aware of neighbourhood maps and acquire the
sequence relationship among all of the information maps.

In details, we hypothesize that the information maps
from higher layers have already grasped the information of
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Figure 5: Gated Sum could control the information flow of skip
layers via its inherent gates. The gates Gn

p could adjust its value
according to the input images. All the maps in gated sum have the
same spatial size of H×W.

lower layers due to the effect of DCNN, thus the RNN begin
with information map of the last layer of our segmentation
network. Suppose there are N score maps Sc,np generated by
N skip layers from different scale features Fn

p , i.e. Sc,np =
Fn

s (Fn
p ,Θ

n
s ), where p is the spatial position, n ∈ 1, 2..., N ,

c ∈ 1, 2..., C and C is the number of class labels, Fn
s

is the classifier function of nth skip layer and Θn
s is its

parameters, Fn
p is the input feature with the dimensionality

of H×W×#channels. For each skip layer, we first generate
an information map Inp of size H×W×1 from corresponding
feature:

Inp = Fn
i (Fn

p ,Θ
n
i ) (2)

where Fn
i is the function of nth info-skip layer

Conv+Sigmoid and Θn
i is its parameters. Then

these information maps Inp are inputted to RNN in sequence
to learn their relationships:

hn
p = tanh

(
Wn

(
hn−1
p

Inp

))
(3)

where hn
p is the nth output of RNN. To make our network

efficient, all positions are processed parallely and Wn is
shared for all spatial positions. To ensure every information
map be aware of global information, the outputs of RNN
are concatnated , Hp = (h1

p...h
N
p )T , and refined with global

information:

Hp = Fg (Hp,Θg) + Hp (4)

where Fg is a 1×1×N×N Conv and Θg is its parame-

ters. Next, Hp is splitted, Hp = (h
1

p...h
N

p )T , and used to
generate the gates Gn

p for gated sum:

Gn
p = N · eh

n
p∑N

i=1 e
h
i
p

(5)



the sum of Gn
p for each position p is normalized to N.

Finally, N score maps are selectively fused via gated sum:

Scp =

N∑
n=1

Gn
pSc,np (6)

where Scp is the output of gated sum.
The gates of gated sum control the information flow of

skip layers, i.e. how much can the Sc,np pass the gates
depends on the value of Gn

p . A larger Gn
p means a better

feature, for labeling of position p, is used for nth skip layer.
While a smaller Gn

p means that for position p, the parsing
results generated by the nth skip layer is not desirable and
should be inhibited. More importantly, Gn

p is neither fixed
value nor directly learned from training data. It is generated
from the testing image by the proposed networks learned
from the training data. Thus, Gn

p is adaptive to different
testing images. The values of Gn

p not only depend on the
training data, but also depend on the testing input images
and vary according to the feature maps. Therefore, we call
them “gates” to differentiate them from the simple fixed or
learned “weights”. With gated sum, the network adaptively
(to different testing images) selects appropriate score maps
from richer scales of features.

• Sum is a special case of the gated sum where all the
gates are fixed to “1”. Sum fusion dose not take into
account the individual characteristic of different inputs
and could only indiscriminately fuse all the inputs.

• Gated sum selectively aggregates appropriate score
maps for each position’s parsing via its inherent gates.
The gate Gn

p adjusts its value adaptive to the testing
input features to control the information flow of skip
layers.

4. Experiments
We evaluate our segmentation framework on 3 public

scene segmentation datasets, Pascal Context, SUN-RGBD
and COCO Stuff.

4.1. Implementation Details

We use truncated ResNet-101 [22] (pre-trained on Ima-
geNet [49]) as our fine-tune model. In detail, pool5 and
layers after it are discarded and a convolutional adaption
layer that decrease the feature channels from 2048 to 512
is placed on the top of truncated ResNet-101 to reduce
parameters. The number of blocks in CCL can be modified
according to inputs, ours is six. We upsample the score
maps with deconvolution (transpose convolution).

Our Network is trained end-to-end with SGD with fixed
momentum 0.9 and weight decay 0.0005. Following [8],
we employ the ”poly” learning rate, Lrc = Lri×(1 −

iter
max iter )power, where the Lrc is current learning rate and

Networks CA IoU

Baseline None 42.5%
Baseline + CRF[28] CRF 43.2%
Baseline + DAG-RNN [51] DAG-RNN 44.1%
Baseline + ASPP [8] ASPP 44.9%
Baseline + CCL CCL 48.3%

Table 1: Segmentation networks are adapted to encode-decode
architecture with rich skip layers, the stride rates (dilation factors)
of the four branches in ASPP are revised to {1, 3, 4, 6}
respectively. For fair comparisons, gated sum is not adopted, and
they only differentiate each other in terms of context aggregation
(CA).

