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Abstract

3D shape recognition has attracted much attention re-
cently. Its recent advances advocate the usage of deep fea-
tures and achieve the state-of-the-art performance. How-
ever, existing deep features for 3D shape recognition are re-
stricted to a view-to-shape setting, which learns the shape
descriptor from the view-level feature directly. Despite
the exciting progress on view-based 3D shape description,
the intrinsic hierarchical correlation and discriminability
among views have not been well exploited, which is im-
portant for 3D shape representation. To tackle this issue,
in this paper, we propose a group-view convolutional neu-
ral network (GVCNN) framework for hierarchical correla-
tion modeling towards discriminative 3D shape description.
The proposed GVCNN framework is composed of a hier-
archical view-group-shape architecture, i.e., from the view
level, the group level and the shape level, which are orga-
nized using a grouping strategy. Concretely, we first use an
expanded CNN to extract a view level descriptor. Then, a
grouping module is introduced to estimate the content dis-
crimination of each view, based on which all views can be
splitted into different groups according to their discrimina-
tive level. A group level description can be further gener-
ated by pooling from view descriptors. Finally, all group
level descriptors are combined into the shape level descrip-
tor according to their discriminative weights. Experimental
results and comparison with state-of-the-art methods show
that our proposed GVCNN method can achieve a significant
performance gain on both the 3D shape classification and
retrieval tasks.

1. Introduction

With the development of imaging and 3D reconstruc-
tion techniques, 3D shape recognition have become a fun-
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damental task in computer vision with broad application
prospects. Within the proliferation of deep learning, various
deep networks have been investigated for 3D shape recog-
nition, such as 3D ShapeNets [26], PointNet [7], VoxNet
[14]. Among these methods, view-based method has per-
formed best so far. In view-based method, the input data
are the views taken from different angles, which can be eas-
ily captured comparing to other methods, like point cloud
structure and polygon mesh. Using deep learning schemes
for view representation typically refers to exploiting well-
established models, such as VGG [21], GoogLeNet [23] and
ResNet [9]. Besides, comparing with model-based meth-
ods, such as 3D ShapeNets [26], view-based methods can
obtain much more views by rendering the 3D model.

Designing discriminative descriptor is the fundamental
issue towards optimal 3D shape recognition. Although deep
learning methods on 2D images have been well investi-
gated in recent years, it is still at the beginning for de-
scribing multi-view based 3D shapes. In recent papers, the
multi-view based methods, such as Multi-View Convolu-
tional Neural Networks (MVCNN and MVCNN-MultiRes)
[22, 18] usually employ a view pooling operation to gen-
erate the shape level description from the view descrip-
tors. These methods have made the milestone for 3D shape
recognition and achieve the current state-of-the-art perfor-
mance. We note that all views are treated equally to gen-
erate the shape descriptor in exiting methods. However,
the content relationship and the discriminative information
of the views have left unexplored, which limits the perfor-
mance of shape descriptors a lot. On one hand, some views
are similar to each other, while the others are diverse. These
similar views should contribute similarly to the shape de-
scriptor. On the other hand, some views are more discrim-
inative for shape recognition. Under such circumstances, it
is important to further investigate the content relationship to
mine the discriminative information from these views.

To tackle this issue, in this paper, we propose a group-
view convolutional neural network (GVCNN) framework,
which contains hierarchical view-group-shape architecture
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Figure 1. The Group-View CNN framework for 3D shape recognition.

of content descriptions, i.e., from the view level, the group
level and the shape level. In the beginning, GVCNN groups
the views to generate the view level descriptors, and as-
signs individual groups with associated weights, leading to
the group level description. Then, the group level descrip-
tion can be further weighted combined to generate the shape
level description. In this way, the view content and the dis-
criminativity can be jointly considered for shape recogni-
tion. More specifically, we first use an expanded CNN to
extract a view level descriptor. Then, a grouping module
is proposed to estimate the content-based discrimination for
each view, based on which all views can be splitted into
different groups according to their discrimination level. An
intra-group view pooling scheme is further proposed to gen-
erate the group level description from view level descrip-
tions. Finally, all group level descriptors are weighted en-
sembled to generate the shape level descriptor. In this way,
we establish a three-layer description framework, i.e., view-
group-shape, which differs from the existing view-to-shape
pooling scheme. To evaluate the performance of the pro-
posed GVCNN framework, we have conducted experiments
on ModelNet40 dataset, with comparisons to the state-of-
the-art methods [22][18][26][11][4]. Experimental results
show that our proposed GVCNN method can achieve better
performance on both 3D shape classification and retrieval
tasks, which demonstrates the effectiveness of the proposed
framework.

