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Abstract

Effective integration of contextual information is cru-
cial for salient object detection. To achieve this, most ex-
isting methods based on ’skip’ architecture mainly focus
on how to integrate hierarchical features of Convolution-
al Neural Networks (CNNs). They simply apply concate-
nation or element-wise operation to incorporate high-level
semantic cues and low-level detailed information. Howev-
er; this can degrade the quality of predictions because clut-
tered and noisy information can also be passed through.
To address this problem, we proposes a global Recurrent
Localization Network (RLN) which exploits contextual in-
formation by the weighted response map in order to local-
ize salient objects more accurately. Particularly, a recur-
rent module is employed to progressively refine the inner
structure of the CNN over multiple time steps. Moreover,
to effectively recover object boundaries, we propose a local
Boundary Refinement Network (BRN) to adaptively learn
the local contextual information for each spatial position.
The learned propagation coefficients can be used to opti-
mally capture relations between each pixel and its neigh-
bors. Experiments on five challenging datasets show that
our approach performs favorably against all existing meth-
ods in terms of the popular evaluation metrics.

1. Introduction

Visual saliency has gained a lot of interest in recent
years. It has been shown effective in a wide range of ap-
plications including person identification [2], visual track-
ing [9]], image captioning [[7, 8], robot navigation [6] and vi-
sual question answering [21]]. When it comes to the image-
based salient object detection, two major problems need to
be tackled: how to highlight salient objects against the clut-
tered background and how to preserve the boundaries of
salient objects. However, in view of the fact that salient ob-
jects may share some similar visual attributes with the back-
ground distractors and sometimes multiple salient objects
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(d)

Figure 1. Comparison with the feature integration based method.
(a) Input images. (b) Amulet [33]]. (c) Our method. (d) Ground
truth masks.

overlap partly or entirely with each other, saliency detection
still remains challenging in computer vision tasks. The re-
cent CNNs-based approaches [18} 122} 10,133, 29] have been
successful in mitigating the above issues, and have given
rise to the proliferation of a significant variety of neural net-
work structures. Usually, standard convolutional neural net-
works are composed of a cascade of repeated convolutional
stages, followed by the spatial pooling. The deeper layer-
s are encoded with richer semantic representation albeit at
the expense of spatial resolution, while the shallower lay-
ers contain much finer structures. Existing saliency detec-
tion methods [18 [10} 33] attempt to combine hierarchical
features to capture distinctive objectness and detailed infor-
mation simultaneously. However, these approaches usually
concentrate their analysis on how to combine features effec-
tively in general. What is often overlooked is that directly
applying concatenation or element-wise operation to differ-
ent feature maps are suboptimal because some maps are too
cluttered which can introduce misleading information when
detecting and segmenting salient objects. The problem is
illustrated in Figure[I]

Therefore, from a global perspective, we propose a nov-
el Recurrent Localization Network (RLN) which consists of
two modules: an inception-like Contextual Weighting Mod-
ule (CWM) and a Recurrent Module (RM). CWM aims to



predict a spatial response map to adaptively weight the fea-
tures maps for each position, which can localize the most
attentive parts for every given input. Specifically, CWM
lies on top of the side output results of each convolution-
al block, which takes the output feature maps as input and
learns a weight for each pixel based on the multi-scale con-
textual information. The weights are then employed to each
feature map for producing a weighting spatial representa-
tion. CWM serves to filter out the distractive and cluttered
background and make salient objects stand out. Moreover,
a recurrent structure is proposed in order to gradually refine
the predicted saliency map over ’time’. It establishes recur-
rent connections to propagate the outputs of certain blocks
to its input so as to exploit the context cue in the training
process of different layers.

Second, from a local perspective, we adopt a Boundary
Refinement Network (BRN) to recover the detailed bound-
ary information. The BRN takes both the initial RGB image
and the saliency map as input. The saliency map serves as
the prior map which can assist the learning process to gen-
erate more accurate predictions. BRN can predictan x n
propagation coefficient map for each pixel which indicates
the relations between the center point and its n x n neigh-
bors. For each pixel, the corresponding coefficients are
position-aware and can adaptively learn the local contextual
information for the n x n neighbors.

