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Abstract

We propose drl-RPN, a deep reinforcement learning-
based visual recognition model consisting of a sequential
region proposal network (RPN) and an object detector. In
contrast to typical RPNs, where candidate object regions
(RoIs) are selected greedily via class-agnostic NMS, drl-
RPN optimizes an objective closer to the final detection
task. This is achieved by replacing the greedy RoI selec-
tion process with a sequential attention mechanism which is
trained via deep reinforcement learning (RL). Our model is
capable of accumulating class-specific evidence over time,
potentially affecting subsequent proposals and classifica-
tion scores, and we show that such context integration sig-
nificantly boosts detection accuracy. Moreover, drl-RPN
automatically decides when to stop the search process and
has the benefit of being able to jointly learn the parameters
of the policy and the detector, both represented as deep net-
works. Our model can further learn to search over a wide
range of exploration-accuracy trade-offs making it possi-
ble to specify or adapt the exploration extent at test time.
The resulting search trajectories are image- and category-
dependent, yet rely only on a single policy over all ob-
ject categories. Results on the MS COCO and PASCAL
VOC challenges show that our approach outperforms es-
tablished, typical state-of-the-art object detection pipelines.

1. Introduction
Visual object detection focuses on localizing each in-

stance within a pre-defined set of object categories in an
image, most commonly by estimating bounding boxes with
associated confidence values. Accuracy on this task has in-
creased dramatically over the last years [11, 14, 42], reap-
ing the benefits of increasingly deep and expressive fea-
ture extractors [21, 28, 44, 47]. Several contemporary state-
of-the-art detectors [11, 15, 42] follow a two-step process.
First bottom-up region proposals are obtained, either from
an internal region proposal network (RPN) [42], trained

alongside the detection network, or from an external one
[2, 6, 39, 48, 52]. In the second step proposals are classified
and their localization accuracy may be fine-tuned.

There has recently been an increased interest in active,
sequential search methods [5, 9, 17, 19, 22, 23, 27, 30, 33,
35, 37, 50]. This class of approaches, to which our model
belongs, seek to only inspect parts of each image sequen-
tially. In this work we aim to make active recognition mod-
els more flexible as characterized by i) a finely-tuned active
search process where decisions of where to look next and
when to stop searching are image- and category-dependent;
ii) context information is aggregated as search proceeds and
is used in decision making and to boost detection accuracy;
iii) the detector and search policy parameters are tightly
linked into a single deep RL-based optimization problem
where they are estimated jointly; iv) the search process can
be adapted to a variety of exploration-accuracy trade-offs
during inference; and v) learning to search is only weakly
supervised, as we indicate the model what success means
without telling it exactly how to achieve it – there is no ap-
prenticeship learning or trajectory demonstration.

Methodologically we propose drl-RPN, a sequential re-
gion proposal network combining an RL-based top-down
search strategy, implemented as a convolutional gated re-
current unit, and a two-stage bottom-up object detector. No-
tably, our model is used for class-agnostic proposal gener-
ation but leverages class-specific information from earlier
time-steps when proposing subsequent regions (RoIs). This
context aggregation is also used to increase detection ac-
curacy. Our model offers the flexibility of jointly training
the policy and detector, both represented as deep networks,
which we perform in alternation in the framework of deep
RL. We emphasize that drl-RPN can be used, in principle,
in conjunction with any exhaustive two-stage state-of-the-
art object detector operating on a set of object proposals,
such as Faster R-CNN (Fr R-CNN) [42] or R-FCN [11].

2. Related Work
Among the first to use deep feature extractors for object

detection was [43], whereas [14] combined the power of



smaller and more plausible region proposal sets with such
deep architectures. This was followed up in [11, 15, 20, 42]
with impressive results. There is also a recent trend towards
solutions where bounding box and classification predictions
are produced in one shot [32,40,41]. Such methods increase
detection speed sometimes at the cost of a lower accuracy.

The general detection pipeline above is characterized by
its exhaustive, non-sequential nature: even if the set of
windows to classify is reduced a-priori, all windows are
still classified simultaneously and independently of each
other. In contrast, sequential methods for object detec-
tion can be in principle designed to accumulate evidence
over time to potentially improve accuracy at the given
task. Such approaches can coarsely be divided as RL-based
[5,9,19,22,23,27,30,35,37] and non-RL-based [17,33,50].
Our drl-RPN model is of the former category.