The main contributions of this paper are two-fold;

• We design a three-level 3D shape description frame-
work, consisting of a view-based end-to-end network
for shape recognition. Different from the traditional
view-to-shape description, our framework is composed
of the view, the group and the shape levels. In par-
ticular, we take the view content relationship and the
view discrimination into consideration by introducing

the group level representation. Compared to the view-
to-shape strategy, our framework is much more effec-
tive on representing the discriminative information of
3D shapes.

• We propose a grouping module to group the views ac-
cording to their content and the discriminative infor-
mation. In this way, all views for each shape can be
grouped into different clusters with associated weights.
Quantitative results and comparisons have shown the
merits of the proposed grouping scheme.

The rest of this paper is organized as follows. We first
introduce the related work in Sec.2. We then present our
proposed group-view CNN architecture in Sec.3. Experi-
ments and discussions are provided in Sec.4. Finally, we
conclude this paper in Sec.5.

2. Related Work
3D shape retrieval and recognition have been investi-

gated in recent years. In this section, we briefly review some
typical handcraft and deep learning descriptors.

2.1. Handcraft Descriptors

There have been plenty of handcraft 3D descriptors,
which can be mainly divided into two categories, i.e.,
model-based methods [15, 5] and view-based methods [4].
One typical model-based method is the statistical models,
which can be used to describe the distributions of the at-
tributes. Osada et al. [15] employed the shape distribution
to calculate the similarity based on distance, angle, area,
and volume between random surface points. Akgul et al.
[1] proposed a probabilistic generative descriptor of local
shape properties for 3D shape retrieval. Different from the
distribution based methods, transform-based methods em-
ployed signal processing techniques to describe 3D shapes



by Fourier transform, spherical projection, etc. Tatsuma
et al. [24] proposed the Multi-Fourier Spectra Descrip-
tor (MFSD) by augmenting the feature vector with spec-
tral clustering. MFSD was composed of four independent
Fourier spectras with periphery enhancement, which was
able to capture the inherent characteristics of an arbitrary
3D shape regardless of the dimension, orientation, and orig-
inal location of the object. The shape-based descriptor was
designed based on the native 3D representations of objects,
such as voxel grid [26], polygon mesh [2, 10], local shape
diameters measured at densely sampled surface points [3],
or extensions of the SIFT and SURF descriptors to 3D voxel
grids [13].

In recent years, view-based descriptor has attracted much
attention, which describes 3D shape using a group of views.
Compared with model-based methods that implicitly re-
quire the model information, view-base methods only need
a group of images. For instance, Lighting Field descrip-
tor [4] is the first typical view-based 3D descriptor, which
is composed of a group of ten views, captured from the
vertices of a dodecahedron over a hemisphere. In [6], the
similarity between two 3D objects is measured as the prob-
abilistic matching. In panoramic object representation for
accurate model attributing (PANORAMA) [16], a set of
panoramic views were generated from the 3D model to rep-
resent the model surface and the orientation. In [19], Shu et
al. proposed to employ principal thickness images for 3D
shape description and classification.

