
Synthesizing Images of Humans in Unseen Poses

Guha Balakrishnan
MIT

balakg@mit.edu

Amy Zhao
MIT

xamyzhao@mit.edu

Adrian V. Dalca
MIT and MGH
adalca@mit.edu

Fredo Durand
MIT

fredo@mit.edu

John Guttag
MIT

guttag@mit.edu

Abstract

We address the computational problem of novel human
pose synthesis. Given an image of a person and a desired
pose, we produce a depiction of that person in that pose, re-
taining the appearance of both the person and background.
We present a modular generative neural network that syn-
thesizes unseen poses using training pairs of images and
poses taken from human action videos. Our network sepa-
rates a scene into different body part and background lay-
ers, moves body parts to new locations and refines their
appearances, and composites the new foreground with a
hole-filled background. These subtasks, implemented with
separate modules, are trained jointly using only a single
target image as a supervised label. We use an adversarial
discriminator to force our network to synthesize realistic
details conditioned on pose. We demonstrate image syn-
thesis results on three action classes: golf, yoga/workouts
and tennis, and show that our method produces accurate re-
sults within action classes as well as across action classes.
Given a sequence of desired poses, we also produce coher-
ent videos of actions.

1. Introduction
Given an image of a person, we can imagine what that

person would look like in a different pose. We are able to
do this using a model of human appearance trained by ob-
serving many people in different contexts. In this work, we
propose an automated method to address this task. Given
an image of a person along with a target pose, we automat-
ically synthesize a realistic image that depicts what the per-
son would look like in that pose. We retain the appearance
of both the person and the background in the transforma-
tion, as illustrated in Fig 1.

To ensure a realistic image, we would like to retain the
appearance of the person and background, and capture body

Source	Image Target	Pose Synthesized	Image

Figure 1. Our method takes an input image along with a desired
target pose, and automatically synthesizes a new image depicting
the person in that pose. We retain the person’s appearance as well
as filling in appropriate background textures.

part details consistent with the new pose. Differences in
poses can cause complex changes in the image space, in-
volving several moving parts and self-occlusions. Subtle
details such as shading and edges should perceptually agree
with the body’s configuration. And background pixels that
become disoccluded by the body must be filled in with ap-
propriate content.

We address these challenges by training a supervised
learning model on pairs of images and their poses. Our
model takes as input a source image and source 2D pose,
and a desired 2D target pose, and synthesizes an output im-
age. Our key idea is to decompose this complex problem
into simpler, modular subtasks, trained jointly as one gener-
ative neural network. Our network first segments the source
image into a background layer and multiple foreground lay-
ers corresponding to different body parts, allowing it to spa-
tially move the body parts to target locations. The moved
body parts are then modified and fused to synthesize a new
foreground image, while the background is separately filled
with appropriate texture to address gaps caused by disocclu-
sions. Finally, the network composites the foreground and
background to produce an output image. All of these op-
erations are performed jointly as one network, and trained
together using only a target image as a supervised label.

1

Recent work has used images along with pose or view-
point information to synthesize unseen views of people [11,
13, 32]. These studies embed an input image and desired
transformation into a latent space, and decode this space
into an output image. In contrast, we decompose this com-
plex problem into simpler subtasks, allowing us to generate
more realistic results with limited data. Our layering ap-
proach decouples the foreground and background synthesis
tasks, helping us synthesize better backgrounds. And by
segmenting the foreground into body parts, we can model
complex movements. The strategy of decomposing a net-
work into modular subtasks has proven useful in recent
learning models for visual reasoning [1, 9].

We demonstrate our model on images taken from 266
videos of three action classes downloaded from YouTube:
golf, yoga/workouts, and tennis. Results show that our
method can accurately reconstruct poses within a given ac-
tion class, as well as transfer pose across action classes. Fi-
nally, by providing a sequence of poses and a source image,
we show that we can construct a temporally coherent video
portraying an action, despite our network not being explic-
itly trained to preserve temporal continuity.