To summarize, our contributions are as follows:

e We propose a novel Localization-to-Refinement net-
work where the former recurrently focuses on the s-
patial distribution of various scenarios to help better
localize salient objects and the latter helps refine the
saliency map by the relations between each pixel and
their neighbors.

In the Recurrent Localization Network, a contextual
module is adopted for weighting features maps at each
position. Also, a recurrent mechanism is proposed to
gather contextual information for refining the convolu-
tional features iteratively. In the Boundary Refinement
Network, a refinement module is adopted to learn local
context information by the propagation efficient.

Compared with all state-of-the-art works, the pro-
posed model achieves the best performance on EC-
SSD, THUR15K, DUT-OMRON, HKU-IS and DUTS
benchmark datasets.

2. Related Work

Various approaches have been proposed to solve the
problem of saliency detection. Early research [23} 12} 131}
32,111,119, 114, 4, 25| focuses on low-level visual features,
such as center bias, contrast prior and background prior. Re-
cently, significant progress has been made by deep learning
based methods [261 136,17, 28\ 15, 161118} 22} [10, 29| 33} 3]],
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which can be broadly categorized into region-based and
Fully Convolutional Network (FCN)-based methods. In the
following, we briefly review recent developments on these
two categories.

2.1. Region-based Saliency

Region-based approaches leverage each image patch as
the basic processing unit for making saliency prediction.
In [[17], Li et al. utilize multi-scale features extracted from a
deep CNN via exploiting contextual information. A classi-
fier network is employed to infer the saliency score of each
image segment. In [36], Zhao et al. propose a multi-context
deep learning structure for salient object detection. They at-
tempt to model each superpixel by jointly optimizing both
global and local context. In [26], a two-stage training strat-
egy is proposed to combine both image patches and can-
didate objects. Local features and global cues are incor-
porated for generating a weighted sum of salient object re-
gions. Lee et al. [16] utilize a two-stream framework with
high-level feature descriptors extracted from the VGG-net
and low-level heuristic features such as color histogram and
Gabor responses. A neural network with fully-connected
layers is proposed to evaluate the saliency of every region.

2.2. FCN-based Saliency

While region-based deep learning approaches improve
the performance over the ones based on hand-crafted fea-
tures by a large margin, they ignore important spatial in-
formation as they assign one saliency label to each image
patch. Also, these methods are time-consuming since the
whole networks are run for many times to get predictions of
all patches in the image. To overcome this problem, one of
the most popular CNNs adopted is the Fully Convolutional
Network. Several existing works try to improve the saliency
detection task mainly based on the following aspects.

Skip Connections. Skip connections aim to add deeper lay-
ers to lower ones and integrate saliency prediction at mul-
tiple resolutions. In [18]], a multiscale FCN is proposed to
capture effective semantic features and visual contrast in-
formation for saliency inference. Hou ef al. in [10] in-
troduce short connections by transforming high-level fea-
tures to shallower side-output layers. The multi-scale fea-
ture maps at each layer can assist to locate salient regions
and recover detailed structures at the same time. Zhang et.
al. [33] learn to aggregate multi-level feature maps at each
resolution and predict saliency maps in a recursive manner.
In [29], Wang et. al. propose a stagewise refinement mod-
el and a pyramid pooling module to include both local and
global context information for saliency prediction. In par-
ticular, the stagewise model is utilized to add lower level
detailed features to the predicted map stage by stage. The
aforementioned works attempt to utilize hierarchical fea-
tures of CNNs to make prediction. However, messy and



Figure 2. The overall structure of Recurrent Localization Network
(RLN). The blue and black dotted lines denote the recurrent blocks
and convolutional operation, respectively.

cluttered information are also included when low-level fea-
tures are combined directly with high-level ones. To deal
with it, we propose an inception-like contextual weighting
module for purifying the convolutional features.