2.2. Deep Learning Based Descriptors

In recent years, deep learning methods have been
widely investigated in 3D shape description. Su et al.
[22] proposed a multi-view convolutional neural network
(MVCNN), which first generated the feature for each view
individually base on convolutional neural networks and then
fused multiple views by a pooling procedure. MVCNN fur-
ther employs a low-rank Mahalanobis metric [20] to im-
prove the retrieval performance. To jointly utilize the model
information and the view data, Qi et al. [18] combined
view-based descriptor and volumetric-based descriptor by
taking these two types of information into consideration in
the network. More specifically, multi-resolution views were
employed in [18]. In [8], Guo et al. proposed to a unified
multi-view 3D shape retrieval method with a deep embed-
ding network to handle the complex intra-class and inter-
class variations, in which the deep convolutional network
can be jointly supervised by classification loss and triplet
loss. Xie et al. [28, 27] proposed a deep auto-encoder for
3D shape feature extraction. In [29], a progressive shape-
distribution encoder was introduced to generate 3D shape
representation.

Deep learning based methods have shown superior per-
formance compared with the traditional handcraft descrip-

tors. It is noted that multiple views for each 3D shape could
have different importance on shape description. However,
existing deep learning methods mainly conducted informa-
tion pooling on all views equally, ignoring the discrimina-
tive information of different views, which limits the perfor-
mance of existing methods.

3. Group-View Convolutional Neural Network
In this section, we introduce the proposed GVCNN

framework in details. Compared with previous view-to-
shape architecture, as shown in Fig. 2 (a), considering the
relationship among the content of the views and the dis-
criminativity of different views, we introduce a hierarchi-
cal view-group-shape framework. In our proposed GVCNN
framework, a group level description is first generated from
all the view level descriptors. In this step, the correla-
tion among these views are taken into consideration by the
grouping procedure, and the weights for different groups
are also calculated to quantify the discriminativity of these
groups of views. Then, we finally generate the shape level
description by weighted combines these group level de-
scriptions.

(a) View-to-Shape Architecture

(b) View-Group-Shape Architecture

Figure 2. The comparison between the traditional view-to-shape
architecture and the proposed view-group-shape architecture for
shape description.

Fig.1 illustrates the detailed flowchart of our proposed
method. GVCNN employs the GoogLeNet as the base ar-
chitecture. The “FCN” part is the top five convolutional lay-
ers of GoogLeNet. The “FC” part has appeared twice: One
is the last layer of GVCNN to perform classifier, another
is in Group Module to extract discrimination scores from
mid-level representation (the output of “FC”). “CNN” is the
same as GoogLeNet. The output of Group Module will fuse
view descriptors to product the shape descriptor. Then the
shape descriptor will be sent into one “FC” layer to get the
final classification result. Given a 3D shape, we first take
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a set of views captured from different angles. Each view is
passed through the first part of the network (FCN) to get the
raw descriptor in the view level. Then, the second part of
the network (CNN) and the group module, are used to ex-
tract the final view descriptors together with the discrimina-
tion scores, separately. The discrimination scores are used
to group these views and a intra-group view-pooling step is
conducted to extract a group level descriptor. Finally, all
group descriptors are combined into a shape level descrip-
tion according to their grouping weights produced by the
grouping module.

3.1. Raw View Descriptor Generation

Given a 3D shape, which is usually stored as polygon
meshes or point clouds, the first step is to generate a set of
virtual images from the virtual 3D model. To capture the
visual data of the 3D shape as completely as possible, we
designed two types of predefined camera arrays, and gen-
erate rendering views from the 3D shape. The first camera
array contains 8 cameras, which are set as a horizontal cir-
cle with 45 degrees interval. Therefore, there are 8 views
for this camera array. The second camera array contains 12
cameras, which are set as a horizontal circle with 30 degrees
interval. Therefore, there are 12 views for this camera ar-
ray. In our experiments, these two types of multi-view data
are employed. The two employed camera array settings are
shown in Fig. 4 We note that the proposed framework has
no constraint on the rendering method, and other multi-view
capturing approaches can be also used in our method.

Given such a set of views for each 3D shape, we design
a full convolutional network (FCN) to extract the raw view
descriptors, as shown in Fig. 1. Compared with deeper
CNN, shallow FCN could have more position information,
which is needed for the followed grouping module. And the
deeper CNN will have the content information which could

(a) 8 Views (b) 12 Views

Figure 4. The camera array settings for 8 views and 12 views.

represent the view feature better.