Orthogonally from us, [23] propose anytime models
where a detector can be stopped asynchronously during in-
ference: multi-class models are scheduled sequentially and
the order of exhaustively applying sliding window detec-
tors is optimized, potentially without running detectors for
some classes. Our drl-RPN is also a multi-class detector but
instead avoids searching all image locations. In [5] a class-
specific agent observes the entire image, then performs a
sequence of bounding box transformations until tightly en-
closing the object. Results were improved in [27] where
a joint multi-agent Q-learning system [38] is used and sub-
agents cooperate to find several objects. In contrast, [35] use
policy gradients to train a ’saccade-and-fixate’ search pol-
icy over pre-computed RoIs that automatically determines
when to stop searching. The formulation in [35] is however
one-versus-all, not entirely deep, and is primarily designed
for single instance detection. On the contrary, the deep
model we propose detects multiple instances and categories,
circumventing the need to train multiple search policies as
in [5,35]. Fast R-CNN [15] is coupled with a tree-structured
search strategy in [22] and results exceed or match the basic
Fast R-CNN. Differently from us however, [22] manually
specify the number of proposals during inference (hence
stopping is not automatic but preset) and the detector is not
refined jointly with the search policy.

Notable non-RL-based active search approaches include
[17, 33, 50]. A soft attention mechanism is learned in [50]
where directions for the next step are predicted, akin to a
gradual shift in attention; [17] apply a search strategy for
partial image exploration guided by statistical relations be-
tween regions; and [33] use adjacency and zoom prediction
to focus processing on sub-regions likely to contain objects.

3. Two-Step Proposal-based Detection
We now briefly review those standard two-step proposal-

based object detection components which will form some of
the building blocks of our sequential drl-RPN model. Such

detectors take as input an image of size h0 × w0 × 3 and
process it through a base network. We use the same VGG-
16 base network [44] as in [42]. The base network outputs
the base feature map with dimension h × w × d, where h
and w depend on h0 and w0 and d = 512 for VGG-16. The
network then separates into two branches: RoI generation
followed by RoI pooling and classification.

A region proposal network (RPN) is used for generat-
ing RoIs, where a d-dimensional feature vector is produced
at each spatial location on the base feature map and sent
through two class-agnostic layers: box-regression (reg) and
box-classification (cls). To increase object recall several
proposals are predicted relative to k anchor boxes (we use
the same k = 9 anchors as [42]). The last task of the RPN is
to reduce the number of RoIs forwarded to RoI pooling and
classification. This is performed by class-agnostic NMS
based on the objectness scores in cls. All RoIs forwarded by
the RPN are converted to small spatially fixed-sized feature
maps by means of RoI max pooling and are subsequently
sent to two fully-connected layers performing class proba-
bility and bounding box offset predictions.

4. Sequential Region Proposal Network
We now present the architecture of drl-RPN, consisting

of the object detector and the policy πθ , see Fig. 1. For
the detector we use a publicly available TensorFlow [1] im-
plementation1 of Fr R-CNN on top of which we implement
our drl-RPN model. In principle however, drl-RPN can be
integrated with any RPN-based detector, such as [11]. The
search policy is based on a convolutional gated recurrent
unit (Conv-GRU) which replaces fully-connected compo-
nents of the GRU [10] with convolutions.

The input to the Conv-GRU at time t is the RL base state
volume St (see §4.1) and the previous hidden state Ht−1.
The output is a two-channel action volume At. The spa-
tial extent of all inputs and outputs are h × w. We denote
by ∗ the convolution operator and � denotes element-wise
multiplication. Weights and biases are denotedW and b re-
spectively, and σ [·] is the logistic sigmoid function. Below
are the equations of our Conv-GRU agent:

Ot = σ [W so ∗ St +W ho ∗Ht−1 + bo] (1)

H̃t = W sh ∗ St +W hh ∗ (Ot �Ht−1) + bh (2)
Zt = σ [W sz ∗ St +W hz ∗Ht−1 + bz] (3)

Ht = (1−Zt)�Ht−1 +Zt � tanh[H̃t] (4)

Ãt = relu[W hã ∗Ht + bã] (5)

At = tanh[W ãa ∗ Ãt + ba] (6)

The outputAt of the Conv-GRU corresponds to two pos-
sible actions, see §4.1. Let θ denote all parameters of the

