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Question: What does the woman do after look uncertain? Answer: smile
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Figure 1. Answering questions in videos involves both motion and appearance analysis, and usually requires multiple cycles of reasoning,
especially for transitive questions, e.g. “ What does the woman do after look uncertain?”, we need to first localize when the woman looks
uncertain, which requires motion evidence for looking uncertain and appearance evidence for the woman; and then focus on what the
woman does (smile).

Abstract

Video Question Answering (QA) is an important task in
understanding video temporal structure. We observe that
there are three unique attributes of video QA compared with
image QA: (1) it deals with long sequences of images con-
taining richer information not only in quantity but also in
variety; (2) motion and appearance information are usu-
ally correlated with each other and able to provide useful
attention cues to the other; (3) different questions require
different number of frames to infer the answer. Based on
these observations, we propose a motion-appearance co-
memory network for video QA. Our networks are built on
concepts from Dynamic Memory Network (DMN) and in-
troduces new mechanisms for video QA. Specifically, there
are three salient aspects: (1) a co-memory attention mech-
anism that utilizes cues from both motion and appearance
to generate attention; (2) a temporal conv-deconv network
to generate multi-level contextual facts; (3) a dynamic fact
ensemble method to construct temporal representation dy-
namically for different questions. We evaluate our method
on TGIF-QA dataset, and the results outperform state-of-
the-art significantly on all four tasks of TGIF-QA.

∗ indicates equal contributions.

1. Introduction

Understanding video temporal structure is an important
topic in computer vision. To achieve this goal, various
tasks have been proposed, such as temporal action localiza-
tion [29, 10], action anticipation [11] and video prediction
[32]. Besides these tasks, video Question Answering (QA)
[16, 30] is another challenging task, which not only requires
the understanding of video temporal structure, but also joint
reasoning of videos and texts. In this paper, we tackle the
problem of video QA.

Image and text question answering have achieved much
progress recently. The success comes in part from the appli-
cation of attention mechanisms [37, 21] and memory mech-
anisms [20] in deep neural networks. Attention mechanisms
tell the neural network “where to look”, while the mem-
ory mechanism refines answers in multiple reasoning cy-
cles. Video QA is different from image QA [23, 21] in two
aspects: (1) the questions are more about temporal reason-
ing of the videos, e.g. motion transition and action count-
ing, than spatial attributes, such as colors, spatial locations,
which require effective temporal representation modeling;
(2) the input source is a sequence of images, rather than a
single image, which contains richer information not only in
quantity but also in variety (appearance, motion, transition)
to “remember”, and it makes the reasoning process more
complicated.

Dynamic Memory Networks (DMN) [20, 33] were orig-
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inally proposed for text and image question answering. It
contained a memory module to encode the input sources
multiple cycles and an attention mechanism allowing the
reading process to focus on different contents in each cy-
cle. Although DMN contains an input module and a mem-
ory module which are able to read and remember a long
sequence information, which is applicable for videos, di-
rectly applying such a method to video QA task would not
give satisfying results. Because it lacks motion analysis, es-
pecially joint analysis between motion and appearance in
videos, and temporal modeling. To strengthen the memory
mechanism, Na et al. [25] proposed a read-write memory
network that jointly encode the movie appearance and cap-
tion content, however it lacks motion analysis and dynamic
memory update. Xu et al. [35] exploited the appearance
and motion via gradually refined attention, where the mo-
tion and appearance features are fused together.

We observe two unique attributes of answering questions
in videos. The first is that the motion and appearance infor-
mation are usually correlated with each other in the reason-
ing process. For example, in answering the question “what
does the woman do after look uncertain?” as shown in Fig-
ure 1, we need to first localize “the woman look uncertain”
action, which requires motion evidence for looking uncer-
tain and appearance evidence for the woman; after that, we
need to ignore the man’s interval, and then focus on what
the woman does (smile). Appearance and motion informa-
tion are both involved in the reasoning process and provide
attention cues to each other. The second attribute is that dif-
ferent types of questions may require representations from
different amounts of frames, for example, “what is the color
of the bulldog?” needs only a single frame to produce the
answer, while “How many times does the cat lick” needs
the understanding of the whole video.