3.2. Grouping Module

The grouping module aims to learn the group informa-
tion to assist in mining the relationship among views. In or-
der to make the grouping module better integrated into the
convolutional neural network, we designed a unique group-
ing mechanism.

Formally speaking, there is an output unit connected to
the last layer of FCN by a FC layer. Given a set of views
S = {I1, I2, · · · , IN}, the output of this unit is denoted as
{OI1 , OI2 , · · · , OIN }. We use a function ξ(·) to quantify
the discrimination of a view, which is defined as

ξ(Ii) = sigmoid

(
log
(
abs
(
OIi

)))
. (1)

We notice that the output of sigmoid function will approach
to 0 or 1 when the input of sigmoid function is larger than 5
or less than −5. Thus we add the abs and log function be-
fore the sigmoid function. After getting the discrimination
score of each view, we divide the range of discrimination
score (0, 1) into N sub-range with the same length. Views
with discrimination scores in the same sub-range belong to
the same group. Thus we divide the N views into M groups
{G1, G2, · · · , GM}. Note that 1 ≤ M ≤ N because there
may exist sub-ranges that have no views falling into it. The
merit of this grouping scheme is that we don’t have to fix
the number of input views N and the number of groups M ,
which is more flexible and practical.

As mentioned above, the group module not only decides
which group each view belongs to, but also determines the
weight of each group when conducting group fusion. The
more discriminative group should have higher weights and
vice versa. Thus we define the weight of group Gj as:

ξ(Gj) =
Ceil(ξ(Ik)× |Gj |)

|Gj |
Ik ∈ Gj (2)

In this way, we can have both the grouping scheme (with
group information) and the grouping weights, which can be
used for the following intra-group view pooling and group
fusion procedures.

3.3. Intra-Group View Pooling

Given the view descriptors and the generated grouping
information, the objective here is to conduct intra-group



view pooling towards a group level description.
After the grouping procedure, the views in one group

share similar content and also are with close discrimina-
tions. Here, all the views in the same group pass through
a view pooling layer to get a group level description. Let
DIi be the view descriptor of Ii, and DGj

be the group de-
scriptor of Gj . The relationship between Gj and Ii can be
written as

D(Gj) =
ΣN

i=1λiDIi

ΣN
i=1λi

, (3)

λi =

{
1 Ii ∈ Gj ,
0 Ii /∈ Gj .

The intuition behind Eq.3 is that the views in the same
group have the similar discrimination, which are assigned
the same weight.

After this step, we can have several group level descrip-
tors and the corresponding weights.

3.4. Group Fusion

To generate the shape level description, all these group
level descriptors should be further combined. Therefore, we
conduct a weighted fusion process using all group descrip-
tors according to Eq.2 to get the final 3D shape descriptor
D(S)

D(S) =
ΣM

j=1ξ(Gj)D(Gj)

ΣM
j=1ξ(Gj)

. (4)

In this way, the groups containing more discriminative
views contribute more to the final 3D shape descriptorD(S)
than those containing less discriminative views. By us-
ing these hierarchical view-group-shape description frame-
work, the important and discriminative visual content can
be discovered in the group level, and thus emphasized in
the shape descriptor accordingly.

3.5. Classification and Retrieval

Classification. GivenC classes in the classification task,
the output of the last layer in our network architecture is a
vector with C elements, i.e., V = {v1, v2, · · · , vC}. Each
element represents the probability that the subject belongs
to that category. And the category with the largest value is
the category it belongs to.

Retrieval. In GVCNN, the shape descriptor comes
from the output of group fusion module, which is more rep-
resentative than the view descriptor extracted from single
view. And we directly use it for 3D shape retrieval. For
two 3D shape X and Y , x and y is the shape descriptor
extracted from GVCNN. Concretely, we use Euclidean dis-
tance between two 3D shapes in retrieval. The distance met-
ric formula is defined as:

d(X,Y ) = ‖x− y‖2. (5)

We further adopt a low-rank Mahalanobis metric. We learn
a Mahalanobis metric W that directly projects GVCNN de-
scriptors to a new space, in which the intra-class distance is
smaller and inter-class distance is larger. We use the large-
margin metric learning algorithm and implementation from
[20].