2. Related work
View synthesis is a task in computer vision in which

unseen camera views or poses of objects are synthesized
given a prior image. Most view synthesis work has fo-
cused on simple rigid objects such as cars and furni-
ture [8, 10, 16, 20, 30, 34]. Recent studies have synthesized
unseen views of people [11, 13, 32]. These methods use
encoder neural networks to capture complex relationships
between the input image and desired transformation, and a
decoder to synthesize the output image. In contrast, we rep-
resent a scene as separately manipulatable layers, allowing
us to frame the task as a composition of simpler, modular
subproblems. This allows us to explicitly move body parts
and synthesize realistic backgrounds unlike the related stud-
ies.

Many related problems in computer vision can be posed
as an instance of image translation, or converting one rep-
resentation of a scene into another. Examples include scene
segmentation [18, 21], surface normal prediction [2], col-
oring [31], style transfer [12, 23], edge detection [29] and
sketch inversion [5]. In these examples, pixels are modi-
fied rather than moved from input to output image. A recent
study has shown that a UNet (an encoder-decoder neural net
with skip connections) is capable of handling a wide variety
of translation tasks [6]. We incorporate the UNet architec-
ture for several image translation subtasks in our problem,
such as image segmentation and hole filling.

We use a GAN (generative adversarial network) [4, 19,
22, 33] to inject realism into our synthesized images. A
GAN consists of a generator network that synthesizes can-

didates, and a discriminator network that classifies whether
the candidate is real or synthesized. The generator’s train-
ing objective is to increase the error rate of the discrimi-
nator, i.e. “fool the discriminator,” by producing instances
that appear to be real. We use a conditional GAN, which
synthesizes images conditioned on an input image and tar-
get pose. Previous works have conditioned GANs on im-
ages for various tasks such inpainting [17], image predic-
tion from a normal map [26], style transfer [12], future
frame prediction [14], and image manipulation [35]. An
application-agnostic conditional GAN for image synthesis
was proposed in [6].

Generative
Neural	
Network

Loss	Function	ℒ

	𝐼$
𝑦

	𝑝$ 	𝑝'

𝐼'

Figure 2. Our network takes as input a tuple of the form
(Is, ps, pt), and synthesizes an image y. During training, a loss
function L is used to minimize error between y and It. We visual-
ize ps and pt here as single-channel images, though in our model
they contain a separate channel for each joint.

3. Method
We present a neural network model that learns to trans-

late pose changes to the image space. Our model is trained
on (example, label) tuples of the form ((Is, ps, pt), It),
where Is, ps and pt are the source image, source 2D pose
and target 2D pose, and It is the target image (Fig. 2). We
assume that Is and It depict the same background and per-
son in the same attire.

We design our network in a modular way to address sev-
eral challenges. The motion field induced by a pose trans-
formation often involves several moving body parts, large
displacements, and occlusions. To address this, our model
first segments the scene into foreground and background
layers. It further segments the person’s body into differ-
ent part layers such as the arms and legs, allowing each part
to then be moved independently of the others. Pixels in
the background layer that become disoccluded are filled in
with appropriate appearance. To render subtle shading and
high-frequency details on the body, we use a combination of
feature and adversarial losses that enforce realism of image
details conditioned on the target pose.

Fig. 3 depicts our network, split into four modular sub-
tasks. First, it separates the person’s body parts from the
background (module A: source segmentation). Next, it spa-
tially moves the body parts to target locations (module B:

Spatial	
Transform	(T)

𝐼"

𝑝", 𝑝$

𝑊

×

×

𝑝$

𝑝"

…

…

A.	Source	Image	Segmentation

B.	Spatial	Transformation

D.	Background	Synthesis

𝑝"

𝐼"
𝑦()

𝑀$

𝑦+)

C.	Foreground	Synthesis

𝑦

𝒩 0, 𝜎
(LayerMasks)

:

UNet

𝑀"

…

Foreground	
Layers

Legend

Figure 3. Our network architecture, consisting of four modules. Module A performs image segmentation on Is, separating the person’s
body and objects held by the person from the background. Module B spatially transforms the body parts in Is. Module C synthesizes a
target foreground image yfg by fusing the body parts in a realistic manner. This module also simultaneously outputs a foreground mask
Mt. Module D synthesizes a background image, ybg via hole-filling. Finally, we composite yfg and ybg to produce y.

spatial transformation). The network then fuses body parts
into a coherent foreground (module C: foreground synthe-
sis). Parts of the image disoccluded by the body are filled in
with realistic texture (module D: background hole-filling).
Finally, the foreground and background are composited to
produce an output image y. We design our network such
that these modules are learned jointly and trained using only
the target image as a label.