Based on these observations, we propose a motion-
appearance co-memory network for video QA. Our model
is built on concepts of DMN/DMN+ [20, 33], so we share
the same terms with DMN [20], such as facts, memory and
attention. Specifically, a video is converted to a sequence of
motion and appearance features by the two-stream models
[34]. The motion and appearance features are then fed into
a temporal convolutional and deconvolutional neural net-
work to build multi-level contextual facts, which have the
same temporal resolution but represent different contextual
information. These contextual facts are used as input facts
to the memory networks. The co-memory networks hold
two separate memory states, one for motion and one for ap-
pearance. To jointly model and interact with the motion and
appearance information, we design a co-memory attention
mechanism that takes motion cues for appearance attention
generation, and appearance cues for motion attention gen-
eration. Based on these attentions, we design dynamic fact
ensemble method to produce temporal facts dynamically at

each cycle of fact encoding. We evaluate our model on
TGIF-QA dataset [16], and outperform state-of-the-art per-
formance significantly on all four tasks in TGIF-QA.

The novelty of our method is three-fold compared with
DMN/DMN+ [20, 33]:

(1) We design a co-memory attention mechanism to
jointly model motion and appearance information.

(2) We use temporal conv-deconv networks to build
multi-level contextual facts for video QA.

(3) We introduce a method called dynamic fact ensemble
to dynamically produce temporal facts in each cycle of fact
encoding.

In the following, we first introduce related work, and
then outline the DMN/DMN+ framework. In Section 4, we
present our motion-appearance co-memory network in de-
tail, and in Section 5, we show the evaluation of our method
on TGIF-QA.

2. Related Work
Image question answering. Image question answering

aims to measure the capability of reasoning about linguistic
and image inputs jointly. Many methods have been pro-
posed [37, 5, 14, 21, 36, 7, 3, 1, 33, 23, 4, 28, 17, 13, 40,
38, 41, 42]. Among all these models, attention mechanism
[37, 5, 21, 42] provides guidance to deep models on “where
to look” and memory mechanism [20, 33] allows the model
to have multiple reasoning iterations and refine the answer
gradually. Question-guided attention mechanism [5] uses
semantic representation of a question as query to search for
the regions in an image that are related to the answer. Yang
et al. [37] presented a Stacked Attention Network (SAN)
that queries an image multiple times to infer the answer pro-
gressively. Lu et al. [21] argued that modeling “what words
to listen to” is equally important to model “where to look”,
and proposed a co-attention model that jointly reasons about
image-guided and question-guided attention. Instead of di-
rectly inferring answers from the abstract visual features,
Yu et al. [38] developed a semantic attention mechanism to
select high-level question-related concepts. Dynamic mem-
ory network (DMN), which was first introduced by Kumar
et al. [20] to solve text based question answering, adopted
episodic memories and attention mechanisms which allow
multiple cycles of reasoning. Xiong et al. [33] improved the
memory and input module of DMN so that it can be applied
to image QA.

Video question answering. Video QA is a relatively
new task compared with image QA. Yu et al. [39] adopted
a semantic attention mechanism, which combines the de-
tected concepts in videos with text encoding/decoding to
generate answers. Comparing with images, temporal do-
main is unique to videos. A temporal attention mechanism
is leveraged to selectively attend to one or more periods of
a video in [16, 24, 35]. Besides temporal attention mecha-
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Figure 2. General Dynamic Memory Network (DMN) [20] archi-
tecture. The memory update process for the t-th cycle is : (1)
the facts F are encoded by an attention-based GRU in episodic
memory module, where the attention is generated by last memory
mt−1; (2) the final hidden state of the GRU is called contextual
vector ct, which is used to update the memory mt together with
question embedding q. The question answer is generated from the
final memory state mT .

nism, Jang et al. [16] and Xu et al. [35] also utilized motion
information along with appearance information in videos.
Recently Na et al. [25] and Kim et al. [18] both introduced
the memory mechanism to their models for video QA. How-
ever, their models [25, 18] both lack motion analysis and
dynamic memory update mechanism.

