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Abstract

Text detection and recognition in natural images have
long been considered as two separate tasks that are pro-
cessed sequentially. Jointly training two tasks is non-trivial
due to significant differences in learning difficulties and
convergence rates. In this work, we present a conceptu-
ally simple yet efficient framework that simultaneously pro-
cesses the two tasks in a united framework. Our main
contributions are three-fold: (1) we propose a novel text-
alignment layer that allows it to precisely compute con-
volutional features of a text instance in arbitrary orienta-
tion, which is the key to boost the performance; (2) a char-
acter attention mechanism is introduced by using charac-
ter spatial information as explicit supervision, leading to
large improvements in recognition; (3) two technologies,
together with a new RNN branch for word recognition, are
integrated seamlessly into a single model which is end-to-
end trainable. This allows the two tasks to work collab-
oratively by sharing convolutional features, which is crit-
ical to identify challenging text instances. Our model ob-
tains impressive results in end-to-end recognition on the
ICDAR 2015 [19], significantly advancing the most recent
results [2], with improvements of F-measure from (0.54,
0.51, 0.47) to (0.82, 0.77, 0.63), by using a strong, weak
and generic lexicon respectively. Thanks to joint training,
our method can also serve as a good detector by achiev-
ing a new state-of-the-art detection performance on related
benchmarks. Code is available at https://github.
com/tonghe90/textspotter.

1. Introduction
The goal of text spotting is to map an input natural image

into a set of character sequences or word transcripts and cor-
responding locations. It has attracted increasing attention in
the vision community, due to its numerous potential appli-
cations. It has made rapid progress riding on the wave of re-
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Figure 1: Illustrations of the results on ICDAR 2015 by
our proposed method, which can detect all possible text
regions and recognize relevant transcriptions in a unified
framework.

cent deep learning technologies, as substantiated by recent
works [17, 8, 2, 23, 12, 35, 43, 31, 33, 22, 26]. However,
text spotting in the wild still remains an open problem, since
text instances often exhibit vast diversity in font, scale and
orientation with various illumination effects, which often
come with a highly complicated background.

Past works in text spotting often consider it as two sep-
arate tasks: text detection and word recognition, which are
implemented sequentially. The goal of text detection is to
precisely localize all text instances (e.g., words) in a natural
image, and then a recognition model is processed repeatedly
through all detected regions for recognizing correspond-
ing text transcripts. Recent approaches for text detection
are mainly extended from general object detectors (such as
Faster R-CNN [29] and SSD [25]) by directly regressing
a bounding box for each text instance, or from semantic
segmentation methods (e.g., Fully Convolutional Networks
(FCN) [27]) by predicting a text/non-text probability at each
pixel. With careful model design and development, these
approaches can be customized properly towards this highly
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domain-specific task, and achieve the state-of-the-art per-
formance [8, 12, 35, 43, 31, 42]. The word recognition
can be cast into a sequence labeling problem where con-
volutional recurrent models have been developed recently
[31, 9]. Some of them were further incorporated with an at-
tention mechanism for improving the performance [21, 1].
However, training two tasks separately does not exploit the
full potential of convolutional networks, where the convo-
lutional features are not shared. It is natural for us to make a
more reliable decision if we clearly understand or recognize
the meaning of a word and all characters within it. Besides,
it is also possible to introduce a number of heuristic rules
and hyper-parameters that are costly to tune, making the
whole system highly complicated.

Recent Mask R-CNN [7] incorporates an instance seg-
mentation task into the Faster R-CNN [29] detection frame-
work, resulting in a multi-task learning model that jointly
predicts a bounding box and a segmentation mask for each
object instance. Our work draws inspiration from this
pipeline, but has a different goal of learning a direct map-
ping between an input image and a set of character se-
quences. We create a recurrent sequence modeling branch
for word recognition within a text detection framework,
where the RNN based word recognition is processed in par-
allel to the detection task.