Modules A,C and D are parametrized using separate
UNet-style architectures [6, 21]. UNets have proven suc-
cessful at image synthesis tasks where there is no movement
between input and outputs. The only module of our model
that does not use a UNet is the spatial transformer (mod-
ule B), which is responsible for handling movements in the
scene. Details of our three UNet architectures are found in
supplementary material. We now describe our network in
more detail.

3.1. Pose Representation

As in past work on pose estimation [15, 28], we represent
the 2D poses ps and pt as 3D volumes inRH×W×J , where
H,W are the height and width of the input images and each
of the J channels contains a Gaussian “bump” centered at
the (x, y) location of a different joint. This representation
allows the network to quickly leverage the spatial nature of
the pose input in contrast to a flattened, dense representa-
tion. The spatial Gaussians also act as a regularization on
the pose estimates which can be useful when joint locations

are noisy. Joints outside the image domain are naturally
represented with blank channels. In our experiments, we
use the following J = 14 joints: head, neck, shoulders,
elbows, wrists, hips, knees and ankles.

3.2. Source Image Segmentation

Moving scenes can be understood as a composition of
layers [25]. When a person moves, each body part may
move differently from one another, typically leading to
piecewise affine motion fields (not accounting for occlu-
sions) in the image space. To handle such movement, we
first segment Is into L foreground layers and one back-
ground layer. The L layers correspond to L predefined body
parts. We split the body into L = 10 parts: head, upper
arms, lower arms, upper legs, lower legs and torso. A body
part is not the same as a joint; the first 9 parts consist of 2
joints, and the torso contains 4 joints.

Our segmentation module is based on a UNet-style archi-
tecture (see Fig. 3). The input to the UNet is a concatenated
volume [Is, ps] ∈ RH×W×(3+J). The output of the UNet
is a volume ∆Ms ∈ RH×W×(L+1). We add ∆Ms to an
input (and therefore, unlearned) volume M̂s specifying the
rough location of each body part in Is to obtain our final
mask volume Ms = softmax

(
∆Ms + log M̂s

)
. M̂s con-

sists of a 2D Gaussian mask over the approximate spatial
region of each body part, and helps our network converge to
the segmentation we desire. The softmax function is used
to enforce a probability distribution over layers. ∆Ms may

Is Head L. Upper Arm L. Lower Arm R. Upper Arm R. Lower Arm L. Upper Leg L. Lower Leg R. Upper Leg R. Lower Leg Torso Bkg

L.	Upper	
Arm

L.	Lower	
Arm

R.	Upper	
Arm

R.	Lower	
Arm

L.	Upper	
Leg

L.	Lower	
Leg

R.	Upper	
Leg

R.	Lower	
Leg

Torso BkgHead𝐼"

Figure 4. Example outputs of the source image segmentation stage. Shown are the masks for each body part and background for three
different examples. An interesting result is that commonly moving foreground structures like the golf club (2nd example), tennis racket
(3rd example) and shadow (3rd example) are learned to be included with the foreground masks.

be viewed as a residual component added to the coarse esti-
mate M̂s.

Fig. 4 shows sample masks produced by our method. We
produce hard boundaries between the foreground and back-
ground, and soft boundaries between body parts. This is
because neighboring body parts have correlated movement
and appearance while the foreground and background do
not. In our videos, humans are often holding small objects
such as a golf club or tennis racket (as seen in examples 2-3
in Fig. 4). Our model learns to include body shadows and
objects held in the hand with the foreground because they
generally move with the body.