Video temporal analysis. To answer the video-based
questions correctly, temporal analysis of videos is neces-
sary. Shou et al. [29] presented a multi-stage Segment-CNN
model to generate action proposals and localize actions in
videos. Temporal Unit Regression Network (TURN) [9]
and Cascaded Boundary Regression (CBR) [10] exploit the
temporal boundary regression mechanism for proposal gen-
eration and action detection. Recently Gao et al. [8] and
Hendricks et al. [2] proposed to localize activities by lan-
guage queries, their methods involve of joint modeling of
the videos and language queries, which also related to video
QA.

3. General Dynamic Memory Networks
As our work is closely related to DMN [20, 33], we begin

with introducing the general framework of DMN. It con-
tains four distinct modules: an input module, a question
module, an episodic memory module and an answer mod-
ule, as shown in Figure 2.

Fact module. The fact module converts the input data
(e.g. text, image, video) into a set of vectors called facts,
which is denoted as F = [f1, f2, ..., fL], where L is the to-
tal number of facts. For text-based QA, [20] used a Gated
Recurrent Unit (GRU) to encode all text information; for
image-based QA, [33] adopted a bi-directional GRU to en-
code the local region visual features to globally-aware facts.

Question module. The question module converts the
question into an embedding q. Specifically, [20, 33] used

a GRU to encode the question sentence and use the final
hidden state of the GRU as the question embedding.

Episodic memory module. Episodic memory is de-
signed to retrieve the relevant information from the facts.
To extract information related to the questions from the facts
more effectively, especially when transitive reasoning is re-
quired in questions, the episodic memory module iterates
over the input facts for multiple cycles, and updates the
memory after each cycle. There are two important mech-
anisms in the episodic memory module: an attention mech-
anism and a memory update mechanism.

Suppose that the updated memory after t-th cycle is mt,
the facts set F = [f1, f2, ..., fL], the question embedding is
q, then the attention gate gti is given by

gti = Fa(fi,mt−1, q) (1)

where Fa is an attention function which takes the fact vector
fi at step i, memory mt−1 at cycle t − 1 and the question
q as inputs, and outputs a scalar value gti , which represents
the attention value for the fact fi in cycle t.

To effectively use the ordering and positional informa-
tion in videos, an attention based GRU is designed. Instead
of using the original update gate in the GRU, the attention
gate gti is used, the update equation for the modified GRU
is

hi = gti ◦ h̃i + (1− gti) ◦ hi−1 (2)

The final hidden state of the attention based GRU is used
as the contextual feature ct for updating the episodic mem-
ory mt. Together with the question embedding q and the
memory for cycle t − 1, the t-th cycle memory is updated
by

mt = Fm(mt−1, ct, q) (3)

where Fm is a memory update function. The final memory
mT is passed to the answer module to generate the final
answers, where T is the number of memory update cycle.

Answer module. The answer module takes both q and
mT to generate the models predicted answer. Different an-
swer decoders may be applied for different tasks, e.g. a soft-
max output layer for single word answer.

4. Motion-Appearance Co-Memory Networks
In this section, we present our motion-appearance co-

memory networks, including multi-level contextual facts,
co-memory module and answer module. The question mod-
ule remains the same as the one in traditional DMN.

4.1. Multi-level Contextual Facts

The videos are cut into small units [9] (a sequence of
frames). For each video unit, we use two-stream CNN mod-
els [34] to extract unit-level motion and appearance fea-
tures. More feature pre-processing details are given in Sec-
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Figure 3. The input temporal representations are processed by
temporal conv-deconv layers to build multi-layer contextual facts,
which have the same temporal resolution but different contextual
information.

tion 5. The sequence of unit-level appearance features and
motion features is represented as {ai} and {bi} respectively.