Recurrent Structure. Recurrent Structure can help re-
duce prediction errors by iteratively integrating contextu-
al information. Kuen [15] firstly adopt a convolutional-
deconvolutional network to produce a coarse saliency map.
Then a spatial transformer and recurrent network units are
used to iteratively search for the attentive image sub-regions
for the saliency refinement. Liu and Han [22] propose an
end-to-end method based on the fully convolutional net-
work. A hierarchical recurrent CNN is adopted to progres-
sively recover image details of saliency maps through in-
tegrating local context information. In [28], Wang ef. al.
utilize the predicted saliency map as the feedback signal,
which serves as the saliency prior to automatically learn to
refine the saliency prediction by correcting its previous er-
rors. Different from those works, we propose a block-wise
recurrent module which can combine the output and input
features of certain convolutional block over multiple time
steps thereby incorporating the contextual information.

3. The Proposed Method

In this section, we will elaborate on the proposed frame-
work for saliency detection. We firstly describe the global
Recurrent Localization Network (RLN) in Section 3.1, and
then give a detailed depiction of the local Boundary Refine-
ment Network (BRN) in Section 3.2. The overall architec-
ture of the proposed network is illustrated in Figure 2}

3.1. Recurrent Localization Network

3.1.1 Base Network

We tackle the saliency detection problem based on the fully
convolutional network. Our proposed method is based on
the ResNet-50 network [24]. Specifically, we remove the
original global average pooling, fully connected and soft-
max loss layers and retain the bottom convolutional blocks
in ResNet-50 network. The base network is composed of
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repetitive residual building blocks with different output di-
mensions. For an input image I, the base network generates
5 feature maps (f', 2.0 ) with decreasing spatial resolu-
tion by stride 2. Each map is produced by one residual con-
volution block. The feature map f° obtained from Conv5
has the smallest spatial dimension while f* has the largest
one. For efficient computation, we obtain the k-th feature
map f5(k € {3,4,5}) by applying a 3 x 3 convolutional
layer with 128 channels behind the output feature map f* of
the k-th residual block to reduce the dimension. We upsam-
ple the feature maps f%(k € {4,5}) to the same size as f5.
Then an element-wise multiplication layer is applied to all
feature maps ffj followed by one 1 x 1 convolutional layer
with 128 channels and one 1 x 1 convolutional layer with 2
channels to produce a prediction map S. We set the number
of output channels in the prediction map equal to the num-
ber of possible labels. Each channel of S corresponds to a
confidence measure used in predicting each spatial position
as one of the two classes. Finally, we directly upsample S
using bilinear interpolation to match the input image size.

3.1.2 Network Architecture

Most of the existing saliency detection methods typical-
ly involve a combination of multi-scale convolutional fea-
tures, which is driven by the notion that different layers of
CNNs usually carry rich representation varying from low-
level visual characteristics to high-level discriminative in-
formation. However, as mentioned earlier, there exist lim-
itations among the integrated features if certain “bad” fea-
tures are adopted because simple incorporation of convo-
lutional features can make the noise in “bad” feature maps
unrestrainedly pass to the prediction layer.

Motivated by the above observation, we propose a con-
textual weighting mechanism based on the inception archi-
tecture to modulate the features being passed. In particular,
a recurrent structure is adopted for learning context-aware
features, which can connect the output of each block to the
input of the same block in a feedback fashion.

Response Map

Feature Aggregation

(WXHXC)

(WXHXC)

)Z@ Mul %ale contex filters

Feature Map

Figure 3. Details of Inception-like Module.

Inception-like Contextual Weighting Module. Our
module is inspired by the success of contextual reweighting
network [13]] in image geo-localization. In order to obtain



the spatial response map for each position, we first connect
a downsampling layer behind the feature map f* which is
generated by the k-th residual block. Then a convolution-
al layer with kernel size m is applied for sliding a m x m
spatial window on the local feature, which is shown in Fig-
ure Bl Thus the context information can be included in the
hidden context filter.

To obtain multi-scale contextual information, we adopt
an inception-like module by using three context filters with
different kernel sizes (3x3, 5x5, 7x7). Each filter pro-
duces an activation map with the size W x H x C, followed
by a L normalization layer. Then we concatenate these ac-
tivation maps to form features fffat.