We multiply each mask M l
s pixelwise across all three

channels of Is (denoted by ⊗), to obtain masked images of
each layer. Let IIs = M l

s ⊗ Is be the image that depicts
layer l. We use {I ls}L+1

l=1 in the subsequent modules of our
model.

3.3. Foreground Spatial Transformation

The source segmentation stage separates the image into
L foreground layers, allowing us to move each layer sepa-
rately from one another. Layers correspond to rigid body
parts, which may be assumed to follow simple, parametric
motions. We therefore apply a separate geometric transfor-
mation T l ∈ R2×3 to each {I ls}Ll=1. We compute T l using
a similarity transformation fit using the joint positions of
part l in ps and pt. Note that these transformations are not
learned, but are directly computed from the input poses. A
similarity transformation accounts for translation, rotation
and scaling of the body part.

We warp I ls using T l with a bilinear interpolation func-
tion [7], yielding a warped foreground imageW l. The bilin-
ear interpolation function takes an input image along with a
dense displacement field and outputs the image warped by
the field. Critically, this layer has smooth gradients almost
everywhere, and can be trained along with the rest of the

network during backpropagation. Let the transform T l map
pixel (x, y) to subpixel location (x′, y′). The bilinear inter-
polation layer computes W l with the following equation:

W l(x, y) =
∑

q∈N (x′,y′)

Ils(q)(1− |x′ − qx|)(1− |y′ − qy |), (1)

where N (x′, y′) is the set of four pixel neighbors of sub-
pixel location (x′, y′). Body part l depicted in W l is now
roughly at the correct location, scale and orientation for the
target pose. Errors of subsequent layers are backpropagated
through I ls, allowing M l

s to be learned (see Fig. 4).

3.4. Foreground Synthesis

The foreground synthesis branch (module C in Fig. 3)
merges the transformed body parts and further refines their
appearance. We use a UNet that takes a concatenated vol-
ume [W,pt] ∈ RH×W×(3L+J) and outputs the target fore-
ground yfg as well as a target mask Mt ∈ RH×W×1. The
two outputs are produced from the same UNet by branch-
ing off two separate convolutional layers at the end of the
decoding stage. The target pose pt provides additional con-
text as to where joints should be in the target image.

Fig. 5 shows several output examples of the mask Mt

(column 3) as well as yfg (column 4) for this stage.
The body is realistically rendered even for dramatic pose
changes. Objects being held by the person, such as the golf
clubs in examples 1 and 3, or the tennis rackets in examples
2 and 4, are not retained, because they exhibit inconsistent
patterns of movement given the body poses. Our model gen-
erates incoherent foreground pixels outside of the masked
area (column 4) because these values do not affect our loss
function.

3.5. Background Synthesis

The background synthesis stage (module D in Fig. 3),
fills in pixels of the scene occupied by the foreground in

Is ybg Mt yfg y𝐼" 𝑦$% 𝑦&%𝑀(𝑦

Figure 5. Example outputs of the background (column 2) and fore-
ground (columns 3-4) synthesis stages, as well as final outputs
(column 5). Column 1 is the source image.

Is. We provide image IL+1
s as input, which consists of

the background pixels of Is and Gaussian noise in place of
the foreground: IL+1

s = Is ⊗ ML+1
s + N (0, σ) ⊗ (1 −

ML+1
s). Initializing the foreground with noise provides

high-frequency gradients useful for texture synthesis [3].
We pass [IL+1

s ,ML+1
s , ps] ∈ RH×W×(4+J) through a

UNet to synthesize an image ybg with former foreground
pixels assigned realistic values consistent with the back-
ground. We includeML+1

s and ps as inputs to provide addi-
tional context as to where the foreground is located in IL+1

s .
See Fig. 5, column 2, for example background outputs of

this stage. Our method is able to fill in backgrounds of vary-
ing colors and textures. Occasionally, parts of the person’s
feet are left in the background, such as the golf example
in the third row. We hypothesize that this is because our
dataset is biased towards golf videos with static feet. Ob-
jects being held by the person are also sometimes included
in the background, such as a portion of the tennis racket in
the fourth example.