To build multiple levels of temporal representations
where each level represent different contextual information,
we use the temporal convolutional layers to model the tem-
poral contextual information and de-convolutional layers to
recover temporal resolution, as shown in Figure 3. Specifi-
cally, the lowest level feature sequence is built directly from
the unit features, A1

L = {ai}, B1
L = {bi}. The convo-

lutional layers compute a feature hierarchy consisting of
temporal feature sequences at several scales with a scaling
step of 2, F 1

L, F 2
L/2, F 3

L/4, ..., as shown in Figure 3. Note
that F could be A (for appearance features) or B (for mo-
tion features). The de-convolutional pathway hypothesizes
higher resolution features F 2

L, F 3
L by upsampling tempo-

rally coarser, but semantically stronger, feature sequences.
Thus, F 1

L, F 2
L and F 3

L have the same resolution but dif-
ferent temporal contextual coverage. Note that we only
show 3 levels in Figure 3, more levels could be modeled
by adding more convolutional and de-convolutional layers.
FL = {F 1

L, F
2
L, ..., F

N
L } is termed as contextual facts.

4.2. Motion-appearance Co-Memory Module

In this part, we introduce the co-memory attention mech-
anism and the dynamic fact ensemble method.

Co-memory attention. The questions in video QA usu-
ally involve both appearance and motion. Appearance usu-
ally provides useful cues for motion attention, i.e. guides
the focus on motion content, and vice versa. To allow in-
teraction between appearance and motion, we design a co-
memory attention mechanism. Specifically, two separate
memory modules are used to hold motion memory mt

b and
appearance memory mt

a, where t is the number of cycle for
memory update. As indicated before, when the networks
read motion facts to update motion memory, appearance
memory provides useful cues to generate attentions; motion
memory is also helpful for updating appearance attention.
Therefore, mt−1

b and mt−1
a are both used to generate atten-

tions for motion and appearance fact encoding in the t-th
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Figure 4. Co-memory attention module extracts useful cues from
both appearance and motion memories to generate attention
gat/gbt for motion and appearance separately. Dynamic fact en-
semble takes the multi-layer contextual facts AL/BL and the at-
tention scores gat/gbt to construct proper facts As/h

L /Bs/h
L , which

are encoded by an attention-based GRU. The final hidden state
ctb/cta of the GRU is used to update the memory mt

b/mt
a. The final

output memory mh is the concatenation of the motion and appear-
ance memory, and it is used to generate answers.

cycle. As we build multiple levels of facts, we generate an
attention score for each fact vector at each level. The mo-
tion attention gate for fact bij is gbti,j and the appearance
attention for fact aij is gati,j , where t means the number of
cycle, i is the level of fact representation and j is the step of
the facts.

zati,j = tanh
(
W2

a

(
aji +W1

a[m
t−1
a , q]

))
gati,j = W4

a

(
zati,j +W3

a[m
t−1
b , q]

) (4)

zbti,j = tanh
(
W2

b

(
bji +W1

b [m
t−1
b , q]

))
gbti,j = W4

b

(
zbti,j +W3

b [m
t−1
a , q]

) (5)

where W1
a, W2

a, W3
a, W4

a, W1
b , W2

b , W3
b and W4

b are
weight parameters. gati,j and gbti,j are attentions used in
dynamic fact ensemble and memory update.