4. Experiments
In this section, we first provide the experiments on 3D

shape classification and retrieval, and also discuss the re-
sults and comparison with the state-of-the-art methods. Fol-
lowing we provide the experiments on investigating the
grouping module of our proposed framework. In the last
part, we investigate the influence of the number of views on
the performance of 3D shape recognition.

4.1. 3D Shape Classification and Retrieval

To evaluate the performance of the proposed GVCNN
method, we have conducted 3D shape classification and re-
trieval experiments on the Princeton ModelNet dataset [25].
ModelNet is composed of 127,915 3D CAD models from
622 object categories. We further subsample ModelNet40
as a the subset of ModelNet, which contains 40 popular
object categories. We follow [26] to conduct the train-
ing/testing split.

In experiments, our GVCNN is compared with the
Multi-view CNN by Su et al. [22], MVCNN-MultiRes by
Qi et al. [18], which employs multi-resolution views, 3D
ShapeNets by Wu et al. [26], Spherical Harmonics descrip-
tor (SPH) by Kazhdan et al. [11], which is a typical model-
based method, Lighting Field descriptor (LFD) by Chen et
al. [4], which is a typical view-based method, PointNet by
Qi et al. [17], which is a typical point clouds method, and
KD-Network by Klokov et al. [12].

The experimental results and comparison among differ-
ent methods are demonstrated in Tab. 1. The proposed
GVCNN with 8 views achieves the best classification accu-
racy of 93.1%. It has gains of 3.44% and 1.86% compared
with MVCNN with 80 views and the MVCNN-MultiRes,
respectively. In the retrieval experiments, GVCNN with
8 views and 12 views achieves the best retrieval mAP of
79.7% and 81.3%, respectively, which largely boosts from
MVCNN with 80 views of 70.4%.

When the low-rank Mahalanobis metric learning is fur-
ther included, all compared methods can achieve better per-
formance on the retrieval task. In our method, the descrip-
tors extracted from the GVCNN is a 2,048-dimensional vec-
tor. We use the large-margin metric learning to learn a
projection matrix M , which projects the sparse matrix of
2,048 dimensions to another subspace of 128 dimensions.
Then, we use the projected shape descriptors to represent
3D shapes for retrieval. By using a learned metric, GVCNN
with 8 views achieves an mAP of 84.5% and GVCNN with



Method Training Config. Test Config. Classification Retrieval
Pre train Fine tune #Views (Accuracy) (mAP)

(1)SPH[11] - - - 68.2% 33.3%
(2)LFD[4] - - - 75.5% 40.9%
(3)3D ShapeNets[26] ModelNet40 ModelNet40 - 77.3% 49.2%
(4)MVCNN[22], 12× ImageNet1K ModelNet40 12 89.9% 70.1%
(5)MVCNN[22], metric,12× ImageNet1K ModelNet40 12 89.5% 80.2%
(6)MVCNN[22], 80× ImageNet1K ModelNet40 80 90.1% 70.4%
(7)MVCNN[22], metric, 80× ImageNet1K ModelNet40 80 90.1% 79.5%
(8)MVCNN-MultiRes[18] - ModelNet40 - 91.4% -
(9)PointNet[17] - ModelNet40 - 89.2% -
(10)KD-Network[12] - ModelNet40 - 91.8% -
(11)MVCNN(GoogLeNet), 8× ImageNet1K ModelNet40 8 92.0% 74.62%
(12)MVCNN(GoogLeNet), metric, 8× ImageNet1K ModelNet40 8 92.0% 83.3%
(13)MVCNN(GoogLeNet), 12× ImageNet1K ModelNet40 12 92.2% 74.1%
(14)MVCNN(GoogLeNet), metric, 12× ImageNet1K ModelNet40 12 92.2% 83.0%
(15)GVCNN, 8× ImageNet1K ModelNet40 8 93.1% 79.7%
(16)GVCNN, metric, 8× ImageNet1K ModelNet40 8 93.1% 84.5%
(17)GVCNN, 12× ImageNet1K ModelNet40 12 92.6% 81.3%
(18)GVCNN, metric, 12× ImageNet1K ModelNet40 12 92.6% 85.7%

* metric=low-rank Mahalanobis metric learning

Table 1. Classification and retrieval results on the ModelNet40 dataset. On the top are results using state-of-the-art 3D shape descriptors.
MVCNN(GoogLeNet) means we use the GoogLeNet as the base architecture and add view pooling layer like MVCNN. And the position
of its view pooling layer is the same as the fusion module of GVCNN. The GVCNN architecture outperforms the view-based methods,
especially for retrieval.