3.6. Foreground/Background Compositing

We composite the target background and foreground im-
ages with a linear sum, weighted by the target mask Mt:

y = Mt ⊗ yfg + (1−Mt)⊗ ybg (2)

Column 5 of Fig. 5 shows examples of our outputs.

3.7. Loss Functions

Let our generative model be denoted by function G:
y = G(Is, ps, pt). A popular loss function for image syn-
thesis is the L1 error between a synthesized and target image

in RGB space: LL1(G) = EIs,It,ps,pt [‖y − It‖1]. Our ex-
periments show that LL1 produces blurry images and does
not prioritize high frequency details. The left-most image in
Fig. 6 shows an example of our model’s output using LL1.

We therefore construct a feature loss LV GG(G) =
EIs,It,ps,pt [‖φ(y)− φ(It)‖1], which we compute by taking
the L1 distance in a feature space φ constructed by concate-
nating activations from all channels of the first 16 layers of
the VGG19 neural network pretrained for image classifica-
tion [24]. VGG19 captures a range of image features from
colors and edges in its initial layers, to textures, to common
image structures in deeper layers. Minimizing error over all
of these layers forces our network to capture various pat-
terns. We normalize the activations of each channel by its
mean and standard deviation in the training data. The cen-
ter image in Fig. 6 shows an example of our model’s output
using LV GG.

ℒ"# ℒ$%% ℒ$%%&%'(

Figure 6. Output image patches using different loss functions.

While LV GG is more effective than LL1 at synthesizing
detail, it is not tailored to the distribution of images in our
task. To address this we add an adversarial loss captured
by a conditional discriminator network. The simultaneous
use of a generator and adversary is known as a GAN. Our
GAN consists of our generative network and an adversarial
discriminator D that outputs a probability that an image is
real conditioned on the pose it should depict. D will force
G to synthesize details consistent with the target pose. We
define LV GG+GAN by:

LV GG+GAN (G,D) = LV GG(G) + λLGAN (G,D), (3)

where LGAN measures the binary cross-entropy classifica-
tion error of the discriminator:

LGAN (G,D) =EIs,It,ps,pt [logD(It, pt)+

log(1−D(y, pt))]. (4)

On its own, LGAN will enforce that synthesized images
lie within the distribution of all real images with target pose
pt. We add LV GG to encourage G to also approximate the
true target image for each input.
D is trained simultaneously withG on batches of synthe-

sized images y and corresponding targets It. In our experi-

ments, we found λ = 0.1 to work well. The right-most im-
age in Fig. 6 shows an example output using LV GG+GAN .

4. Experiments and Results
We evaluate our method using videos of people perform-

ing actions collected from YouTube. Each training example
is a pair of images and their corresponding poses taken from
the same video. We select videos with mostly static back-
grounds. By using pairs of images from the same video, we
hold a person’s appearance and background constant while
only allowing his/her pose to change. We collected videos
from three action classes: golf swings, yoga/workout rou-
tines, and tennis actions. The dataset sizes are 136, 60 and
70 videos, respectively. We combine all action classes to-
gether into one dataset. We apply random data augmen-
tations to each example: scaling, translation, rotation, hori-
zontal flipping, and image saturation. We randomly held out
10% of the videos for testing, and enforce that no individ-
ual appears in both the training and test set. We obtained 2D
poses for video frames by first running an automated image
pose estimator [15] and then manually correcting dramati-
cally incorrect joint positions.

We train separate networks using the three loss func-
tions: LL1, LV GG and LV GG+GAN . We use the ADAM
optimizer and learning rate of 1e−4 when using LV GG or
LL1. All weights in these two networks are randomly ini-
tialized. We initialize the weights of the VGG+GAN net-
work with the LV GG network, because we expect the dis-
criminator to only adjust small details of the image. We
implement our network in Keras with a Tensorflow back-
end.

In our first set of experiments, we use target poses ex-
tracted from frames that occur in the test videos as input,
and compare the synthesized outputs to the known target
frames. We also show that our network can synthesize re-
alistic videos given a single image and a sequence of poses.
In the second set of experiments, we transfer poses across
action classes, e.g., synthesize a tennis player in a golfer’s
pose.