However, the RNN branch, where the gradients are back-
propagated through time, is clearly much more difficult to
optimize than the task of bounding box regression in detec-
tion. This naturally leads to significant differences in learn-
ing difficulties and convergence rates between two tasks,
making the model particularly hard to be trained jointly.
For example, the magnitude of images for training a text
detection model is about 103 (e.g., 1000 training images in
the ICDAR 2015 [19]) , but the number is increased signif-
icantly by many orders of magnitude when an RNN based
text recognition model is trained, such as the 800K synthetic
images used in [6]. Furthermore, simply using a set of char-
acter sequences as direct supervision may be too abstrac-
tive (high-level) to provide meaningful detailed information
for training such an integrated model effectively, which will
make the model difficult to convergence. In this work, we
introduce strong spatial constraints in both word and char-
acter levels, which allows the model to be optimized gradu-
ally by reducing the search space at each step.

Contributions. In this work, we present an end-to-end
textspotter capable of learning a direct mapping between
an input image and a set of character sequences or word
transcripts. We propose a solution that combines a text-
alignment layer tailed for multi-orientation text detection,
together with a character attention mechanism that explic-
itly encodes strong spatial information of characters into the
RNN branch, as shown in Figure 1. These two technologies
faithfully preserve the exact spatial information in both text

Figure 2: The framework of our method. The text-
alignment layer is proposed to extract accurate sequence
features within a detected quadrilateral of multi-orientation.
A novel character attention mechanism is applied to guide
the decoding process with explicit supervision. The whole
framework can be trained in an end-to-end manner.

instance and character levels, playing a key role in boosting
the overall performance. We develop a principled learning
strategy that allows the two tasks to be trained collabora-
tively by sharing convolutional features. Our main contri-
butions are described as follows.

Firstly, we develop a text-alignment layer by introducing
a grid sampling scheme instead of conventional RoI pool-
ing. It computes fixed-length convolutional features that
precisely align to a detected text region of arbitrary orien-
tation, successfully avoiding the negative effects caused by
orientation and quantization factor of the RoI pooling.

Secondly, we introduce a character attention mechanism
by using character spatial information as an addition super-
vision. This explicitly encodes strong spatial attentions of
characters into the model, which allows the RNN to focus
on current attentional features in decoding, leading to per-
formance boost in word recognition.

Thirdly, both approaches, together with a new RNN
branch for word recognition, are integrated elegantly into
a CNN detection framework, resulting in a single model
that can be trained in an end-to-end manner. We develop
a principled and intuitive learning strategy that allows the
two tasks to be trained effectively by sharing features, with
fast convergence.

Finally, we show by experiments that word recognition
can significantly improve detection accuracy in our model,
demonstrating strong complementary nature of them, which
is unique to this highly domain-specific application. Our
model achieves new state-of-the-art results on the IC-
DAR2015 in end-to-end recognition of multi-orientation
texts, largely outperforming the most recent results in [2],
with improvements of F-measure from (0.54, 0.51, 0.47)
to (0.82, 0.77, 0.63) in terms of using a strong, weak and
generic lexicon.

2. Related work
Here we briefly introduce some related works on text

detection, recognition and recent method for end-to-end



wordspotting.
Scene text detection. Recent approaches cast previous

character-based text detection [14, 15, 11, 37] into direct
text region estimation [24, 43, 42, 10, 8, 41, 38], which
avoids multiple bottom-up post-processing steps by taking
word or text-line as a whole detection unite. Built on ad-
vances of recent object detector Faster-RCNN [29], Tian et
al. [35] proposed a novel Connectionist Text Proposal Net-
work (CTPN) which detects a text line in a sequence of fine-
scale text proposals from convolutional layers, with a new
RNN design incorporated. Liao et al. [24] extended single-
shot object detector (SSD) [25] to text detection. He et
al. [8] proposed a text attention module capable of auto-
matically learning the attention of rough text regions from
the convolutional features. This allows the model to pro-
duce single-shot detection of text with a high accuracy. In
[12], the author proposed a method to generate arbitrary
quadrilaterals, by calculating offsets between every point
of text region and vertex coordinates. A weakly super-
vised text detector, WeText, was proposed to learn from
un-annotated or weakly annotated data [33]. Zhou et al. ap-
plied Intersection-over-Union (IoU) loss to text detection,
which regresses text bounding boxes densely at each spatial
location.