Method GPA ACA IoU

Baseline 73.5% 53.9% 42.5%
Baseline+LA 75.8% 57.6% 45.9%
Baseline+LAd 75.7% 56.6% 45.4%
Baseline+CCL 76.6% 61.1% 48.3%

Table 2: Ablation experiments of CCL on Pascal Context. LA is
local aggregation generated by removing the context part of CCL.
LAd doubles the hidden dimensionality of LA from 512 to 1024,
thus its parameter quantity is the same as CCL. Other settings are
all the same.

Lri is the initial learning rate. The initial learning rate is set
to be 10−3 and the power is set to 0.9. The iteration number
is set to 15K for Pascal Context, 13K for SUN-RGBD and
20K for COCO Stuff. Batch size is 10 during training
and the statistics of batch normalization layer is updated
after the final iteration. The parameters of new layers are
randomly initialized with Gaussian distribution (variance
10−2) and trained with higher learning rate (×3). For batch
processing, all images are resized to have maximum extent
of 512 pixels and padded with zero to 512 × 512 pixels
during training. We randomly flip the images horizontally
to augment the training data.

We evaluate our network with three performance metric-
s: Global Pixel Accuracy (GPA), Average Class Accuracy
(ACA) and Mean Intersection-over-Union (IoU). Mathe-
matical definitions please refer to [38].

4.2. Multi-scale Context Contrasted Local Features

In section 3.2 we introduced context contrasted local
(CCL) model to integrate multi-level context aware local
features. To evaluate the key principle (i.e. multi-scale
context contrasted local features) of CCL, we simplify our
context-local network architecture CCL to LA, and LAd.
LA abandons the context parts (dilated Conv) of CCL
and LAd doubles the hidden dimensionality of LA. The
performance of these models are listed in Table 2. Their
performance gap clearly demonstrates the benefit brought
by the proposed CCL model.

First, compared with LA that is conventional con-



volutional feature, CCL aggregates specialized context
contrasted local features that not only leverages the infor-
mative context but also exploits the discriminative local
information in contrast to the context. In consequence,
CCL outperforms LA by a noticeable margin, which clearly
shows the significance of the context contrasted local
features for scene segmentation.

It’s crucial to introduce new parameters that fill the
domain gap during the fine-tuning of segmentation net-
works from classification networks. However, we believe
that the network architecture outweighs the magnitude of
parameters for boosting the performance. To validate this
claim, we increase the hidden dimension of LA from 512
to 1024, which is denoted by LAd in Table 2. The
parameter quantity of LAd is then the same as CCL, but
LAd does not improve the performance of LA and even
slightly make it worse. This convinces us that the noticeable
performance boost is mainly contributed by the architecture
of the context contrasted local features, not from simple
increase of the network parameters.

4.3. Embed Gated Sum into Encoder-Decoder
Architecture

Gated sum is a selection mechanism to pick appropriate
features. But for the encoder-decoder architecture, the
spatial sizes of distinct blocks are not the same, e.g. 16×16
for block 5 and 32× 32 for block 4 in Figure 2. This causes
difficulty of aggregating all the score maps. The most
straightforward solution is upsampling all the score maps
to the same resolution. However, this will consume a large
amount of resources. Therefore, in this work, we embed the
gated sum into the encoder-decoder architecture. For this
purpose, we adopt gated sum within each block where the
feature maps possess with the same spatial resolution. Then
the output of gated sum is upsampled to higher resolution to
participate in the gated sum in block with higher resolution.
Meanwhile, to pass the information maps form block to
block, the last output of RNN is also upsampled to generate
the gates for the upsampled score map.

We present an ablation experiment of the gated sum in
Table 3. As shown in Table 3, the gated sum improves the
performance visibly. Comparing ResNet-101 to ResNet-50
and comparing the networks with CCL to those without
CCL, we see that the performance gain brought by the
gated sum will be higher if there are more score maps for
selecting.

4.4. Results On Scene Segmentation

Pascal Context [41] contains 10103 images from Pascal
VOC 2010, and these images are re-annotated as pixel-wise
segmentation maps. There are 4998 images for training and
5105 images for testing in Pascal Context. We use the most
common 59 categories in this dataset for evaluation. A few

Baseline Model Gated Sum CCL IoU

ResNet-50 no no 40.7%
ResNet-50 yes no 41.5%
ResNet-50 no yes 46.3%
ResNet-50 yes yes 48.1%

ResNet-101 no no 42.5%
ResNet-101 yes no 43.9%
ResNet-101 no yes 48.3%
ResNet-101 yes yes 51.6%

Table 3: Ablation experiments of Gated Sum on Pascal Context.

Images Baseline Ours Ground Truth

Figure 6: Qualitative segmentation result comparisons on Pascal
Context. Our segmentation network performers well at salient
objects, stuff (e.g. road, grass, sky) and inconspicuous objects.
Further, our network has a robust adaptability to multi-scale
objects.

examples on validation set of Pascal Context are shown in
Figure 6. Compared with the baseline, our segmentation
network performers better at global information, salient
objects, stuff and inconspicuous objects and has a robust
adaptability to multi-scale objects. Quantitative results of
Pascal Context are shown in Table 4. It shows that our
segmentation network outperforms the state-of-the-arts by
a large margin for all the three evaluation metrics.

