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Abstract

Recently, deep convolutional neural networks (CNNs)
have been demonstrated remarkable progress on single im-
age super-resolution. However, as the depth and width of
the networks increase, CNN-based super-resolution meth-
ods have been faced with the challenges of computational
complexity and memory consumption in practice. In order
to solve the above questions, we propose a deep but com-
pact convolutional network to directly reconstruct the high
resolution image from the original low resolution image. In
general, the proposed model consists of three parts, which
are feature extraction block, stacked information distillation
blocks and reconstruction block respectively. By combining
an enhancement unit with a compression unit into a distilla-
tion block, the local long and short-path features can be ef-
fectively extracted. Specifically, the proposed enhancement
unit mixes together two different types of features and the
compression unit distills more useful information for the se-
quential blocks. In addition, the proposed network has the
advantage of fast execution due to the comparatively few
numbers of filters per layer and the use of group convolu-
tion. Experimental results demonstrate that the proposed
method is superior to the state-of-the-art methods, espe-
cially in terms of time performance. Code is available at
https://github.com/Zheng222/IDN-Caffe.

1. Introduction
Single image super-resolution (SISR) is a classical prob-

lem in low-level computer vision, which reconstructs a
high-resolution (HR) image from a low-resolution (LR)
image. Actually, an infinite number of HR images can
get the same LR image by downsampling. Hence, the S-
R problem is inherently ill-posed and no unique solution
exists. In order to mitigate this problem, numerous SIS-
R methods have been proposed in the literature, including
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Figure 1. Speed and accuracy trade-off. The average PSNR and
the average inference time for upscaling 3× on Set5. The IDN is
faster than other methods and achieves the best performance at the
same time.

interpolation-based methods, reconstruction-based methods
and example-based methods. Since the former two kinds of
methods usually suffer dramatically drop in restoration per-
formance with larger upscaling factors, the recent SR meth-
ods fall into the example-based methods which try to learn
prior knowledge from LR and HR pairs.

Recently, due to the strength of deep convolutional neu-
ral network (CNN), many CNN-based SR methods try to
train a deep network to gain better reconstruction perfor-
mance. Kim et al. propose a 20-layer CNN model known
as VDSR [12], which adopts residual learning and adaptive
gradient clipping to ease training difficulty. To control the
model parameters, the authors construct a deeply-recursive
convolutional network (DRCN) [13] by adopting recursive
layer. To mitigate training difficulty, Mao et al. propose
a very deep residual encoder-decoder network (RED) [17],
which consists of a series of convolutional and subsequent
transposed convolution layers to learn end-to-end mappings
from the LR images to the ground truths. Tai et al. propose

https://github.com/Zheng222/IDN-Caffe


a deep recursive residual network (DRRN) [22], which em-
ploys parameters sharing strategy to alleviate the require-
ment of enormous parameters of the very deep networks.

Although achieving prominent performance, most of
deep networks still have some drawbacks. Firstly, in or-
der to achieve better performance, deepening or widening
the network has been a design trend. But the result is
that these methods demand large computational cost and
memory consumption, which are less applicable in practice,
such as mobile and embedded vision applications. More-
over, the traditional convolutional networks usually adopt
cascaded network topologies, e.g., VDSR [12] and DRC-
N [13]. In this way, the feature maps of each layer are
sent to the sequential layer without distinction. However,
Hu et al. [9] experimentally demonstrate that adaptively re-
calibrating channel-wise features responses can improve the
representational power of a network.

To address these drawbacks, we propose a novel infor-
mation distillation network (IDN) with lightweight parame-
ters and computational complexity as illustrated in Figure 2.
In the proposed IDN, a feature extraction block (FBlock)
first extracts features from the LR image. Then, multiple in-
formation distillation blocks (DBlocks) are stacked to pro-
gressively distill residual information. Finally, a reconstruc-
tion Block (RBlock) aggregates the obtained HR residual
representations to generate the residual image. To get a HR
image, we implement an element-wise addition operation
on the residual image and the upsampled LR image.