1 https://github.com/smallcorgi/Faster-RCNN_TF

https://github.com/smallcorgi/Faster-RCNN_TF
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Figure 1: Overview of our proposed drl-RPN model. The base processing is illustrated to the left, showing how the initial state
S0 is formed. Each time-step t, the agent decides whether to terminate search based on its stochastic policy πθ(at|st), c.f. (1)
- (8). As long as search has not terminated, a fixate action aft is issued and a new location zt is visited; the RoI observation
volume Rt is updated in an area centered at zt. All corresponding RoIs are sent to the RoI pooling module followed by
classification and class-specific bounding box offset predictions. The class-specific probability vectors are inserted to the
history volume V 4

t which is merged with the RL base state volume St. Based on the new state, a new action is taken at
time-step t+ 1 and the process is repeated until the done action adt is issued, then all the selected predictions throughout the
trajectory are collected. The trainable parts of the network (including the feature extraction, the classification and regression
model, and the policy) are highlighted in gray. See also Fig. 5 for some visualizations of drl-RPN search strategies.

system where drl-RPN is used, which can be decomposed
as θbase, θdet and θpol. Here θbase are the parameters of the
base network and the original RPN; θdet are the parameters
of the classifier and bounding box offset predictor; and θpol
are the search policy parameters, c.f. (1) - (8). The joint
training of θ = [θbase;θdet;θpol] is described in §5.

4.1. States and Actions

The state at time t is the tuple st = (Rt,St,Ht),
where Rt ∈ {0, 1}h×w×k is the RoI observation vol-
ume, St ∈ Rh×w×(d+2k+N+1) is the base state and
Ht ∈ Rh×w×300 is the hidden state of the Conv-GRU.
Here N is the number of object categories considered.
There are two types of actions, corresponding to one chan-
nel each ofAt in (6): a fixate action aft and the done action
adt . The done action is binary, where adt = 1 corresponds
to terminating search. A fixate action aft = zt is issued if
adt = 0, where zt is the (h × w)-plane coordinate of the
next fixation. We next define Rt and explain how it relates
to fixate actions aft , after which we present St and explain
its connection to Rt. Finally, we describe how actions are
sampled using our parametric stochastic policy πθ .

RoI observation volumeRt: drl-RPN maintains a bi-
nary volume Rt of size h × w × k in which the (i, j, l):th
entry is 1 if and only if the corresponding RoI is part of
the region proposal set forwarded to the RoI pooling /
classification part of the network. We initialize Rt as an
all-zeros volume. After a fixate action aft , a part of Rt

in a neighbourhood of the fixation location zt is updated.

This neighbourhood is a rectangular area centered at zt,
in which the side lengths hrect and wrect are a fraction
each of h and w, respectively (we set hrect = h/4 and
wrect = w/4). We set all entries of Rt inside this rectangle
to 1 to indicate that these RoIs have been selected. Note
that we here restrict our algorithm to determine at what
spatial locations to sample RoIs in the (h × w)-plane, so
all k anchor candidates are used per spatial location.

Base state volume St: The state St consists of V 1
t ∈

Rh×w×d, V 2
t ,V

3
t ∈ Rh×w×k and V 4

t ∈ Rh×w×(N+1).
We set V 1

0 to the base feature map (conv5_3) and V 2
0 to

the objectness layers (in cls) of the RPN. The reg volume of
the RPN is used for V 3

t , where V 3
0 is set to the magnitude

of the [0, 1]-normalized offsets [∆x1,∆y1,∆x2,∆y2]. We
use Rt to update these volumes, setting the corresponding
locations inV 1

t , V 2
t andV 3

t to−1, meaning those locations
have been inspected. The volume V 4

t is a class-specific
history of what has been observed so far. We set V 4

0 = 0.
After a fixation the selected RoIs are sent to class-specific
predictors. Then local class-specific NMS is applied to the
classified RoIs to get the most salient information at that
location. As we have final bounding box predictions for the
surviving RoIs, we map them to certain spatial locations
of V 4

t . The input image is divided into L × L bins of size
≈ h0/L × w0/L to get a coarse representation of where
the agent has looked (we set L = 3) by assigning each
NMS-survivor to the bin containing its center coordinates.
The history V 4

t at these locations is updated with those
class probability vectors as a running average.



We use 3×3 convolutional kernels for the base input V 1
t

since the effective receptive field is already wide given that
we are operating on deep feature maps. For the auxiliary
input V 2

t - V 4
t we apply larger 9× 9 kernels.