Scene text recognition. With the success of recurrent
neural networks on handwriting recognition and speech
translation, sequence modelling has recently been applied
to scene text recognition. For example, He et al. [9] cast the
task of word recognition into a sequence labelling problem,
where an encoding-decoding process is introduced by incor-
porating LSTM [3] and connectionist temporal classifica-
tion (CTC) [4] into a unified framework. Similar work has
been developed by Shi et al. in [31], and spatial transformer
networks [17] was incorporated for automatic rectification
[32]. Lee et al. [21] proposed an attention-based LSTM
for word recognition. However, these attention weights are
learned completely from the distribution of data, without
any clear supervision that guides the learning process.

End-to-end wordspotting. End-to-end wordspotting is
an emerging research area. Previous methods usually try to
solve it by splitting the whole process into two independent
problems: training two cascade models, one for detection
and one for recognition. Detected text regions are firstly
cropped from original image, followed by affine transfor-
mation and rescaling. Corrected images are repeatedly pro-
cessed by a recognition model to obtain corresponding tran-
scripts. However, training errors will be accumulated due to
cascading models without sharable features. Li et al. [23]
proposed a unified network that simultaneously localizes
and recognizes text in one forward pass by sharing convo-
lution features under a curriculum strategy. But the existing
RoI pooling operation limits it to detect and recognize only
horizontal examples. Busta et al. [2] brought up deep text

Figure 3: Standard RoI pooling (Top) and text-alignment
layer (Bottom). Our method can avoid encoding irrelevant
texts and complicated background, which is crucial for the
accuracy of text recognition.

spotter, which can solve wordspotting of multi-orientation
problem. However, the method does not have sharable fea-
ture, meaning that the recognition loss of the later stage has
no influence on the former localization results.

3. End-to-End TextSpotter
In this section, we present the details of the proposed

textspotter which learns a direct mapping between an in-
put image and a set of word transcripts with corresponding
bounding boxes with arbitrary orientations. Our model is a
fully convolutional architecture built on the PVAnet frame-
work [13]. As shown in Figure 2, we introduce a new re-
current branch for word recognition, which is integrated
into our CNN model in parallel with the existing detection
branch for text bounding box regression. The RNN branch
is composed of a new text-alignment layer and a LSTM-
based recurrent module with a novel character attention em-
bedding mechanism. The text-alignment layer extracts pre-
cise sequence feature within the detected region, preventing
encoding irrelevant texts or background information. The
character attention embedding mechanism regulates the de-
coding process by providing more detailed supervisions of
characters. Our textspotter directly outputs final results in
an end-to-end manner, without any post-processing step ex-
cept for a simple non-maximum suppression (NMS).

Network architecture Our model is a fully convolu-
tional architecture inspired by [43], where a PVA network
[13] is utilized as backbone due to its significantly low com-
putational cost. Unlike generic objects, texts often have a
much larger variations in both sizes and aspect ratios. Thus
it not only needs to preserve local details for small-scale text
instances, but also should maintain a large receptive field
for very long instances. Inspired by the success in semantic
segmentation [30], we exploit feature fusion by combining
convolutional features of conv5, conv4, conv3 and conv2
layers gradually, with the goal of maintaining both local
detailed features and high-level context information. This
results in more reliable predictions on multi-scale text in-
stances. The size of the top layer is 1

4 of the input image.
Text detection This branch is similar to that of [43],

where a multi-task prediction is implemented at each spa-



Figure 4: Our proposed sub-net structure for recognition
branch, which provides guidance during the decoding pro-
cess by using character spatial information as supervision.

tial location on the top convolutional maps, by adopting
an Intersection over Union (IoU) loss described in [40]. It
contains two sub-branches on the top convolutional layer
designed for joint text/non-text classification and multi-
orientation bounding boxes regression. The first sub-branch
returns a classification map with an equal spatial size of
the top feature maps, indicating the predicted text/non-text
probabilities using a softmax function. The second sub-
branch outputs five localization maps with the same spatial
size, which estimate five parameters for each bounding box
with arbitrary orientation at each spatial location of text re-
gions. The five parameters represent the distances of the
current point to the top, bottom, left and right sides of an
associated bounding box, together with its inclined orienta-
tion. With these configurations, the detection branch is able
to predict a quadrilateral of arbitrary orientation for each
text instance. The feature of the detected quadrilateral re-
gion is then feed into the RNN branch for word recognition
via a text-alignment layer which is described below.