The key component of IDN is the information distilla-
tion block, which contains an enhancement unit and a com-
pression unit. The enhancement unit mainly comprises two
shallow convolutional networks as illustrated in Figure 3.
Each of them is a three-layer shallow module. The feature
maps of the first module are extracted through a short path
(3-layer). Thus, they can be regarded as the local short-path
features. Considering that the deep networks have more ex-
pressive power, we send a portion of the local short-path
features to another module. By this way, the feature maps
of the second module naturally become the local long-path
features. Different from the approach in [9], we divide fea-
ture maps into two parts. One part represents reserved short-
path features and another expresses the short-path features
that will be enhanced. After getting long and short-path
feature maps, we aggregate these two types of features for
gaining more abundant and efficient information. In sum-
mary, the enhancement unit is mainly to improve the rep-
resentation power of the network. As for the compression
unit, we adopt a simple convolutional layer to compress the
redundancy information in features of the enhancement u-
nit.

The main contributions of this work are summarized as
follows:

• The proposed IDN extracts feature maps directly from

LR images and employs multiple cascaded DBlocks
to generate the residual representations in HR space.
In each DBlock, the enhancement unit gathers more
information as much as possible and the compression
unit distills more useful information. As a result, IDN
achieves competitive results in spite of using less num-
ber of convolutional layer.

• Due to the concise structure of the proposed IDN, it is
much faster than several CNN-based SR methods, e.g.,
VDSR [12], DRCN [13], LapSRN [15], DRRN [22]
and MemNet [23] as illustrated in Figure 1. Only the
proposed method achieves real-time speed and main-
tains better reconstruction accuracy.

2. Related Work

Single image super-resolution has been extensively stud-
ied in these years. In this section, we will focus on recent
example-based and neural network based approaches.

2.1. Self-example based methods

The self-example based methods exploit the self-
similarity property and extract example pairs merely from
the LR image across different scales. This type of methods
usually works well in the images containing repetitive pat-
terns and textures but lacks the richness of image structures
outside the input image and thus fails to generate satisfacto-
ry prediction for images of other classes. Huang et al. [10]
extend self-similarity based SR to handle the affine and per-
spective deformation.

2.2. External-example based methods

The external-example based methods learn a mapping
between LR and HR patches from external datasets. This
type of approaches usually focuses on how to learn a com-
pact dictionary or manifold space to relate LR/HR patches,
such as nearest neighbor [7], manifold embedding [2], ran-
dom forest [20] and sparse representation [25, 26]. While
these approaches are effective, the extracted features and
mapping functions are not adaptive, which may not be opti-
mal for generating high-quality SR images.

2.3. Convolutional neural networks based methods

Recently, inspired by the achievement of many comput-
er vision tasks tackled with deep learning, neural networks
have been achieved dramatic improvement in SR. Dong et
al. [3, 4] first exploit a three-layer convolutional neural
network, named SRCNN, to jointly optimize the feature
extraction, non-linear mapping and image reconstruction
stages in an end-to-end manner. Afterwards Shi et al. [21]
propose an efficient sub-pixel convolutional neural network
(ESPCN), which extracts feature maps in the LR space and
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Figure 2. Architecture of the proposed network.

replaces the bicubic upsampling operation with an efficien-
t sub-pixel convolution. Dong et al. [5] adopt deconvolu-
tion to accelerate SRCNN in combination with smaller filter
sizes and more convolution layers. Kim et al. [12] propose
a very deep CNN model with global residual architecture
to achieve superior performance, which utilizes contextu-
al information over large image regions. Another network
designed by Kim et al. [13], which has recursive convolu-
tion with skip connection to avoid introducing additional
parameters when the depth is increasing. Mao et al. [17]
tackle the general image restoration problem with encoder-
decoder networks and symmetric skip connections. Lai et
al. [15] propose the laplacian pyramid super-resolution net-
work (LapSRN) to address the speed and accuracy of SR
problem, which takes the original LR images as input and
progressively reconstructs the sub-band residuals of HR im-
ages. Tai et al. [22] propose the deep recursive residual net-
work to effectively build a very deep network structure for
SR, which weighs the model parameters against the accura-
cy. The authors also present a very deep end-to-end persis-
tent memory network (MemNet) [23] for image restoration
task, which tackles the long-term dependency problem in
the previous CNN architectures. Sajjadi et al. [19] propose
a novel combination of automated texture synthesis with a
perceptual loss focusing on creating realistic textures at a
high magnification ratio of 4.