Stochastic policy πθ(at|st): We now describe how At in

(6) is used to select actions. LetAd
t andAf

t denote the first
(done) and second (fixate) layers of At, respectively. The
done layer Ad

t is bilinearly re-sized to 25× 25 and stacked
as a vector dt ∈ R625. The probability of terminating in
state st is then given by:

πθ(adt = 1|st) = σ
[
w>d dt + t

]
(7)

where wd is a trainable weight vector. The fixation layer
Af
t is transformed to a probability map Â

f

t by applying
a spatial softmax to Af

t . The probability of fixating loca-

tion zt = (i, j) given that the agent did not stop is Â
f

t [zt],

where Â
f

t [zt] is the (i, j):th entry of Â
f

t . The probability
of fixating location zt in state st is thus given by:

πθ

(
adt = 0, aft = zt|st

)
=
(
1− σ

[
w>d dt + t

])
Â
f

t [zt]

(8)

4.2. Contextual Class Probability Adjustment

Typical detection pipelines classify all regions simulta-
neously and independently of each another, which is simple
and efficient but limits information exchange between re-
gions. We argue for an alternative where the search process
and the classification of candidate proposals are unified into
a single system, creating synergies between both tasks. We
already explained how classified regions are used to guide
the search process and now augment drl-RPN to use con-
text accumulation also to perform a posterior update of its
detection probabilities based on the search trajectory.2

The augmented model uses a summary of all object in-
stances discovered during search to refine the final class
probability scores for these detections. For this we use the
history aggregation described in §4.1. Given the up to L2

history vectors, we stack them as anL2(N+1)-dimensional
vector xhist and represent non-observed regions by zeros
in xhist. The final classification layer softmax(Wx + b)
is replaced with softmax[Wx + b + fhist(xhist)] to ac-
count for the search trajectory. We use a one-layer activa-
tion fhist(xhist) = tanh(W histxhist + bhist).

5. Training
Training the full model (detector and policy) proceeds in

alternation. Recall that we distinguish between three sets
2We update detections after terminating search which gives also early

detections an opportunity of being adjusted. In principle however, one
could update detections as search proceeds based only on past detections.

of parameters: θ = [θbase;θdet;θpol], where [θbase;θdet]
are the parameters of the original Fr R-CNN. We use a pre-
trained network3 as initialization of [θbase;θdet]. Xavier
initialization [16] is used for the search policy parameters
θpol. We next explain how to learn θpol via deep RL; the
joint training of the full system is described in §5.3.

5.1. Reward Signal

There are two criteria which the agent should balance.
First, the chosen RoIs should yield high object instance
overlap and second, the number of RoIs should be as low
as possible to reduce the number of false positives and to
maintain a manageable processing time.

Fixate action reward: To balance the above trade-off
we give a small negative reward −β for each fixate action
(we set β = 0.075), but the agent also receives a positive
reward for fixations yielding increased intersection-over-
union (IoU) with any ground-truth instances gi for the
current image. For each object instance gi we keep track
of the so-far maximum IoU-yielding4 RoIs selected by the
agent at previous time-steps 0, . . . , t−1. Let this be denoted
IoU i and note that IoU i = 0 at t = 0. When t ≥ 1 we
compute the maximum IoU for all ground-truth instances gi
given by RoIs from that particular time-step, denoted IoU it ,
and check if IoU it > IoU i ≥ τ , where we set τ = 0.5 in
accordance with the positive threshold for PASCAL VOC.
For each ground-truth gi satisfying this condition we give
the positive reward (IoU it − IoU i)/IoU imax after which
we set IoU i = IoU it . Here IoU imax is the maximum IoU
that gi has with any of all hwk possible regions. Hence the
fixation reward rft at time t is given by

rft = −β +
∑
i

1
[
gi: IoU

i
t > IoU i ≥ τ

] IoU it − IoU i
IoU imax

(9)
Done action reward: Upon termination the agent receives a
final reward reflecting the quality of the search trajectory:

rdt =
∑
i

1
[
gi: IoU

i
max ≥ τ

] IoU i − IoU imax
IoU imax

(10)

Here IoU i is the maximum IoU-yielding RoI (with instance
gi) selected by the agent in the entire trajectory. Note that
(10) evaluates to zero if all gi are maximally covered and
otherwise becomes increasingly negative depending on how
severely the ground-truths were missed.

3Using the same settings as in [42], including an additional anchor scale
of 642 pixels when training on MS COCO.

4This refers to IoU after class-specific bounding box adjustments to
ensure that the objective lies as close as possible to the final detection task.