3.1. Text-Alignment Layer

We create a new recurrent branch for word recognition,
where a text-alignment layer is proposed to precisely com-
pute fixed-size convolutional features from a quadrilateral
region of arbitrary size. The text-alignment layer is ex-
tended from RoI pooling [5] which is widely used for gen-
eral objects detection. The RoI pooling computes a fixed-
size convolutional features (e.g., 7 × 7) from a rectangle
region of arbitrary size by performing quantization opera-
tion. It can be integrated into the convolutional layers for
in-network region cropping, which is a key component for
training an end-to-end framework. However, directly apply-
ing the RoI pooling to a text region will lead to a significant
performance drop in word recognition due to the issue of
misalignment. Reasons are described below.

Firstly, unlike object detection and classification where
the RoI pooling computes global features of a RoI region for
discriminating an object, word recognition requires more
detailed and accurate local features and spatial information
for predicting each character sequentially. As pointed out

in [7], the RoI pooling performs quantizations which in-
evitably introduce misalignments between the original RoI
region and the extracted features. Such misalignments have
a significant negative effect on predicting characters, partic-
ularly on some small-scale ones such as ‘i’, ‘l’.

Secondly, RoI pooling was designed for a rectangle re-
gion which is only capable of localizing horizontal in-
stances. It will make larger misalignments when applied
to multi-orientation text instances. Furthermore, a large
amount of background information and irrelevant texts are
easily encoded when a rectangle RoI region is applied to a
highly inclined text instance, as shown in Figure 3. This
severely reduces the performance on the RNN decoding
process for recognizing sequential characters.

Recent Mask R-CNN considers explicit per-pixel spatial
correspondence by introducing RoIAlign pooling [7]. This
inspires current work that develops a new text-alignment
layer tailored for text instance which is a quadrilateral shape
with arbitrary orientation. It provides strong word-level
alignment with accurate per-pixel correspondence, which is
of critical importance to extract exact text information from
the convolutional maps, as shown in Figure 3.

Specifically, given a quadrilateral region, we first build a
sampling grid with size of h × w on the top convolutional
maps. The sampled points are generated with equidistant
interval within the region, and the feature vector (vp) for a
sampled point (p) at spatial location (px, py), is calculated
via a bilinear sampling [7] as follows,

vp =

4∑
i=1

vpi ∗ g(px, pix) ∗ g(py, piy) (1)

where vpi refers to four surrounding points of point p,
g(m,n) is the bilinear interpolation function and pix and
piy refer to the coordinates of point pi. As presented in [7],
an appealing property of the bilinear sampling is that gradi-
ents of the sampled points can be back-propagated through
the networks, by using Eq. 2.

∂grad

∂vpi
=
∑

g(px, pix) ∗ g(py, piy) (2)

Grid sampling, by generating a fixed number of sam-
pling points (e.g., w = 64, h = 8 in our experiments), pro-
vides an efficient way to compute fixed-size features from a
quadrilateral region with arbitrary size and orientation. The
bilinear sampling allows for exacting per-pixel alignment,
successfully avoiding the quantization factor.

3.2. Word Recognition with Character Attention

The word recognition module is built on the text-
alignment layer, as shown in Figure 2. Details of this mod-
ule is presented in Figure 4, where the input is fixed-size
convolutional features output from the text-align pooling
layer with size of w × h × C. The convolutional features



Figure 5: A comparison of the proposed method with tradi-
tional attention LSTM. The heat map indicates the focusing
location at each time step.

are fed into multiple inception modules and generate a se-
quence of feature vectors, e.g., 64×C-dimensional features,
as shown in Figure 4. In the next part, we will briefly in-
troduce the attention mechanism and three strategies to en-
hance attention alignment.