SUN-RGBD [54] provides pixel-wise labeling for 37
categories. It has 10335 indoor images which are from



Methods GPA ACA IoU

O2P[6] - - 18.1%
CFM [11] - - 34.4%
FCN-8s [50] 67.5% 52.3% 39.1%
CRF-RNN [64] - - 39.3%
ParseNet [35] - - 40.4%
BoxSup [10] - - 40.5%
ConvPP-8 [60] - - 41.0%
HO-CRF [1] - - 41.3%
PixelNet [3] - 51.5% 41.4%
Context-CRF [30] 71.5% 53.9% 43.3%
DAG-RNN + CRF [51] 73.6% 55.8% 43.7%
FCRN [58] 72.9% 54.8% 44.5%
DeepLab-v2+CRF†[8] - - 45.7%
Hu et al.[23] 73.5% 56.7% 45.8%
Global-Context[25] 73.8% - 46.5%
RefineNet-Res101 [29] - - 47.1%
RefineNet-Res152 [29] - - 47.3%
PSPNet-Res101 [63] 76.0% 60.6% 47.8%

Ours 78.4% 63.9% 51.6%

Table 4: Pascal Context testing accuracies. Our network
outperforms all existing methods by a large margin across all
evaluation metrics. Methods trained with extra data are marked
with †.

Methods GPA ACA IoU

Liu et al. [32] - 10.0% -
Ren et al. [47] - 36.3% -
FCN-8s [38] 68.2% 38.4% 27.4%
DeconvNet [42] 66.1% 33.3% 22.6%
Kendall et al. [27] 71.2% 45.9% 30.7%
SegNet [2] 72.6% 44.8% 31.8%
DeepLab [8] 71.9% 42.2% 32.1%
Context-CRF [30] 78.4% 53.4% 42.3%
RefineNet-Res101 [29] 80.4% 57.8% 45.7%
RefineNet-Res152 [29] 80.6% 58.5% 45.9%

Ours 81.4% 60.3% 47.1%

Table 5: SUN-RGBD (37 classes) segmentation results. We do
not use the depth information for training. Our segmentation
network outperforms existing methods consistently across all the
three evaluation metrics.

SUN3D [59], NYUDv2 [52], Berkeley B3DO [26] and the
newly captured images. The training set has 5285 images
and the test set contains 5050 images. We only use the
RGB modality as input for training. Quantitative results
of SUN-RGBD are reported in Table 5. It shows that our
segmentation network outperforms the previous state-of-
the-arts consistently across all evaluation metrics.

COCO Stuff [5] contains 10000 images from Microsoft
COCO dataset [31], out of which 9000 images are for
training and 1000 images for testing. The unlabeled
stuff pixels in original images of Microsoft COCO are
further annotated with additional 91 classes in COCO
Stuff. Herein, this dataset contains 171 categories including
objects and stuff annotated to each pixel. Quantitative

Networks GPA ACA IoU

FCN [5] 52.0% 34.0% 22.7%
DeepLab [7] 57.8% 38.1% 26.9%
DAG-RNN[51] 62.2% 42.3% 30.4%
RefineNet-Res101 [29] 65.2% 45.3% 33.6%

Ours 66.3% 48.8% 35.7%

Table 6: Parsing performance of different networks on COCO
Stuff dataset. Our segmentation network outperforms the state-
of-the-arts by a large margin across all evaluation metrics.

results of COCO Stuff are shown in Table 6. Our scene
segmentation network outperforms the existing methods by
a large margin across all evaluation metrics.

5. Conclusion
In this paper, we address the challenging task of scene

segmentation. Scene segmentation aims at parsing an image
into a set of coherent semantic regions and classifying each
pixel to one of classes, and hence the context and multi-
scale aggregation are crucial to achieve good segmentation.
However, DCNN designed for image classification tends to
extract abstract features of dominated objects, thus some
essentially discriminative information for inconspicuous
objects and stuff are weakened or even disregarded. To
address this issue, we propose a novel context contrasted
local feature to leverage the useful context and spotlight the
local information in contrast to the context. The proposed
context contrasted local feature greatly improves the pars-
ing performance, especially for inconspicuous objects and
stuff. Adding skip layers is a common way to exploit multi-
scale features, but the existing approaches indiscriminately
fuse the score maps of skip layers via a simple summation.
To achieve an optimal multi-scale aggregation, we propose
a scheme of gated sum to selectively aggregate multi-scale
features. The values of gates are generated from the testing
image by the proposed networks learnt from the training
data. Thus, they are adaptive not only to the training
data, but also to the specific testing image. Without bells
and whistles, our segmentation network achieves state-of-
the-arts consistently on the 3 popular scene segmentation
datasets used in the evaluation, Pascal Context, SUN-
RGBD and COCO Stuff.
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