5.1.1 Separation of Rewards

Although drl-RPN is a single-agent system taking one ac-
tion per time-step via the policy in (7) - (8), it may be
viewed as consisting of two subagents agt_d and agt_f
with some shared and some individual parameters. The
agent agt_d, governed by (7), decides whether to keep
searching, whereas agt_f is governed by (8) and controls
where to look given that agt_d has not terminated search.
We argue that agt_d should not necessarily be rewarded
based on the performance of agt_f. For example, early
in training agt_f may choose poor fixation locations, thus
missing the objects. In a standard reward assignment both
agt_f and agt_d receive negative reward based on the
behaviour of agt_f. However, only agt_f should be pe-
nalized in this situation as it alone is responsible for not
localizing objects despite the opportunity given by agt_d.

Instead of giving the actual fixation reward rft in (9) to
agt_d we define an optimistic corresponding reward as

r̃ft = −β + max
IoU≥τ

IoU − IoU i

IoU imax
(11)

The reward (11) reflects the maximum increase of IoU of
one single ground-truth instance gi attainable by any fixate
action. Note that (11) may not always be optimistic; the true
fixation reward (9) can be higher in images with several ob-
jects (by covering multiple instances in one fixation). Early
in training however, (11) is often higher than (9). Therefore
we give max(rft , r̃

f
t ) as fixation reward to agt_d.

This separation of rewards between agt_d and agt_f
helped drl-RPN find a reasonable termination policy; it oth-
erwise tended to stop the search process too early. Separa-
tion of rewards does not increase computational cost and is
easy to implement, making it a simple adjustment for im-
proving learning efficiency. It is applicable in any RL prob-
lem where actions have similar hierarchical dependencies.

5.1.2 Adaptive Exploration-Accuracy Trade-Off

So far we have described drl-RPN with a fixed exploration
penalty β in training, c.f. (9). After training the explo-
ration extent is hard-coded into the policy parameters. By
treating β as an input we can instead obtain a goal-agnostic
agent whose exploration extent may be specified at test
time. Goal-agnostic agents have also been proposed in dif-
ferent contexts by contemporary work; see e.g. [12, 51].

An adjustment is performed between equations (5) - (6),
where a constant β-valued feature map is appended to Ãt.
In training we define a set of β-values the model is exposed
to and for each trajectory we randomly sample a β from this
set. In testing we simply specify β, which does not neces-
sarily have to be from the set of β-values seen in training.

5.2. Objective Function

To learn the policy parameters we maximize the ex-
pected cumulative reward on the training set, given by
J(θ) = Es∼πθ

[∑|s|
t=1 rt

]
, where s represents a trajectory

of states and actions, sampled by running the model from
the initial state s0 (c.f. §4.1). A sample-based approxima-
tion to the gradient [46] of the objective function J(θ) is
obtained using REINFORCE [49]. We use 50 search trajec-
tories to approximate the true gradient, forming one batch
in our gradient update (one image per batch), and update the
policy parameters via backpropagation using Adam [25].
To increase sample efficiency we use the return normaliza-
tion in [19], where cumulative rewards for each episode are
normalized to mean 0 and variance 1 over the batch. The
maximum trajectory length is set to 12.

5.3. Joint Training of Policy and Detector

As we use one image per batch it is straightforward to
also tune the detector parameters [θbase;θdet]. Once the
policy parameters θpol have been updated for an image
(with [θbase;θdet] frozen5) we fix θpol and produce one
more search trajectory for that image. The RoIs selected
by drl-RPN during this trajectory are used as RoIs in Fr R-
CNN instead of RoIs from the standard RPN, but otherwise
the detector is updated as in [42]. Once the full drl-RPN
model has been trained it is simple to also learn (refine)
the parameters of the posterior class probability predictor in
§4.2. Specifically, we jointly train W , W hist, b and bhist
as for the original Fr R-CNN model, except that drl-RPN
is used for generating RoIs. The remaining parameters are
kept frozen at this stage, although it is possible to alternate.

6. Experiments
We now compare our proposed drl-RPN6 to Fr R-CNN7

on the MS COCO [31] and PASCAL VOC [13] detection
challenges. We report results mainly for models trained
with a fixed exploration penalty β = 0.075; results for the
goal-agnostic model presented in §5.1.2 are found in §6.3.

For PASCAL VOC we repeat the alternating training in
§5.3 for 70k iterations on VOC 07+12 train-val.8 The learn-
ing rate for θpol is initially 2e-5 (4e-6 after 50k itera-
tions) and θdet has corresponding learning rates 2.5e-4
and 2.5e-5. We use the same settings for MS COCO
(trained on COCO 2014 train-val) but alternate for 350k it-
erations and update the learning rate after 250k iterations.