Dynamic fact ensemble. As shown in Section
4.1, we build a multi-layer contextual facts set FL =
{F 1

L, F
2
L, ..., F

N
L } for motion and appearance separately,

which have the same temporal resolution, but represent dif-
ferent contextual information. There are two reasons that
the facts should be selected dynamically: (1) Different types
of questions may require different level of representations,
e.g. the “bulldog color” and the “cat lick” questions given in
Section 1; (2) During the multiple cycles of the fact reading,
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Figure 5. Multi-layer contextual facts are dynamically constructed
via a soft attention fusion process, which computes a weighted
average facts according to the attention.

each cycle may focus on different level of information. We
designed an attention-based fact ensemble methods shown
in Figure 5. For simplicity, we use gti,j to represent the at-
tention gate, which is actually gati,j for appearance and gbti,j
for motion. We calculate Softmax over gti,j along level axis
(i.e. i) to get attention scores sti,j .

The ensemble facts can be represented as

F s
t : {f t

j =

N∑
i=0

sti,jf
i
j}Lj=1 (6)

where fi,j is the fact vector of level i and step j in the con-
textual facts FL. The attention scores used in the later fact
encoding process are given by

stj = softmax(
1

N

N∑
i=0

gti,j), j = 1, 2, ..., L (7)

where the Softmax is computed along j axis.
Memory update. The fact encoding processes are con-

ducted separately for motion and appearance, which adopts
an attention based GRU [33] to generate contextual vectors
cta and ctb for appearance and motion in the t-th cycle. Mo-
tion memory mt

b and appearance memory mt
a are updated

separately as follows.

mt
a = FC([mt−1

a , q, cta]) (8)

mt
b = FC([mt−1

b , q, ctb]) (9)

where FC means fully-connected layer, ReLU is used as the
non-linear activation. The final output memory mh is the
concatenation of mT

a and mT
b , where T is the number of

cycles.

4.3. Answer Module

Following [16], we model the four tasks in TGIF-QA
[16] into three different types: multiple-choice, open-ended
numbers and open-ended words.

For multiple-choice, we use a linear regression function
that takes the memory state mh and outputs a real-valued
score for each answer candidate.

s = WT
mmh (10)

where Wm are weight parameters. The model is optimized
by hinge loss between the scores for correct answers sp and
the scores for incorrect answers sn, max(0, 1 + sn − sp).
This decoder is used to solve repeating action and state tran-
sition tasks.

For open-ended numbers, we also use a linear regression
function which takes the memory state mh and outputs an
integer-valued answer.

s = [WT
nmh + b] (11)

where [.] means rounding. We adopt `2 loss between the
groundtruth value and the predicted value to train the model,
which is used to solve the repetition count task.

For open-ended words, we treat this as a classification
problem. A linear function that takes the final memory state
mh followed by a softmax layer is adopted to generate an-
swers.

o = softmax
(
W>

wmh + b
)

(12)

where Ww are weight parameters and b is bias. Cross-
entropy loss is used to train the model and this type of de-
coder is used in Frame QA task.

For each task, we train a separate model by the answer
decoder and loss mentioned above. The model of each task
is trained and evaluated individually.

5. Evaluation
In this section, we describe the dataset and evaluation

settings, and discuss the experiment results.

5.1. Dataset

We evaluate the proposed model on TGIF-QA
dataset [16], which is a large-scale dataset introduced
by Jang et al. for Video QA. The dataset consists of 165k
QA pairs collocted from 71k animated Tumblr GIFs. There
are four types of tasks: repetition count, repetition action,
state transition and frame QA. First three tasks are unique
to videos and require temporal reasoning to answer them.

Tasks. Repetition count is an open-ended task to count
the number of repetition of an action (e.g. “How many times
does the cat lick?”). There are 11 possible answers (i.e.
from 0 to 10+) in total. Repetition action is a 5-option multi-
ple choice task, which is asking about the name of the action
that happened specific times (e.g. “what does the duck do 3
times?”). State transition is also a 5-option multiple choice
task which can be answered by understanding the transi-
tion of two states in a video (e.g. “What does the woman
do after drink water?”). Besides, TGIF-QA also provides a
traditional frame QA task (i.e. image QA). The image QA
questions of previous datasets [3, 27, 22] can be answered
by getting effective information from a single given image;
but for frame QA in TGIF-QA dataset, the model needs to
find the most relevant frame among all frames in the video



Table 1. Number of samples of different tasks in TGIF-QA dataset.