3. Proposed Method

In this section, we first describe the proposed model
architecture and then suggest the enhancement unit and
the compression unit, which are the core of the proposed
method.

3.1. Network structure

The proposed IDN, as shown in Figure 2, consists of
three parts: a feature extraction block (FBlock), multiple
stacked information distillation blocks (DBlocks) and a re-
construction block (RBlock). Here, we denote x and y as
the input and the output of IDN. With respect to FBlock,

two 3 × 3 convolutional layers are utilized to extract the
feature maps from the original LR image. This procedure
can be expressed as

B0 = f (x) , (1)

where f represents the feature extraction function and B0

denotes the extracted features and servers as the input to the
following stage. The next part is composed of multiple in-
formation distillation blocks by using chained mode. Each
block contains an enhancement unit and a compression unit
with stacked style. This process can be formulated as

Bk = Fk (Bk−1) , k = 1, · · · , n, (2)

where Fk denotes the k-th DBlock function, Bk−1 and Bk

indicate the input and output of the k-th DBlock respec-
tively. Finally, we take a transposed convolution without
activation function as the RBlock. Hence, the IDN can be
expressed as

y = R (Fn (Bn−1)) + U (x) , (3)

where R, U denote the RBlock and bicubic interpolation
operation respectively.

3.1.1 Loss function

We consider two loss functions that measure the difference
between the predicted HR image Î and the corresponding
ground-truth I . The first one is mean square error (MSE),
which is the most widely used loss function for general im-
age restoration as defined below:

lMSE =
1

N

N∑
i=1

∥∥∥Ii − Îi∥∥∥2
2
. (4)

However, Lim et al. [16] experimentally demonstrate that
training with MSE loss is not a good choice. The second
loss function is mean absolute error (MAE), which is for-
mulated as follows:

lMAE =
1

N

N∑
i=1

∥∥∥Ii − Îi∥∥∥
1
. (5)



We empirically found that our model with MSE loss can
improve performance of a trained network with MAE loss.
Therefore, we first train the network with MAE loss and
then fine-tune it by MSE loss.
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Figure 3. The architecture of enhancement unit in the proposed
model. Orange circle represents slice operation and purple circle
indicates concatenation operation in channel dimension.

3.2. Enhancement unit

As shown in Figure 3, enhancement unit can be rough-
ly divided into two modules, one is the above three convo-
lutions and another is the below three convolutions. The
above module has three 3× 3 convolutions, each of them is
followed by a leaky rectified linear unit (LReLU) activation
function, which is omitted here. Let’s denote the feature
map dimensions of the i-th layer as Di (i = 1, · · · , 6). In
that way, the relationship of the convolutional layers can be
expressed as

D3 −D1 = D1 −D2 = d, (6)

where d denotes the difference between the first layer and
the second layer or between the first layer and the third lay-
er. Similarly, the dimension of channels in the below mod-
ule also has this relation and can be described as follows:

D6 −D4 = D4 −D5 = d, (7)

where D4 = D3. The above module is composed of three
cascaded convolution layers with LReLUs, and the output
of the third convolution layer is sliced into two segments.
Supposing the input of this module is Bk−1, we have

P k
1 = Ca (Bk−1) , (8)

whereBk−1 denotes the output of previous block and mean-
while is the input of present block, Ca indicates chained
convolutions operation and P k

1 is the output of the above
module in the k-th enhancement unit. The feature maps

with D3

s dimensions of P k
1 and the input of the first convo-

lutional layer are concatenated in the channel dimension,

Rk = C
(
S
(
P k
1 , 1/s

)
, Bk−1

)
, (9)

where C, S represent concatenation operation and slice op-
eration respectively. Specifically, we know the dimension of
P k
1 is D3. Therefore, S

(
P k
1 , 1/s

)
denotes that D3

s dimen-
sions features are fetched from P k

1 . Moreover, S
(
P k
1 , 1/s

)
concatenates features withBk−1 in channel dimension. The
purpose is to combine the previous information with some
current information. It can be regarded as partially retained
local short-path information. We take the rest of local short-
path information as the input of the below module, which
mainly further extracts long-path feature maps,