We compare drl-RPN to Fr R-CNN using the standard
5We keep θbase frozen throughout as tuning the base network did not

increase performance.
6Unless otherwise specified we refer by drl-RPN to the model using the

posterior class probability adjustments introduced in §4.2.
7We report results obtained for the implementation we used, which are

often higher than in [42]; this was achieved by training for more iterations.
8For VOC 2012 we include the 2007 test set in training, as typical.



model settings mAP@.5
test-dev

mAP@.75
test-dev

mAP@[.5, .95]
test-dev

mAR@[.5, .95]
test-dev

mAP@.5
test-std

mAP@.75
test-std

mAP@[.5, .95]
test-std

mAR@[.5, .95]
test-std

mAP@.5
voc12-test

mAP@.5
voc07-test

RPN default 42.7 21.4 22.3 32.3 42.7 21.1 22.3 32.3 73.0 75.6

drl-
RPN

ads 43.3 23.0 23.4 32.9 43.3 23.0 23.4 32.9 74.1 76.4
40.9%, 8.1 40.9%, 8.1 40.9%, 8.1 40.9%, 8.1 40.7%, 8.0 40.7%, 8.0 40.7%, 8.0 40.7%, 8.0 37.7%, 7.1 39.9%, 7.6

12-fix 43.6 23.1 23.5 33.3 43.6 23.1 23.5 33.3 74.2 76.4
51.7%, 12 51.7%, 12 51.7%, 12 51.7%, 12 51.6%, 12 51.6%, 12 51.6%, 12 51.6%, 12 50.4%, 12.0 51.1%, 12.0

ads,
np

43.2 22.0 22.8 33.1 43.0 21.9 22.7 33.2 73.7 76.1
40.9%, 8.1 40.9%, 8.1 40.9%, 8.1 40.9%, 8.1 40.7%, 8.0 40.7%, 8.0 40.7%, 8.0 40.7%, 8.0 37.7%, 7.1 39.9%, 7.6

12-fix,
np

43.4 22.2 23.0 33.5 43.3 22.0 22.8 33.5 74.0 76.0
51.7%, 12 51.7%, 12 51.7%, 12 51.7%, 12 51.6%, 12 51.6%, 12 51.6%, 12 51.6%, 12 50.4%, 12.0 51.1%, 12.0

ads,
nh

43.1 21.8 22.6 33.0 42.9 21.7 22.5 33.2 73.6 75.7
39.0%, 7.5 39.0%, 7.5 39.0%, 7.5 39.0%, 7.5 38.9%, 7.5 38.9%, 7.5 38.9%, 7.5 38.9%, 7.5 34.7%, 6.4 37.0%, 7.0

Table 1: Detection results on the MS COCO 2015 test sets, as well as the PASCAL VOC 2012 and 2007 test sets (two
right-most columns). The first row of each drl-RPN modification shows the detection performance (mAP or mAR) and the
second row shows average exploration (% of forwarded RoIs) and average number of fixations per image.
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Figure 2: Ablation results on the PASCAL VOC 2007 test set. Left: Using a constant, preset number of fixations per image
requires almost twice as many fixations per image to reach the same detection accuracy as the adaptively stopping model.
Mid: The mAP of drl-RPN compared to Fr R-CNN is relatively higher in more crowded scenes and the class-specific history
appears more useful in such scenes. Right: The relative performance of drl-RPN compared to Fr R-CNN generally increases
with increased IoU-threshold (c.f. Fig. 4).

RPN and also investigate some variants of drl-RPN. Specifi-
cally, we compare to a model using the class-specific history
only to guide the search process but not for posterior class
probability adjustments (np); to a model completely void
of a class-specific history (nh); and to a model enforcing
12 fixations per image (12-fix). Adaptive stopping mod-
els are denoted (ads).9 For the various drl-RPN models we
also show the average fraction of RoIs forwarded for class-
specific predictions (called exploration, reported in %) and
the average number of fixations per image.

6.1. Results on MS COCO

Results on MS COCO 2015 test-std and test-dev are
shown in Table 1, together with PASCAL VOC 2007 and
2012 results for these models. On MS COCO the mAP of
drl-RPN is 1.1 higher than for Fr R-CNN. Comparing with
the ads-np and ads-nh models, the posterior class probabil-
ity adjustments yield mAP boosts of 0.7 and 0.9, respec-
tively. Enforcing 12 fixations marginally improves mAP
by 0.1, while significantly increasing exploration by 25%.