4.1. Within-Action Synthesis

Fig. 7 presents our results using different loss functions.
LV GG synthesizes more details than LL1, and LV GG+GAN

further improves sharpness and realism. LV GG+GAN is
able to generate subtle details like the texture of the yoga
instructor’s pants (row 1), the lighting effects on the tennis
player’s body (row 2), and details of the golfer’s arms and
attire (row 3). We quantify the effect of our losses on image
detail by plotting distributions of per-pixel spatial gradient
magnitude in Fig. 8. We bin values into quartiles calculated
from the gradient magnitude distribution of the real images.
Among the losses, LL1 results in the highest percentage of

small gradients, while LV GG+GAN has the highest percent-
age of large gradients. VGG+GAN’s distribution is closest
to the real gradient magnitude distribution, plotted as the
dashed black line.

As a baseline, we compare the accuracy of our method
to a UNet architecture identical to our foreground synthesis
network except that it takes an input volume consisting of Is
(instead ofW), ps, and pt. Variations of a UNet architecture
have been used in a variety of image synthesis works, in-
cluding some focusing on human synthesis [11, 13]. Fig. 9
compares our model with a UNet using LV GG+GAN . The
UNet synthesizes incorrect foreground appearances as seen
in examples 1 and 4. The UNet often copies appearances
from similar poses in the training data rather than moving
pixels. Our method does not suffer from this since we move
body parts instead of synthesizing them from scratch. In
addition, we are better at reconstructing backgrounds, such
as the crowd in example 1, the black background in exam-
ple 2, the “U” letter in example 3 and the sky in example
4. Table 1 presents the performance of our approach vs. the
UNet when training with LV GG+GAN . We evaluate per-
formance using three metrics: L1 error, VGG error, and
structural similarity score (SSIM)[27]. SSIM is a common
measure of perceived image quality, where a higher score is
better. Our model outperforms the UNet for all metrics with
statistical significance.

Table 1. Errors (lower is better) and SSIM score (higher is bet-
ter) of our method vs. a UNet architecture. Standard deviations
are reported in parentheses. Our method achieves better scores.
Differences are statistically significant using a paired t-test.

Model L1 Error VGG Error SSIM Score
UNet 0.038(0.018) 0.215(0.091) 0.847(0.103)
Ours 0.034(0.018) 0.200(0.092) 0.863(0.105)

4.2. Video Synthesis

By applying our method independently to a sequence of
target poses, we can construct a sequence of images depict-
ing an action. Fig. 10 shows examples of this for golf and
tennis. We use the first frame of a video as the source im-
age, and each pose of the sequence as a target pose. We
show the ground truth video frames below our outputs for
comparison. Our frames are temporally coherent, produc-
ing consistent appearances over time. The textures of the
foreground, such as the creases on the golfer’s pants and
shadows on the tennis player’s body are visually believable
given the motion sequence, although they do not exactly
match the ground truth. The synthesized background is
consistent across frames because our model generates back-
grounds using source image/pose information only.

Is It OURSL1 OURSVGG OURSVGG+GAN

Figure 7. Sample results of our method with different loss functions. Each row is a different example. L1 loss produces the blurriest
images, while VGG+GAN produces the sharpest.

Gradient	Magnitude	Quartiles

%
	o
f	p

ixe
ls

1 2 3 4
20

22

24

26

28

L1
VGG
VGG+GAN
Ground Truth

Figure 8. Plot of pixel gradient magnitude for different loss func-
tions, as well as for the ground truth images. We bin the gradi-
ents by ground truth quartiles. The VGG+GAN’s distribution best
matches the ground truth gradient magnitude distribution.

4.3. Cross-Action Synthesis

We now illustrate our network’s ability to transform a
person’s pose to one of a different action class. We give a
source image from one action class, and a target pose from
a different class as input. Our network is identical to the
one used in the last section, meaning that it has not seen
examples of pose transformations across classes. Fig. 11
presents some example outputs. We are able to produce
realistic images across all action class permutations.