3.2.1 Attention Mechanism

Recently, attention mechanism has been developed for word
recognition [21, 1], where an implicit attention is learned
automatically to enhance deep features in the decoding pro-
cess. In the encoding process, a bi-direction LSTM layer is
utilized to encode the sequential vectors. It outputs hidden
states {he1, he2, ..., hew} of the same number, which encode
strong sequential context features from both past and future
information. Unlike previous work [31, 9] which decode a
character (including a non-character label) using each hid-
den state, the attention mechanism introduces a new decod-
ing process where an attention weights (αt ∈ Rw) is learned
automatically at each decoding iteration, and the decoder
predicts a character label (yt) by using this attention vector,

yt = Decoder(hdt , gt, yt−1) (3)

where hdt is the hidden state vector of the decoder at time t,
computed by:

hdt = f(yt−1, h
d
t−1, gt) (4)

gt is the context vector, which is calculated as a weighted
sum of the input sequence: gt =

∑w
j=1 αt,jh

e
j . The decoder

is ended until it encounters an end-of-sequence (EOS). The
attention vector is calculated by αt,j = softmax(et,j),
where et,j = z(hdt−1, h

e
j) is an alignment factor measur-

ing matching similarity between the hidden state and en-
coding features hej . However, these attention vectors are
learned automatically in the training process without an ex-
plicit guidance, giving rise to misalignment problem which
severely reduces recognition performance, as shown in Fig-
ure 5. To address this problem, we propose new attention
alignment and enhancement methods that explicitly encode
strong attention of each character.

3.2.2 Attention Alignment and Enhancement
We introduce a new method which enhance the attention
of characters in word recognition. We develop character-
alignment mechanism that explicitly encodes strong char-
acter information, together with a mask supervision task
which provides meaningful local details and spatial infor-
mation of character for model learning. Besides, an at-
tention position embedding is also presented. It identifies
the most significant spot from the input sequence which
further enhances the corresponding text features in infer-
ence. These technical improvements are integrated seam-
lessly into a unified framework that is end-to-end trainable.
Details of each module are described as follows.

Attention alignment To deal with misalignment issue
raised by existing implicit attention models, we propose an
attention alignment which explicitly encodes spatial infor-
mation of characters, by introducing an additional loss as
supervision.

Specifically, assuming that pt,1, pt,2, ..., pt,w are central
points in each column of the sampling grid. At t-th time
step, these central points can be calculated by Eq. 5,

δt =

w∑
j=1

αt,j × pt,j (5)

Ideally, δt should be close to the center of the current char-
acter, yt. Without supervision, it is likely to result in mis-
alignment and therefore incorrect sequence labels. Intu-
itively, we can construct a loss function (Eq. 6) to describe
whether the attention points is focusing on the right place.

`align =

T∑
t=0

∥∥∥∥ δt − kt0.5 ∗ w̄t

∥∥∥∥2 (6)

where kt is ground truth (GT) coordinates, and w̄t is the GT
width of current character, yt. Both of them are projected
onto the axis of text orientation. T is the number of char-
acters in a sequence. Notice that the distance between the
prediction and GT should be normalized by character width,
which we found is useful for model convergence.

Character mask To further enhance character attention,
we introduce another additional supervision by leveraging
character mask, which provides more meaningful informa-
tion, including both local details and spatial location of a
character. A set of binary masks are generated, with the
same spatial size of the last convolutional maps. The num-
ber of the masks is equal to the number of character labels.
A softmax loss function is applied at each spatial location,
which is referred as mask loss `mask. This explicitly en-
coding strong detailed information of characters into the at-
tention module. Both `mask and `align losses are optional
during the training process, and can be ignored on those im-
ages where character level annotations are not provided.