P k
2 = Cb

(
S
(
P k
1 , 1− 1/s

))
, (10)

where P k
2 , Cb are the output and stacked convolution oper-

ations of the below module respectively. Finally, as shown
in Figure 3, the input information, the reserved local short-
path information and the local long-path information are ag-
gregated. Therefore, the enhancement unit can be formulat-
ed as

P k = P k
2 +Rk = Cb (S (Ca (Bk−1) , 1− 1/s))

+C (S (Ca (Bk−1) , 1/s) , Bk−1) ,
(11)

where P k is the output of enhancement unit. At this point,
local long-path features P k

2 and the combination of local
short-path features and the untreated features Rk are uti-
lized without exception by a compression unit.

3.3. Compression unit

We achieve compression mechanism by taking advan-
tage of a 1× 1 convolution layer. Concretely, the outputs of
the enhancement unit are sent to a 1 × 1 convolution layer,
which acts as dimensionality reduction or distilling relevant
information for the later network. Thus, the compression
unit can be formulated as

Bk = fkF
(
P k
)
= αk

F

(
W k

F

(
P k
))
, (12)

where fkF denotes the function of the 1×1 convolution layer
(αk

F denotes the activation function and W k
F is the weight

parameters).

4. Experiments
4.1. Datasets

4.1.1 Training datasets

By following [12, 15, 22, 23], we use 91 images from
Yang et al. [26] and 200 images from Berkeley Segmen-
tation Dataset (BSD) [18] as the training data. As in [22],



to make full use of the training data, we apply data augmen-
tation in three ways: (1) Rotate the images with the degree
of 90◦, 180◦ and 270◦. (2) Flip images horizontally. (3)
Downscale the images with the factor of 0.9, 0.8, 0.7 and
0.6.

4.1.2 Testing datasets

The proposed method is evaluated on four widely used
benchmark datasets: Set5 [1], Set14 [27], BSD100 [18],
Urban100 [10]. Among these datasets, Set5, Set14 and
BSD100 consist of natural scenes and Urban100 contain-
s challenging urban scenes images with details in different
frequency bands. The ground truth images are downscaled
by bicubic interpolation to generate LR/HR image pairs for
both training and testing datasets. We convert each color
image into the YCbCr color space and only process the Y-
channel, while color components are simply enlarged using
bicubic interpolation.

Scale Training Fine-tuning
2 292/572 392/772

3 152/432 262/762

4 112/412 192/732

Table 1. The sizes of training and fine-tuning sub-images for dif-
ferent scaling factors.

4.2. Implementation details

For preparing the training samples, we first down-
sample the original HR images with upscaling factor
m (m = 2, 3, 4) by using the bicubic interpolation to gen-
erate the corresponding LR images and then crop the LR
training images into a set of lsub×lsub size sub-images. The
corresponding HR training images are divided intomlsub×
mlsub size sub-images. As the proposed model is trained
using the Caffe package [11], its transposed convolution fil-
ters will generate the output with size (mlsub −m+ 1)

2

instead of (mlsub)
2. So we should crop (m− 1)-pixel bor-

ders on the HR sub-images. Since the minimum size picture
“t20” in the 291 dataset is a 78 × 78 size image, the maxi-
mum size of the sub-image we can crop on the LR image is
26 × 26 for maintaining data integrity when scaling factor
m = 3. However, the training process will be unstable due
to the larger size training samples equipped with the larger
learning rate by using Caffe package. Therefore, 152/432

training pairs are generated for training stage and 262/762

LR/HR sub-images pairs are utilized for fine-tuning phase.
The learning rate is initially set to 1e − 4 and decreases by
the factor of 10 during fine-tuning phase. In this way, the
sizes of training and fine-tuning samples are shown in Ta-
ble 1.