# QA pairs Action Trans Count Frame
Training 20,475 52,704 26,843 39,392
Testing 2,274 6,232 3,554 13,691
Total 22,749 58,936 30,397 53,083

to answer the question correctly. Frame QA is defined as an
open-ended task. The number of QA pairs of TGIF-QA for
the four tasks are shown in table 1.

Metric. For the task of repetition count, the Mean
Square Error (MSE) between the predicted count value and
the groundtruth count value is used for evaluation. For rep-
etition action, state transition and frame QA, classification
accuracy (ACC) is used as the evaluation metric.

5.2. Implementation Details

Appearance and motion features. Since the frames per
second (FPS) of the GIFs in TGIF-QA [16] vary, we extract
frames from all GIFs with the FPS that is specified by the
corresponding GIF file. The long videos are cut into small
units, each unit contains 6 frames.

To extract unit-level video features, we use ResNet-152
[12] to process the central frame of a unit, and the out-
puts of “pool5” layer (∈ R2,048) of ResNet-152 is used as
our appearance features. To utilize motion information, we
extract optical flow inside a video unit, and use the flow
CNN from two-stream model [34] to get unit-level flow fea-
tures. Specifically, the two-direction dense optical flows
[6] which are calculated between two adjacent frames in
a six-consecutive-frame unit are fed into the pre-trained
flow CNN model, which is a BN-Inception network[15].
Then we take the feature map of the “global pool” layer
(∈ R1,024) as the raw optical flow features. Finally, we
down-sample the feature dimension by average pooling and
get a 2048-dimension vector as our two-direction optical
flow feature. In this process, we pad the first or last frame
if we didn’t have enough frames centered at each step. We
set the temporal resolution of video features to be 34, long
feature sequences are cut and short one are padded.

Contextual facts. The output channel number of each
layer in the conv-deconv networks is 1024, temporal conv
filter size is 3 with stride 1, deconv layer with stride 2, max
pool filter size is 2 with stride 2. We build N = 3 layers of
contextual facts.

Co-memory module. The size of memory state ma and
mb is set to be 1024. The hidden state size of the GRU for
fact encoding is 512. zati,j and zbti,j in equation (4) and (5)
are 512-dimensional.

Question and answer embedding. For each word in the
question, we use a pre-trained word embedding model [26]
to convert it to a 300-dimension vector. All words in the
question are processed by a two-layer GRU, whose hidden

state size is 512. The final hidden state is used as question
embedding. For action transition and repeating action, the
candidate answers are a sequence of words, thus we use the
same method as the one for encoding questions to encode
the answer.

Training details. We set the batch size to 64. Adam
optimizer [19] is used to optimize the model, the learning
rate is set to 0.001. For each task, we train the model for 50
epochs.

5.3. System Baselines

Besides co-memory networks, there are two direct meth-
ods to make use of motion and appearance information: fact
concatenation and memory concatenation, which are used
as system baselines.

Fact concatenation. This baseline method simply con-
catenate the input motion facts and appearance facts, {bi}
and {ai} along the feature dimension. The concatenated
vector {hi} which is db + da dimensional is used as in-
put facts for multi-level contextual fact module. Only one
memory module is used.

Memory concatenation. In this baseline method, in-
stead of concatenating the input facts, we use two separate
memory modules: one for appearance, the other for motion,
and concatenate the final motion memory states mT

b and the
final appearance memory states mT

a to mt
f together, which

are used to decode answers. Co-memory attention mecha-
nism is not used in this baseline.

5.4. Experiments on TGIF-QA

We first evaluate the co-memory attention module by
comparing it with the two baseline method “fact concate-
nation” and “memory concatenation”. Second, we evalu-
ate the multi-level contextual facts and the dynamic fact en-
semble. Finally, we compare our method with the previous
state-of-the-art methods.