Figure 5. Precision-recall curves for compared methods on the task
of 3D shape retrieval on the ModelNet40 dataset. In these experi-
ments, 12 views are used in both MVCNN and GVCNN methods.
Our method (GVCNN+metric) significantly outperforms the state-
of-the-art on this task and achieves 85.7% mAP.

12 views achieves an mAP of 85.7%, which are the best
compared to all methods. Both results demonstrate the ef-

fectiveness of the proposed GVCNN.

Note that GVCNN employs the GoogLeNet as the base
architecture, which differs from MVCNN that uses Ima-
geNet pre-trained VGG-m as the base architecture. To eval-
uate the contribution of the base architectures, we further
conduct experiments of MVCNN with GoogLeNet, whose
results are shown in Tab.1. It is clear that the use of
GoogLeNet can improve the performance of MVCNN. For
example, MVCNN(GoogLeNet) with 12 views achieves
gains of 2.7% and 2.8% with metric learning compared with
MVCNN [22]. Using the same base architecture, GVCNN
with 12 views using metric learning achieves 0.4% and
2.7% gains compared with MVCNN(GoogLeNet) in the
recognition and retrieval tasks, respectively.

Fig.5 quantizes the precision-recall curves of all com-
pared methods. For MVCNN and GVCNN, 12 views are
used. As shown, GVCNN and GVCNN+metric signifi-
cantly outperform MVCNN and MVCNN+metric, respec-
tively.

Our performance is dedicated to the following reasons.
GVCNN contains a grouping module, which can identify
view groups and also assign weights for each group. In
this way, similar views can be grouped together and the fea-
tures can be pooling in each group, rather than pooling on
all views. Compared to MVCNN, our grouping can be re-
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garded as a mid-level pooling, which is better than treating
all views equally. Besides, the group weights can be used
to better ensemble such groups. It is noted that some views
could be very discriminative for shape recognition, while
some others may be not. As an accommodation, the pro-
posed method can generate a weight for each view group
to identify whether it is good for recognition. Therefore,
the weighted fusion leads to better performance compared
to direct pooling on all views.

4.2. On the Grouping Module

In our pipeline, the grouping module plays an important
role. We further investigate this grouping module, whose
objective is to identify the content that whether they are dis-
criminative to the corresponding labels. It is expected that
the views in the same group could share similar content with
closer discriminativity. We have demonstrated some group-
ing examples in Fig. 6.

As shown in this figure, similar content of the same
shape can be grouped together. For example, in the first ex-
ample, all 8 car views are divided into two groups. The first
group is mainly the front and back views of the car, while
the second is the side views. In the fourth example, all 8
chair views are divided into three groups. The first group is
from the back direction, the second group is from the front
direction, and the third is from side directions. Similar ob-

servations can be obtained from other examples. These re-
sults can demonstrate that the proposed grouping module is
effective on clustering visual content.

Another important property of the grouping module is
the weight estimation of different groups. Some views
could be highly discriminative for the 3D shape, while the
others may be not. Therefore, we further investigate the
learned weights for different groups of views. Here we take
the first shape in Fig. 6 as an example. The two groups are
with weights of 0.875 and 1, respectively. Comparing to the
back and front views of the car shape, the side views are
much more discriminative, and thus Group 2 are assigned
with a higher weights compared with Group 1. In the ex-
ample of chair, the first group is in the back view, which
is quite similar to a monitor and thus not very useful for
identifying its true category. The second group is the front
view, which is slightly better than the first group, as it has
a clearer chair shape. Compared with these two groups, the
third group is the side view, which has clear chair shape, and
is quite useful for recognition. In this example, the weights
for these three groups are 0.25, 0.50, and 1, corresponding
to the discriminative power of these views.