Taking into account the trade-off between the execution
time and the reconstruction performance, we construct a

31-layer network that denoted as IDN. This model has 4
DBlocks, and the parameters D3, d and s of enhancement
unit in each block are set to 64, 16 and 4 respectively. To
reduce the parameters of network, we use the grouped con-
volution layer [6, 24] in the second and fourth layers in each
enhancement unit with 4 groups. In addition, the transposed
convolution adopts 17× 17 filters for all scaling factors and
the negative scope of LReLU is set as 0.05. We initialize the
weights by using the method proposed in [8] and the biases
are set to zero. The proposed network is optimized using
Adam [14]. We set the parameters of mini-batch size and
weight decay to 64 and 1e − 4 respectively. In order to get
better initialization parameters, we empirically pre-train the
proposed model with 105 iterations and take these parame-
ters as the initial values of the IDN. Training a IDN roughly
takes a day with a TITAN X GPU on the 2× model.

(a) residual image (b) data distribution histogram

Figure 4. The residual image and its data distribution of the “but-
terfly” image from Set5 dataset.

(a) the average feature maps of enhancement units

(b) the average feature maps of compression units

Figure 5. Visualization of the average feature maps.

4.3. Network analysis

The proposed model with a global residual structure
mainly learns a residual image. As show in Figure 4(a), the
ground truth residual image mainly contains details and tex-
ture information and its normalized pixel value ranges from
-0.4 to 0.5. From Figure 4(b), we find that there are positive
and negative values in the residual image, and the number of
positive pixels is intuitively similar to that of negative ones.
Obviously, the number of zero value and its neighbors is the
most, which suggests that smooth region in residual image
is almost eliminated. Therefore, the task of our network is



Dataset Scale Bicubic VDSR [12] DRCN [13] LapSRN [15] DRRN [22] MemNet [23] IDN (Ours)

Set5
×2 33.66/0.9299 37.53/0.9587 37.63/0.9588 37.52/0.9591 37.74/0.9591 37.78/0.9597 37.83/0.9600
×3 30.39/0.8682 33.66/0.9213 33.82/0.9226 33.81/0.9220 34.03/0.9244 34.09/0.9248 34.11/0.9253
×4 28.42/0.8104 31.35/0.8838 31.53/0.8854 31.54/0.8852 31.68/0.8888 31.74/0.8893 31.82/0.8903

Set14
×2 30.24/0.8688 33.03/0.9124 33.04/0.9118 32.99/0.9124 33.23/0.9136 33.28/0.9142 33.30/0.9148
×3 27.55/0.7742 29.77/0.8314 29.76/0.8311 29.79/0.8325 29.96/0.8349 30.00/0.8350 29.99/0.8354
×4 26.00/0.7027 28.01/0.7674 28.02/0.7670 28.09/0.7700 28.21/0.7721 28.26/0.7723 28.25/0.7730

BSD100
×2 29.56/0.8431 31.90/0.8960 31.85/0.8942 31.80/0.8952 32.05/0.8973 32.08/0.8978 32.08/0.8985
×3 27.21/0.7385 28.82/0.7976 28.80/0.7963 28.82/0.7980 28.95/0.8004 28.96/0.8001 28.95/0.8013
×4 25.96/0.6675 27.29/0.7251 27.23/0.7233 27.32/0.7275 27.38/0.7284 27.40/0.7281 27.41/0.7297

Urban100
×2 26.88/0.8403 30.76/0.9140 30.75/0.9133 30.41/0.9103 31.23/0.9188 31.31/0.9195 31.27/0.9196
×3 24.46/0.7349 27.14/0.8279 27.15/0.8276 27.07/0.8275 27.53/0.8378 27.56/0.8376 27.42/0.8359
×4 23.14/0.6577 25.18/0.7524 25.14/0.7510 25.21/0.7562 25.44/0.7638 25.50/0.7630 25.41/0.7632

Table 2. Average PSNR/SSIMs for scale 2×, 3× and 4×. Red color indicates the best and blue color indicates the second best performance.

Dataset Scale Bicubic VDSR [12] DRCN [13] LapSRN [15] DRRN [22] MemNet [23] IDN (Ours)

Set5
×2 6.083 8.580 8.783 9.010 8.670 8.850 9.252
×3 3.580 5.203 5.336 5.194 5.394 5.503 5.620
×4 2.329 3.542 3.543 3.559 3.700 3.787 3.826

Set14
×2 6.105 8.159 8.370 8.501 8.280 8.469 8.839
×3 3.473 4.691 4.782 4.662 4.870 4.958 5.062
×4 2.237 3.106 3.098 3.145 3.249 3.309 3.354