9Adaptive stopping drl-RPN models are used if not otherwise specified.

Also, drl-RPN increases mean average recall (mAR) by 0.6.
As for PASCAL VOC, drl-RPN beats Fr R-CNN by 1.1 and
0.8 mAP on VOC 2012 and 2007, respectively. The class-
specific history yields 0.5 and 0.7 mAP boosts respectively
on VOC 2012 and 2007. Enforcing 12 fixations leads to
negligible mAP improvements.

Overall, drl-RPN consistently outperforms the baseline
Fr R-CNN model. We also see that the class-specific history
with posterior adjustments yields significantly improved ac-
curacy and that the adaptive stopping condition provides a
drastic reduction in average exploration, yet matches the
mAP of the corresponding 12-fixation policy.

6.2. Results on PASCAL VOC

Table 2 shows results on PASCAL VOC 2007 and 2012.
To show the effect of joint policy-detector training we also
present Fr R-CNN results using the drl-RPN tuned detec-
tor parameters (drl-RPN det). For VOC 2007 drl-RPN-
ads achieves 1.7 mAP above Fr R-CNN. By enforcing 12
fixations drl-RPN more significantly outperforms the Fr R-
CNN baseline by 2.9 mAP; c.f. Fig. 2 (left). Moreover,
both the ads- and 12-fix drl-RPN models achieve signifi-



model settings mAP - 2007 mAP - 2012

RPN
default 73.5 70.4

drl-RPN det 73.6 70.6
all RoIs 74.2 70.7

drl-
RPN

ads — 22.9%, 4.0 75.2 70.8
12-fix — 40.3%, 12.0 76.4 72.2
ads, np — 22.9%, 4.0 74.5 70.4

12-fix, np — 41.7%, 12.0 75.5 71.8
ads, nh — 22.1%, 3.9 74.3 70.1

Table 2: Detection results on the PASCAL VOC 2007 and
2012 test sets. We also show drl-RPN’s average exploration
and average number of fixations per image.
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Figure 3: mAP vs. runtime for evaluated models on the
PASCAL VOC 2007 test set. Fr R-CNN, while fast, offers
very limited tuning of the speed-accuracy trade-off, whereas
drl-RPN can be adapted to a wide range of requirements on
accuracy or speed. See also Fig. 6.

Figure 4: The drl-RPN attention (right) is more object-
centric and less scattered over the image compared to the
standard RPN (mid), resulting in fewer false positives.

cantly higher mAP compared to an exhaustive variant of
Fr R-CNN which forwards all RoIs (without class-agnostic
NMS), so increasing mAP is not merely a matter of de-
tecting more RoIs. The Fr R-CNN results change negli-
gibly when replacing the class-specific detector parameters
to those of the tuned drl-RPN detector.10 Hence, unsurpris-
ingly, it is crucial to perform detector tuning jointly with the

10We also tried drl-RPN without detector tuning, causing an mAP drop
of 2.0, so joint policy-detector tuning is crucial.

policy learning. Moreover, the class-specific history yields
considerably better results (see also §6.3 and Fig. 2 (mid)).
Similar results apply to VOC 2012. The adaptive stopping
drl-RPN-ads beats Fr R-CNN by 0.4 mAP; it also surpasses
the exhaustive ”all RoIs” variant. At 12 fixations drl-RPN
significantly outperforms Fr R-CNN by 1.8 mAP.

Comparing the VOC and COCO results, search trajecto-
ries for VOC are about 50% shorter on average. This is not
surprising given that COCO scenes are significantly more
crowded and complex; indeed, this further shows the bene-
fit of an adaptive search with automatic stopping condition.

In Fig. 2 (left) we show results on VOC 2007 when en-
forcing exactly n fixations per image for n = 1, . . . , 12.
The mAP increases with the number of fixations and sur-
passes drl-RPN-ads for n ≥ 7 and Fr R-CNN for n ≥ 5.
Drawn is also a vertical line corresponding to the mean
number of fixations of drl-RPN-ads (4.0). Comparing to
the model with a preset number of fixations clearly shows
the benefit of the automatic stopping (3.0 mAP difference).

6.3. Ablation Studies

To further investigate our model we evaluate drl-RPN
and Fr R-CNN in a few settings on the VOC 2007 test set.
Some visualizations of drl-RPN search strategies and final
detections are shown in Fig. 5.