4.3. On the Number of Views

Another important issue is the number of views for each
shape. We have also quantitatively evaluate its influence



Training Config. Test Config. Classification
#Views #Views (accuracy)

8 1 70.0%
8 2 71.2%
8 4 91.1%
8 8 93.1%
8 12 91.5%
8 8∗ 84.3%

12 1 75.0%
12 2 76.8%
12 4 90.3%
12 8 92.1%
12 12 92.6%
12 12∗ 85.3%

Table 2. The comparison of different number of input views. The
first five lines are the network trained on 8 views. The last five lines
are the network trained on 12 views. Both have bad performance
with the number of input views less than four.

on the classification performance. More specifically, we fix
the number of input views for training, and generate two
networks, one from the training data with 8 views and the
other from the training data with 12 views. Note that it may
be not feasible to have exactly the same number of views
or have exactly the same view direction as the training data.
In practice, it is possible to have just several randomly cap-
tured views or just a few number of views. In the testing
stage, we have varied the number of views from 1 to 12 for
both networks. The experimental results on the classifica-
tion task are provided in Tab. 2.

Clearly, when the number of views is quite small, such
as 1 or 2, the classification performance is very poor. This is
reasonable that too few views lost much information of the
3D shape. With more views, such as 4, 8 or more, the per-
formance increases very fast and becomes much stable. For
instance, given 4 views, the network trained with 12 views
can achieve a classification accuracy of 90.3%, while given
8 views, the accuracy can be further improved to 92.1%.

We also have investigated the influence of view gener-
ation. We first generate a pool of views for each shape.
More specifically, we extract 80 viewpoints from 80-face
semiregular polyhedron which is generated from the icosa-
hedron using butterfly subdivision with 42 vertices. Then,
we randomly select 8 and 12 views from these 80 views
and conduct shape recognition. We repeat 10 times and
the average performance and the standard deviation are re-
ported in Tab. 2, denoted as 8∗ and 12∗, respectively. When
the views are randomly selected, the performance becomes
worse. Actually, if all the views are captured from the iden-
tical or close direction, it turns to the case of using just 1
or a few views, which will significantly degrade the perfor-
mance. However, if we just randomly capture views from

One circle Half circle
Test Train Accu- Test Train Accu-

#views #views racy #views #views racy
8 12 91.6% 8 12 88.8%

12 12 91.8% 12 12 90.3%
8 8 90.2% 8 8 87.9%

12 8 91.3% 12 8 87.6%

Table 3. The comparison of different generating-view conditions.
In the left subtable, the views are randomly selected from 80 hori-
zon views. In the right subtable, the views are randomly selected
from half of the circle directions.

different directions, the performance could be very steady.

We also provide the experiments on 8/12 random views
from the same horizon circle setting. We have generated 80
views from the horizon circle direction, and 8/12 random
views were selected from the whole circle or just half of
it for testing. The classification results are in Tab. 3. In
the same training and testing configure, the classification
of input with views from a circle outperforms input with
views from the half circle. And in the same input condition
(randomly select views from a circle or half of a circle),
the accuracy of testing with 12 views is higher than that
of 8 views. Training with 12 views in general outperforms
training with 8 views.

5. Conclusions

In this paper, we proposed a GVCNN framework for
3D shape recognition. In this method, a hierarchical shape
description framework is introduced, including the view,
the group, and the shape level descriptor. The correlation
among the views for each shape is taken into considera-
tion, and the grouping information is utilized for shape rep-
resentation. Compared with traditional methods, the pro-
posed method not only considers the view level pooling,
but also takes the group information in the pooling proce-
dure. Experimental results and comparisons with the state-
of-the-art methods have demonstrated the effectiveness of
the proposed method. We have also investigated the influ-
ence of different numbers of views for 3D shape representa-
tion. The results indicate that more and relatively complete
views can be better for 3D shape recognition.
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