BSD100
×2 5.619 7.494 7.577 7.715 7.513 7.665 7.931
×3 3.138 4.151 4.184 4.057 4.235 4.300 4.398
×4 1.978 2.679 2.633 2.677 2.746 2.778 2.837

Urban100
×2 6.245 8.629 8.959 8.907 8.889 9.122 9.594
×3 3.620 5.159 5.314 5.156 5.440 5.560 5.676
×4 2.361 3.462 3.465 3.530 3.669 3.786 3.789

Table 3. Average IFCs for scale 2×, 3× and 4×. Red color indicates the best and blue color indicates the second best performance.

to gradually subtract the smooth area of the original input
image. In order to verify our intuition, we need inspect the
outputs of enhancement and compression units. For bet-
ter visualizing the intermediary of the proposed model, we
consider an operation T that can transform a 3D tensor A
to a flattened 2D tensor defined over the spatial dimensions,
which can be formulated as follows:

T : Rc×h×w → Rh×w. (13)

Specifically, in this work, we will consider the mean of the
feature maps in channel dimension, which can be described
by

Tmean (A) =
1

c

∑c

i=1
Ai, (14)

where Ai = A (i, :, :) (using Matlab notation). The average
feature map can roughly represent the situations of the w-
hole feature maps. To explore the functions of enhancement
unit and compression unit, we visualize the outputs of each
enhancement unit and compression unit by utilizing above-
mentioned method. As illustrated in Figure 5(a), from the
first subpicture to the third subpicture, average feature maps
gradually reduce the pixel values, especially in smooth ar-
eas. According to Figure 5(a), we can easily see that the

first subfigure holds larger pixel values but has rough out-
line of the butterfly. The second and the third subfigures
show that the later enhancement units continue decreasing
the pixel values to obtain the features with a relatively clear
contour profile. In addition, the last subfigure obviously
surpasses the former figures, which brings the better inputs
for the sequential compression unit that directly connects to
RBlock. In summary, the function of the enhancement unit
mainly enhances the outline areas of input LR image. As
for the effect of compression unit, comparing Figure 5(a)
with Figure 5(b), we find that the pixel values of features
are mapped into a smaller range through the compression
unit. From the second subfigure in Figure 5(b) and the third
subfigure in Figure 5(a), we can see some regions of the av-
erage feature map of compression unit are enhanced by the
following enhancement unit. This indicates that the process
of the first three stacked blocks is to reduce the pixel value
as a whole, while the last block greatly enhances the con-
trast between the contour and the smooth areas.

The RBlock, a transposed convolution layer, assembles
the output of the final DBlock to generate the residual im-
age. The bias term of this transposed convolution can auto-



Dataset Scale VDSR [12] DRCN [13] LapSRN [15] DRRN [22] MemNet [23] IDN (Ours)

Set5
×2 0.054 0.735 0.032 4.343 5.715 0.016
×3 0.062 0.748 0.049 4.380 5.761 0.011
×4 0.054 0.735 0.040 4.450 5.728 0.009

Set14
×2 0.113 1.579 0.035 8.540 12.031 0.025
×3 0.122 1.569 0.061 8.298 11.543 0.014
×4 0.112 1.526 0.040 8.540 11.956 0.010

BSD100
×2 0.071 0.983 0.018 4.430 5.875 0.015
×3 0.071 0.996 0.037 4.430 5.897 0.009
×4 0.071 0.984 0.023 4.373 5.887 0.007

Urban100
×2 0.451 5.010 0.082 26.699 35.871 0.062
×3 0.514 5.054 0.122 26.693 35.803 0.034
×4 0.448 5.048 0.100 26.702 37.404 0.022

Table 4. Comparison the running time (sec) on the 4 benchmark datasets with scale factors 2×, 3× and 4×. Red color indicates the fastest
algorithm and blue color indicates the second fastest method. Our IDN achieves the best time performance.

(a) Original (PSNR/SSIM/IFC) (b) Bicubic (25.15/0.6863/2.553) (c) VDSR (25.79/0.7403/3.473) (d) DRCN (25.82/0.7339/3.466)

(e) LapSRN (25.77/0.7430/3.546) (f) DRRN (25.74/0.7403/3.589) (g) MemNet (25.61/0.7399/3.639) (h) IDN (25.84/0.7442/3.749)

Figure 6. The “barbara” image from the Set14 dataset with an upscaling factor 4.

matically adjust the central value of the residual image data
distribution to approach the ground-truth.