Position embedding Position embedding was first intro-
duced in [36], aiming to make the model ‘location aware’ by
encoding a one-hot coordinate vector. This is equivalent to
adding a varying bias terms. It is difficult to directly apply it
to our task, as the size of the feature maps changes accord-
ing to the size of input image. Instead, we generate a one-
hot vector from the attention vector, uk = arg minj αt,j ,
which is a fixed-size binary vector (e.g., 64-D). Then, we
directly concatenate the one-hot vector with the context vec-
tor (gt), which forms a new feature representation with ad-
ditional one-hot attention information. Then the decoder
computed in Eq. 3 can be modified as,

yt = Decoder(hdt , gt, yt−1, ut) (7)

Finally, by integrating all these modules into an end-to-
end model, we obtains an overall loss function including
four components,

L = `loc + `word + λ1`align + λ2`mask (8)

where `word is a softmax loss for word recognition, `loc is
the loss function for text instance detection, and λ1 and λ2
are corresponding loss weights (both are set to 0.1).

3.3. Training Strategy

Training our model in an end-to-end manner is challeng-
ing due to a number of difficulties. First, largely different
nature of them, e.g., significant differences in learning dif-
ficulties and convergence rates. Second, the extremely un-
balanced distribution of image data. Our methods require
character-level bounding boxes for generating character co-
ordinates and masks. These detailed character annotations
are not provided in the standard benchmarks, such as the IC-
DAR2013 [20] and ICDAR2015 [19]. Although Gupta et
al. [6] developed a fast and scalable engine to generate
synthetic images of text, providing both word-level and
character-level informations, there is still a large gap be-
tween realistic and synthesized images, making the trained
model difficult to generalize well to real-world images.

We fill this gap by developing a principled training strat-
egy which includes multiple steps. It is able to train mul-
tiple tasks collaboratively in our single model, allowing for
excellent generalization capability from the synthesized im-
ages to real-world data.

Step One: We randomly select 600k images from the
800k synthetic images. Word recognition task is firstly
trained by fixing the detection branch. We provide the
ground truth bounding boxes of word instances to the text-
align layer. Three losses: `word, `align and `mask are com-
puted. The training process takes 120k iterations with a
learning rate 2× 10−3.

Step Two: For the next 80k iterations, we open the de-
tection branch, but still use the GT bounding boxes for the
text-align layer, as the detector performs poorly at first,

Figure 6: A comparison of detection performance between
joint training (Top) and separate training (Bottom). Joint
training makes it more robust to find out text regions as
two tasks are highly correlated, where detection can benefit
from training of recognition.

roi pooling? roi
alignment?

text
alignment? supervision? position

embedding? Accuracy (%)

X × × × × 60.7
× X × × × 61.9
× × X × × 67.6
× × X X × 68.8
× × X × X 68.2
× × X X X 69.5

Table 1: Ablations for the proposed method. We test our
model on ICDAR2015. The detection part is replaced with
ground truth for fair comparison.

which will be harmful to the already trained recognition
branch. The learning rate is set to 2 × 10−4. During the
next 20k iterations, sampling grid is generated from detec-
tion results. The model is trained end-to-end in this stage.

Step Three: About 3,000 real-world images from the
ICDAR 2013 [20], ICDAR 2015 [19] and Multi-lingual1

datasets are utilized in the next 60k iterations. To enhance
the generalization ability, data augmentation is employed.
We re-scale the images by keeping the aspect ratio un-
changed, followed by random rotation ranging from −20◦

to 20◦, and random cropping 800×800 patches for training.
To utilize the character-level supervision, we set the batch
size to 4, where an image from the synthetic dataset is in-
cluded. The learning rate remained at 2× 10−4. The whole
system is implemented by using Caffe [18].

4. Experiments
In this section, we first briefly introduce the datasets

we use and the evaluation protocols, followed by thorough
comparison of the proposed method with the state-of-the-art
along with comprehensive ablation experiments.

Datasets The ICDAR2013 dataset focuses more on hor-
izontal text instances, which contains 229 images for train-
ing and 233 images for testing with word-level annotation.