5. Discussion

Results show that our method is capable of synthesizing
images across different action classes. Though trained on
pairs of images within the same video, our model is able
to generalize to pose-appearance combinations that it has
never seen (e.g. a golfer in a tennis player’s pose). This
is possible because our model has learned to disentangle
some pose and appearance characteristics. Our outputs are
temporally consistent, producing coherent video sequences
from a pose sequence. This is surprising since we apply our
method independently to each frame and do not explicitly
enforce temporal consistency. We believe this result can be
attributed to how we move body layers to match the target
pose instead of merging motion and appearance cues into a
latent space as is common in past work.

Our approach sometimes struggles with synthesizing de-
tailed body parts like the face. Humans are particularly
adept at detecting facial abnormalities, so improving the
face is critical to synthesizing realistic images of people.
To do this, a better metric is needed to assess image quality.
Measures like L1 loss and SSIM provide some context but
do not differentiate subtle differences, such as a deformed
facial feature.

Transforming a 2D pose to an image is an undercon-
strained problem. For example, even if we know the 2D

Figure 9. A comparison of our model with a UNet when both are
trained using LV GG+GAN . The UNet synthesizes incorrect fore-
ground appearances in examples 1 and 4. It also produces back-
ground artifacts in all of these examples.

Figure 10. Two example sequences generated by our method,
along with ground truth sequences below them. We take the first
frame of a real video (source image) along with the pose sequence
of the entire video, and synthesize a sequence of images by inde-
pendently applying our model to each target pose. Our method is
able to produce temporally coherent appearances.

location of the wrist, the depth must be inferred. Further-
more, there could be many valid configurations of the body
near that joint. Training using a limited set of action classes
gives our network some contextual hints as to what config-

Figure 11. Results when applying poses from one action class to
images of another. We can successfully transfer poses across all
classes.

urations and appearances are likely given a particular 2D
pose. This is exemplified by some of the cross-action trans-
fers in Fig. 11. For instance, both the tennis instructor in
row 1, column 2 and the yoga instructor in row 2, column
4 are synthesized with a golfer’s glove after transforming
their poses. As the number of possible poses that the net-
work must resolve increases, it is likely that incorporating
additional information like 3D joint locations will be desir-
able.

6. Summary

This work demonstrates the use of a modular gener-
ative neural network to synthesize images of humans in
new poses. Our model performs synthesis in layers, de-
coupling the foreground from the background and different
body parts from one another. It moves body parts to tar-
get locations, which allows it to capture large pose changes
while maintaining correct foreground appearance. By de-
coupling the foreground from the background, it is also able
to synthesize more realistic backgrounds than can a typical
UNet architecture. Experiments also show that these design
choices allow our model to generalize to tasks it was not ex-
plicitly trained for, such as transferring poses across action
classes and producing temporally coherent action videos.

References
[1] J. Andreas et al. Learning to compose neural networks for

question answering. arXiv preprint arXiv:1601.01705, 2016.
2

[2] D. Eigen and R. Fergus. Predicting depth, surface normals
and semantic labels with a common multi-scale convolu-
tional architecture. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), pages 2650–2658,
2015. 2

[3] L. A. Gatys et al. Texture synthesis and the controlled gener-
ation of natural stimuli using convolutional neural networks.
arXiv preprint arXiv:1505.07376, 12, 2015. 5

[4] I. Goodfellow et al. Generative adversarial nets. In Ad-
vances in neural information processing systems (NIPS),
pages 2672–2680, 2014. 2

[5] Y. Güçlütürk et al. Convolutional sketch inversion. In Eu-
ropean Conference on Computer Vision (ECCV), pages 810–
824. Springer, 2016. 2

[6] P. Isola et al. Image-to-image translation with conditional
adversarial networks. arXiv preprint, 2017. 2, 3

[7] M. Jaderberg et al. Spatial transformer networks. In Ad-
vances in neural information processing systems (NIPS),
pages 2017–2025, 2015. 4

[8] D. Ji et al. Deep view morphing. Computer Vision and Pat-
tern Recognition (CVPR), 2017. 2