Runtime and mAP comparisons: Fig. 3 shows mAP and
runtime comparisons11 between various models evaluated
in this work. Our drl-RPN model outperforms Fr R-CNN in
detection accuracy but not in speed. This is mainly because
drl-RPN forwards a larger set of RoIs.12 The sequential
processing (based on the Conv-GRU described in §4) also
adds an overhead of about 13 ms per fixation. Applying
class-agnostic NMS to gate the drl-RPN proposals yields
runtimes closer to that of Fr R-CNN while still improving
mAP. Also, drl-RPN outperforms the exhaustive Fr R-CNN
variant in both speed and accuracy.

mAP vs. number of objects per image: Comparing drl-
RPN-ads to drl-RPN-ads-nh in Fig. 2 (mid) shows that
class-specific context aggregation gets increasingly useful
in crowded scenes which is quite expected (exceptions
for 6, 7 objects). Also, drl-RPN-ads outperforms Fr
R-CNN at all object counts and the improvement gets more
pronounced in more crowded scenes.

mAP vs. IoU-threshold: Fig. 2 (right) shows that the
relative performance of drl-RPN increases with box
IoU-threshold τ , despite using the standard τ = 0.5
during training. Comparing the COCO-style mAP scores
(mAP@[.5, .95]), drl-RPN even more significantly out-

11Runtimes reported using a Titan X GPU.
12The set of RoIs is however much more spatially compact, c.f. Fig. 4.



Figure 5: Upscaled fixation areas in white (c.f. Rt in §4.1) generated by drl-RPN and detection boxes (colored) for a few
PASCAL VOC 2007 test images. We also show the time-step each area was observed. The sizes of the fixation areas are not
related to the sizes of the selected RoIs; they simply determine where RoIs are being forwarded for class-specific predictions.
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Figure 6: Investigation of exploration-accuracy trade-off on the PASCAL VOC 2007 test set. Left: For small β the goal-
agnostic agents outperform the fixed-β counterparts as well as Fr R-CNN, while mAP expectedly decreases as β increases.
Mid: Average runtime also decreases with increased β; at β = 0.15 (twice the β used for fixed-β models) the goal-agnostic
models become faster than the fixed-β counterparts. Right: Exploration vs. β with a fitted two-term exponential ae−bβ +
ce−dβ . The accurate functional fit allows for specifying exploration extent at test time.

performs Fr R-CNN with 44.3 against 41.3 mAP. See also
the attention comparison in Fig. 4 showing where (spa-
tially) RoIs are forwarded for class-specific predictions.
For drl-RPN this corresponds to the upscaled fixation
areas (c.f. Rt in §4.1). For the standard RPN we locate
where the survivors of the class-agnostic NMS end up spa-
tially and upsample those locations to match the image size.

Exploration-accuracy trade-off: Fig. 6 shows results13

for the goal-agnostic extension of drl-RPN accepting the
exploration penalty β as input (c.f. §5.1.2), evaluated for
the set {0.025, 0.050, . . . , 0.750} of β-values used in train-
ing. We also compare to a model using class-agnostic NMS
to gate the drl-RPN proposals. With this straightforward
extension we obtain models which can be adjusted to a
wide range of speed-accuracy trade-offs.

7. Conclusions

We have presented drl-RPN, a sequential deep reinforce-
ment learning model of ‘where to look next’ for visual ob-
ject detection, which automatically determines when to ter-
minate the search process. The model produces image- and

13We here use the model without posterior class probability adjustments.

category-dependent search trajectories, yet it features a sin-
gle policy over all object categories. All the (deep) param-
eters – including the fixation policy, stopping conditions,
and object classifiers – can be trained jointly and experi-
ments show that such joint refinement improves detection
accuracy. Overall, drl-RPN achieves results superior to ex-
haustive, typical state-of-the-art methods and is particularly
accurate in applications demanding higher IoU-thresholds
for positive detections.

Results showing the advantages of a class-specific
memory and context-aggregation within drl-RPN have also
been presented. This offers a mechanism to incrementally
accumulate evidence at earlier visited image regions and
detections to guide the search process and boost detection
accuracy. As expected, such a mechanism leads to even
more dramatic improvements in more crowded scenes.
Finally, we have shown that drl-RPN can learn a wide
variety of exploration-accuracy trade-offs which makes it
possible to specify the exploration extent at test time.
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