The ICDAR2015 dataset is collected by Google glasses,
which has 1,000 images for training and 500 images for

1 http://rrc.cvc.uab.es/?ch=8&com=introduction

http://rrc.cvc.uab.es/?ch=8&com=introduction


IC
D

A
R

20
13

Method Year Word-Spotting End-to-end
Strong Weak Generic Strong Weak Generic

Deep2Text II+ [39] 2014 0.85 0.83 0.79 0.82 0.79 0.77

Jaderberg et al. [16] 2015 0.90 − 0.76 0.86 − −
FCRNall+multi-filt [6] 2016 − − 0.85 − − −

TextBoxes [24] 2017 0.94 0.92 0.86 0.92 0.90 0.84

YunosRobot1.0 2017 0.87 − 0.87 0.84 − 0.84

Li et al. [23] 2017 0.94 0.92 0.88 0.91 0.90 0.85

Deep text spotter [2] 2017 0.92 0.89 0.81 0.89 0.86 0.77

Proposed Method - 0.93 0.92 0.87 0.91 0.89 0.86

IC
D

A
R

20
15

Method Year Word-Spotting End-to-end
Strong Weak Generic Strong Weak Generic

Stradvision [19] 2013 0.46 − − 0.44 − −
TextSpotter [28] 2016 0.37 0.21 0.16 0.35 0.20 0.16

Deep TextSpotter [2] 2017 0.58 0.53 0.51 0.54 0.51 0.47

Proposed Method - 0.85 0.80 0.65 0.82 0.77 0.63
Table 2: Comparisons of the end-to-end task with state-of-the-art on ICDAR2013 and ICDAR2015. The results are reported
with three different level lexicons, namely, strong, weak and generic.

testing. Different from previous datasets which are well-
captured horizontal English text, it contains texts with more
scales, blurring, and orientation.

The multi-lingual scene text dataset2 is built for devel-
oping script-robust text detection methods, which contains
about 9,000 images with 9 different kinds of transcriptions.
We choose about 2000 of them, identified with ‘Latin’, to
train the end-to-end task.

4.1. Evaluation Protocols

Detection. There are two standard protocols for evalu-
ating detection results: DetEval and ICDAR2013 standard
[20]. The main difference between the two protocols is that
the latter one stresses more on individual words while the
former one can achieve a higher score even when many
words are connected into a line.

End-to-end for Detection and Recognition. The cri-
terion has been used in competition: the evaluation of the
results will be based on a single IoU criterion, with a thresh-
old of 50%, and correct transcription. Besides, three dictio-
naries are also provided for testing reference, i.e., ‘strong’,
‘weak’ and ‘generic’. ‘Strong’ lexicon has 100 entries for
every image, and most words appeared in that image are in-
cluded. ‘Weak’ lexicon contains all the words that appeared
in the testing dataset. ‘Generic’ lexicon has 90K words.
One thing should be noticed that the length of all the words
in dictionaries are greater than 3 with symbols and numbers
excluded. There are two protocols for evaluation: end-to-
end and word-spotting. End-to-end needs to recognize all
the words precisely, no matter whether the dictionary con-
tains these strings. On the other hand, word-spotting only
examines whether the words in the dictionary appear in im-
ages, making it less strict than end-to-end for ignoring sym-

2http://rrc.cvc.uab.es/?ch=8&com=introduction

Figure 7: Examples of textspotting results of the proposed
method on ICDAR2013 and ICDAR2015.

bols, numbers and words whose length is less than 3.

4.2. Text-alignment vs. RoI Pooling

We compare the proposed text-alignment with standard
RoI pooling. To make fair comparison, the detection part is
fixed with ground truth and recognition performance is eval-
uated on ICDAR2015. Due to encoding background infor-
mation and irrelevant text instances, RoI pooling results in
mis-alignment and inaccurate representation of feature se-
quences. As shown in Table 1, the accuracy of recognition