[9] J. Johnson et al. Inferring and executing programs for visual
reasoning. arXiv preprint arXiv:1705.03633, 2017. 2

[10] T. D. Kulkarni et al. Deep convolutional inverse graphics
network. In Advances in Neural Information Processing Sys-
tems (NIPS), pages 2539–2547, 2015. 2

[11] C. Lassner et al. A generative model of people in clothing.
arXiv preprint arXiv:1705.04098, 2017. 2, 6

[12] C. Li and M. Wand. Precomputed real-time texture synthesis
with markovian generative adversarial networks. In Euro-
pean Conference on Computer Vision (ECCV), pages 702–
716. Springer, 2016. 2

[13] L. Ma et al. Pose guided person image generation. arXiv
preprint arXiv:1705.09368, 2017. 2, 6

[14] M. Mathieu et al. Deep multi-scale video prediction beyond
mean square error. arXiv preprint arXiv:1511.05440, 2015.
2

[15] A. Newell et al. Stacked hourglass networks for human pose
estimation. In European Conference on Computer Vision
(ECCV), pages 483–499. Springer, 2016. 3, 6

[16] E. Park et al. Transformation-grounded image genera-
tion network for novel 3d view synthesis. arXiv preprint
arXiv:1703.02921, 2017. 2

[17] D. Pathak et al. Context encoders: Feature learning by in-
painting. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 2536–
2544, 2016. 2

[18] T. M. Quan et al. Fusionnet: A deep fully residual convo-
lutional neural network for image segmentation in connec-
tomics. arXiv preprint arXiv:1612.05360, 2016. 2

[19] A. Radford et al. Unsupervised representation learning with
deep convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434, 2015. 2

[20] K. Rematas et al. Novel views of objects from a single image.
TPAMI, 2016. 2

[21] O. Ronneberger et al. U-net: Convolutional networks for
biomedical image segmentation. In International Confer-
ence on Medical image computing and computer-assisted in-
tervention (MICCAI), pages 234–241. Springer, 2015. 2, 3

[22] T. Salimans et al. Improved techniques for training gans. In
Advances in Neural Information Processing Systems (NIPS),
pages 2234–2242, 2016. 2

[23] Y. Shih et al. Data-driven hallucination of different times
of day from a single outdoor photo. ACM Trans. Graph.,
32(6):200:1–200:11, 2013. 2

[24] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014. 5

[25] J. Y. A. Wang and E. H. Adelson. Representing moving im-
ages with layers. IEEE Trans. Image Processing, 3(5):625–
638, 1994. 3

[26] X. Wang and A. Gupta. Generative image modeling us-
ing style and structure adversarial networks. In European
Conference on Computer Vision (ECCV), pages 318–335.
Springer, 2016. 2

[27] Z. Wang et al. Image quality assessment: From error visi-
bility to structural similarity. Trans. Img. Proc., 13:600–612,
2004. 6

[28] S.-E. Wei et al. Convolutional pose machines. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4724–4732, 2016. 3

[29] S. Xie and Z. Tu. Holistically-nested edge detection. In Pro-
ceedings of the IEEE international conference on computer
vision (ICCV), pages 1395–1403, 2015. 2

[30] J. Yang et al. Weakly-supervised disentangling with recur-
rent transformations for 3d view synthesis. In Advances in
Neural Information Processing Systems (NIPS), pages 1099–
1107, 2015. 2

[31] R. Zhang et al. Colorful image colorization. In European
Conference on Computer Vision (ECCV), pages 649–666.
Springer, 2016. 2

[32] B. Zhao et al. Multi-view image generation from a single-
view. arXiv preprint arXiv:1704.04886, 2017. 2

[33] J. J. Zhao et al. Energy-based generative adversarial network.
CoRR, abs/1609.03126, 2016. 2

[34] T. Zhou et al. View synthesis by appearance flow. In Euro-
pean Conference on Computer Vision (ECCV), pages 286–
301. Springer, 2016. 2

[35] J.-Y. Zhu et al. Generative visual manipulation on the natural
image manifold. In Proceedings of European Conference on
Computer Vision (ECCV), 2016. 2