4.4. Comparisons with state-of-the-arts

We compare the proposed method with other SR meth-
ods, including bicubic, SRCNN [3, 4], VDSR [12], DRC-
N [13], LapSRN [15], DRRN [22] and MemNet [23]. Ta-
ble 2 shows the average peak signal-to-noise ratio (PSNR)
and structural similarity (SSIM) values on four bench-
mark datasets. The proposed method performs favorably
against state-of-the-art results on most datasets. In addi-
tion, we measure all methods with information fidelity cri-
terion (IFC) metric, which assesses the image quality based
on natural scene statistics and correlates well with human
perception of image super-resolution. Table 3 shows the
proposed method achieves the best performance and out-
performs MemNet [23] by a considerable margin.

Figure 6, 7 and 8 show visual comparisions. The “bar-
bara” image has serious artifacts in the read box due to
the loss of high frequency information, which can be seen
from the result of bicubic interpolation. Only the pro-
posed method recovers roughly the outline of several s-
tacked books as shown in Figure 6. From Figure 7, we
can obviously see that the proposed method gains clearer
contour without serious artifacts while other methods have
different degrees of the fake information. In Figure 8, the
building structure on image “img085” of Urban100 dataset
is relatively clear in the proposed method.

From Table 2, the performance of the proposed IDN is
lower than that of MemNet in Urban100 dataset and 3×,
4× scale factors, while our IDN can achieve slightly better
performance in other benchmark datasets. The main reason
is that MemNet takes an interpolated LR image as its in-
put so that more information is fed into the network and the



(a) Original (PSNR/SSIM/IFC) (b) Bicubic (28.50/0.8285/2.638) (c) VDSR (29.54/0.8651/3.388) (d) DRCN (30.28/0.8653/3.323)

(e) LapSRN (30.10/0.8710/3.432) (f) DRRN (29.74/0.8671/3.509) (g) MemNet (30.14/0.8697/3.563) (h) IDN (30.40/0.8715/3.703)

Figure 7. The “8023” image from the BSD100 dataset with an upscaling factor 4.

(a) Original (PSNR/SSIM/IFC) (b) Bicubic (25.90/0.8365/1.976) (c) VDSR (27.14/0.8771/2.480) (d) DRCN (27.15/0.8761/2.442)

(e) LapSRN (27.11/0.8809/2.593) (f) DRRN (26.65/0.8739/2.399) (g) MemNet (26.83/0.8750/2.444) (h) IDN (27.26/0.8824/2.705)

Figure 8. The “img085” image from the Urban100 dataset with an upscaling factor 4.

process of the SR only needs to correct the interpolated im-
age. The algorithms that take the original LR image as input
demand predicting more pixels from scratch, especially in
larger images and larger magnification factors.

As for inference time, we use the public codes of the
compared algorithms to evaluate the runtime on the ma-
chine with 4.2GHz Intel i7-7700K CPU (32G RAM) and
Nvidia TITAN X (Pascal) GPU (12G memory). Since we
note that official implementations of MemNet and DRRN
have the condition of out of the GPU memory when testing
the images on BSD100 and Urban100 datasets, we divide
100 images into several parts and evaluate on these parts
and then collect them for these two datasets. Table 4 shows
the average execution time on four benchmark datasets. It
is noteworthy that the proposed IDN is approximately 500
times faster than MemNet [23] with 2× magnification on
the Urban100 dataset.

5. Conclusions
In this paper, we propose a novel network that employs

distillation blocks to gradually extract abundant and effi-
cient features for the reconstruction of HR images. The pro-
posed approach achieves competitive results on four bench-
mark datasets in terms of PSNR, SSIM and IFC. Meanwhile
the inference time substantially exceeds the state-of-the-art
methods such as DRRN [22] and MemNet [23]. This com-
pact network will be more widely applicable in practice. In
the future, this approach of image super-resolution will be
explored to facilitate other image restoration problems such
as denosing and compression artifacts reduction.
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