http://rrc.cvc.uab.es/?ch=8&com=introduction 


ICDAR2013 dataset ICDAR2015 dataset

Method Year ICDAR standard DetEval Method Year R P F
R P F R P F

TextFlow [34] 2015 0.76 0.85 0.80 - - - StradVision2 2015 0.37 0.77 0.50
Text-CNN [11] 2016 0.73 0.93 0.82 0.76 0.93 0.84 MCLAB FCN [42] 2016 0.43 0.71 0.54
FCRN [6] 2016 0.76 0.94 0.84 0.76 0.92 0.83 EAST [43] 2016 0.78 0.83 0.81
CTPN [35] 2016 0.73 0.93 0.82 0.83 0.93 0.88 CTPN [35] 2016 0.52 0.74 0.61
He et al. [8] 2017 0.86 0.88 0.87 0.86 0.89 0.88 He et al. [8] 2017 0.73 0.80 0.77
He et al. [12] 2017 0.81 0.92 0.86 - - - He et al. [12] 2017 0.82 0.80 0.81

Proposed wo recog - 0.87 0.88 0.88 0.87 0.88 0.88 Proposed wo recog - 0.83 0.84 0.83
Proposed - 0.88 0.91 0.90 0.89 0.91 0.90 Proposed - 0.86 0.87 0.87

Table 3: Comparison of detection results with the state-of-the-art methods on ICDAR2013 and ICDAR2015. The results are
reported Recall (R), Precision (P) and F-measure (F). For fair comparison, the detection performance is achieved without
referring to recognition results.

with the proposed method surpasses standard RoI pooling
by a large margin, boosting from 60.7% to 67.6%. All re-
sults are evaluated without referring to any lexicon in one
single scale.

4.3. Character Attention

Different from traditional attention-based recognition
models, where attention weights are automatically learned,
we propose a method to regulate the learning process to pre-
vent mis-alignment in the decoding stage. To demonstrate
the effectiveness of our proposed method, we conduct two
experiments with the detection part fixed. The first one is on
VGG synthetic data [6], where we select 600K for training
and 200K for testing. The accuracies of character-level and
word-level are evaluated. The method with supervision has
an accuracy of 0.95 and 0.88 on two protocols, comparing
to 0.93 and 0.85 on traditional attention-based method. The
other experiment is tested on ICDAR2015 dataset. As is
shown in Figure 5, the proposed method gives more accu-
rate character localization than attentional LSTM, leading
to about 2% boosting in accuracy.

4.4. Joint Training vs. Separate Models

We believe that text detection and recognition are not two
standalone problems, but highly correlated where each task
can benefit from the training of the other. Joint training of
two tasks in a unified framework avoids error accumulations
among cascade models. As shown in Table 3, the task of
recognition greatly enhances the performance of detection
in terms of recall and precision, leading to a 3% improve-
ment on F-Measure (note: the detection performances are
achieved without referring to recognition results). As can
be seen from Figure 6, joint training makes it more robust
to text-like background and complicated text instances. We
also provide a comparison with other detection approaches,
indicating that our method achieved new state-of-the-art
performance on ICDAR2013 and ICDAR2015 datasets.

4.5. Proposed Method vs. State-of-the-art Methods

End-to-end results on some extremely challenging im-
ages are presented in Figure 7. As can be seen in Figure 7,
our method can correctly detect and recognize both small
text instances and those with large inclined angles.

ICDAR2015. The effectiveness to multi-orientation
texts is testified on ICDAR2015 dataset. Our method
achieved an F-measure of 0.82, 0.77 and 0.63 respectively
in terms of referencing ‘Strong’, ‘Weak’ and ‘Generic’ lex-
icon under the end-to-end protocol, which surpasses the
state-of-the-art performance of 0.54, 0.77 and 0.63 by a
large margin.

ICDAR2013. The dataset is well-captured for horizon-
tal text instances. The result is shown in Table 2, which is
comparable to the state-of-the-art result [23].

5. Conclusion
In this paper we have presented a novel framework that

combines detection and recognition in a unified network
with sharable features.

We have proposed a novel text-alignment layer that can
extract precise sequence information without encoding ir-
relevant background or texts. We also improve the accuracy
of traditional LSTM by enhancing the attention of charac-
ters during the decoding process. Our proposed method
achieves state-of-the-art performance on two open bench-
marks: ICDAR2013 and ICDAR2015 and outperforms pre-
vious best methods by a large margin.
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