Co-memory attention. In this experiment, we set the
layer of contextual facts to be 1, and dynamic fact ensem-
ble is not used. The number of memory updates T = 2.
We compare co-memory attention mechanism with “fact
concatenation” (fact-concat) and “memory concatenation”
(mem-concat) to see the effectiveness of co-memory atten-
tion , the results are shown in Table 2. We can see that co-

Table 2. Evaluation of co-memory attention mechanism on TGIF-
QA. “Action” is repetition action (ACC %), “Trans” is state tran-
sition (ACC %), “Count” is repetition count (MSE) and “Frame”
is frame QA (ACC %).

Method Action Trans Count Frame
Fact-concat 65.0 71.2 4.34 49.9
Mem-concat 64.5 70.7 4.39 50.2
Co-memory 66.8 73.2 4.21 51.0



memory attention outperforms fact-concat and mem-concat
in all four tasks, which shows the effectiveness of the co-
memory attention mechanism. We believe the reason is
that co-memory attention exploits the knowledge that mo-
tion and appearance provide useful cues to each other in
attention generation.

Contextual facts and dynamic fact ensemble. Dy-
namic fact ensemble collaborates with multi-level contex-
tual facts to construct proper temporal fact representation,
so we test them together. We build 3 layers of contex-
tual facts and do experiments to test dynamic fact ensemble
module. We use “fact concatenation” as the top memory
network. The results are shown in Table 3: “w/o ensem-
ble” means that we don’t build the multi-level contextual
facts, but just use a single temporal conv layer (filter size
is 1) to convert appearance and motion features into 1024-
dimension vectors, which are used as input facts.

Table 3. Evaluation of dynamic fact ensemble on TGIF-QA. “Ac-
tion” is repetition action (ACC %), “Trans” is state transition
(ACC %), “Count” is repetition count (MSE) and “Frame” is frame
QA (ACC %).

Method Action Trans Count Frame
w/o ensemble 65.0 71.2 4.34 49.9
w/ ensemble 66.3 72.5 4.30 50.4

It can be seen that the ensemble provides better results.
We believe the reason is that the attention-based fact fusion
optimizes the ensemble process by using weighted average
of the contextual facts, and avoids just using only one of
them, which may make the facts sub-optimal.

How many cycles of memory update are sufficient?
We test the co-memory attention model with different mem-
ory update times T = 1, 2, 3 to see how many cycles of
memory update are sufficient for video QA task. The dy-
namic fact ensemble is not used in this experiment. The
results are shown in Table 4.

Table 4. Comparison on cycles of memory update on TGIF-QA.
“Action” is repetition action (ACC %), “Trans” is state transition
(ACC %), “Count” is repetition count (MSE) and “Frame” is frame
QA (ACC %).

Method Action Trans Count Frame
T = 1 65.1 69.9 4.35 50.5
T = 2 66.8 73.2 4.21 51.0
T = 3 66.5 73.1 4.24 51.1

We can see that two cycles (T = 2) of memory update
gives the best performance on the task of “Action”, “Trans”
and “Count”. For “Frame”, T = 2 and T = 3 have similar
results. Comparing the results of T = 2 and T = 1 in
“Trans”, we can see that T = 2 improves the performance
by 3.3%, we believe the reason is that multiple cycles of fact

Table 5. Comparison with the state-of-the-art method on TGIF-
QA dataset. “Action” is repetition action (ACC %), “Trans” is
state transition (ACC %), “Count” is repetition count (MSE) and
“Frame” is frame QA (ACC %).

Model Action Trans Frame Count 1

VIS+LSTM(aggr) [27] 46.8 56.9 34.6 5.09
VIS+LSTM(avg) [27] 48.8 34.8 35.0 4.80
VQA-MCB(aggr) [7] 58.9 24.3 25.7 5.17
VQA-MCB(avg) [7] 29.1 33.0 15.5 5.54
Yu et al. [39] 56.1 64.0 39.6 5.13
ST(R+C) [16] 60.1 65.7 48.2 4.38
ST-SP(R+C) [16] 57.3 63.7 45.5 4.28
ST-SP-TP(R+C) [16] 57.0 59.6 47.8 4.56
ST-TP(R+C) [16] 60.8 67.1 49.3 4.40
ST-TP(R+F) 62.9 69.4 49.5 4.32
Co-memory (w/o DFE) 66.8 73.2 51.0 4.21
Co-memory (full) 68.2 74.3 51.5 4.10

reading and memory update allow the model to focus on
different parts of the video in each cycle. The performance
begins to saturate at T = 3.

Comparison with state-of-the-art method. There are
two version of TGIF-QA, we report the performance of
the second version, which is released by the authors of
[16] on Arxiv. The first version is originally reported in
the CVPR version of [16]. State-of-the-art method [16]
on TGIF-QA adopted a dual-LSTM based approach with
both spatial and temporal attention. Originally, their model
is trained on C3D [31] temporal feature and ResNet-152
[12] frame feature. However, our method adopts Flow
CNN model (Inception) for motion and ResNet-152 for ap-
pearance. Thus, for fair comparison, we train their model
(https://goo.gl/SVKTP9) with our features on all four tasks
in TGIF-QA. The results are shown in Table 5. In Table
5, “SP” means spatial attention, “TP” means temporal at-
tention, “(R+C)” means ResNet-152 features and C3D fea-
tures, “(R+F)” means ResNet-152 features and Flow CNN
features (our feature). We also list methods “VIS-LSTM”
[27] and “VQA-MCB” [7], which are provided in [16].

There are two co-memory variants shown in Table 5:
“co-memory (w/o DFE)” uses co-memory attention with
T = 2 memory update, but not dynamic fact ensemble;
“co-memory (full)” uses co-memory attention with T = 2
memory update and dynamic fact ensemble (soft fusion) on
3-layer contextual facts. We can see that our method outper-
forms the state-of-the-art method significantly on all four
tasks. Some visualization examples are shown in Figure 6.

1We found an evaluation mistake in [16] (https://goo.gl/SVKTP9) on
count task. The new performances updated by the authors are listed here.



Q: What does the man do before look surprise?
Co-memory: blink eye
ST-TP: pet

Q: What does the man do after open a door?
Co-memory: grab an object
ST-TP: say something while pop cap off of a pen

Q: What does the person do 2 times?
Co-memory: chew meat
ST-TP: rub finger across face

Q: What does the woman do 2 times?
Co-memory: fold both hands
ST-TP: bob head

Q: What is the color of the hat?
Co-memory: white
ST-TP: blue

Q: What is the man performing a trick falls and crashes?
Co-memory: motorcycle
ST-TP: bicycle

Q: How many times does the man dip his body?
Co-memory: 2
ST-TP: 4

Q: How many times does the woman turn eyes?
Co-memory: 3
ST-TP: 2

Figure 6. Examples on state transition, repetition action, repetition count and frame QA are shown in 1st, 2nd, 3rd and 4th row. ST-TP is
the temporal attention model from [16]. Green is for correct prediction and red is for wrong prediction.

6. Conclusion

Comparing with image QA, video QA deals with long
sequences of images, which contains richer information in
both quantity and variety. In addition, motion and appear-
ance information are both important for video analysis, and
usually correlated with each other and able to provide useful
attention cues to the other. Motivated by these observations,
we propose a motion-appearance co-memory network for
video QA. Specifically, we design a co-memory attention

mechanism that utilizes cues from both motion and appear-
ance to generate attention, a temporal conv-deconv network
to generate multi-level contextual facts, and a dynamic fact
ensemble method to construct temporal representation dy-
namically for different questions. We evaluate our method
on TGIF-QA dataset, and outperforms state-of-the-art per-
formance significantly.
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