To compute the contextual weighting response map M,
we utilize a convolutional layer with one output channel be-

hind f’;at, which is formulated as

M =Wxf, +b, 6))

where W represents the kernel and b denotes the bias pa-
rameter. The resulting weighting response map is of size
W x H where each value in this map determines the impor-
tance of each spatial position.

Then the Softmax operation is applied to Y & spatially to
get the final weighting response map,

exp(M"*(z,y))
> (o ) EXP(MF (a7, y"))

where ®*(x, 1) represents the normalized response value

at (z,y) and k is the index of the residual block. Intuitive-
ly, if pixel 4 is salient at position (z,y), the pixel in the
response map related to it should be assigned a higher val-
ue. Finally, the weighting map is upsampled to get ®* and
applied to the feature f’;,

" (z,y) = ©))

F¥(c) = ®," o ff(c), 3)

where c denotes the c-th feature channel. We use o to rep-
resent the element-wise product operation. Note that ®¥ is
shared across all the channels of f’;.

Figure 4. Illustration of the Recurrent Module (RM). The dot-
ted lines represent the convolution and upsample operations. The
symbol & denotes element-wise addition.

Recurrent Module. Contextual information [22, [36,
29] has been proved effective in saliency detection. Larger

context usually captures global spatial relations among ob-
jects while smaller context focuses on the local appearance,
both contributing to the saliency detection. In this paper,
we propose a novel recurrent module which offers the ad-
vantage that increasing time steps enable the whole network
to integrate contextual knowledge in a larger neighborhood
as time evolves and serves as a refinement mechanism by
combining the semantic cues and detailed information in the
inner blocks of Resnet-50.We treat each block in ResNet-50
as the basic recurrent unit, which shares the same parame-
ters of weight layers in our structure over time. The state of
the current block is determined by the current feed-forward
input and the previous state of the same block. Specifically,
the state of block hy, at time step ¢ is calculated by taking the
output feature maps from the previous prediction hy (¢ — 1)
at time step ¢t — 1 of the same block and the current out-
put hy,_1 () at time step t of its previous block k — 1 as the
input,

b gy — 4 PO b () + b)), t=0
K(t) = i r
Fi(WE # (et (8) + £ (Wh B (£ = 1)) +bi), ¢ >0
“

where the symbol * denotes the convolution operation.
fx(+) is a composite of multiple specific functions includ-
ing the BatchNorm and ReLU activation function. f,()
denotes the upsampling operation. w£ and wj, are feed-
forward and recurrent weights for block k. by represents
the bias for block k. Note that W£ is shared by the same
block, which is used multiple times at each block to reduce
memory consumption. wj, is learned independently across
the same block at different time steps in order to learn spe-
cific transformations for incorporating context information
from the current block at time step ¢ — 1.

Figure [ illustrates the overall recurrent structure in the
process of forward- and backward- propagation following
depth and time dimensions (here we set ¢ = 1). There
are several advantages with the proposed recurrent struc-
ture. First, by adopting the recurrent connection of the same
block at different time steps, the recurrent structure is able
to absorb the contextual and structural information with the
hidden convolution units. Second, by sharing weights for
multiple times at each layer, the new architecture can in-
crease the depth of traditional CNNs without significantly
increasing the total number of parameters.

3.2. Boundary Refinement Network

The RLN can aggregate useful features by filtering out
noisy parts and progressively refining the predictions by in-
tegrating dependent information. However, some detailed
structures along the boundaries of salient objects are still
missing. In order to recover continuous details for obtaining
spatial precision, we adopt a local Boundary Refinemen-
t Network (BRN) [35] to adaptively rectify the prediction.

The details of BRN is illustrated in Figure[5] The salien-
cy map generated by the RLN and the original RGB image
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Figure 5. The structure of Boundary Refinement Network (BRN).

are concatenated to serve as the input of BRN. For each po-
sition, BRN aims to learn a n X n propagation coefficient
map with which local context information can be aggregat-
ed to the center pixel.

For position ¢, BRN will first output a propagation coef-
ficient vector, which will then be flattened to a n x n square.
The refinement map at position ¢ will be generated by a mul-
tiplied sum of the propagation map and the saliency map in
the neighborhood of 7.

nxn

sQ:ZV?'Sg»dGLQa---’”X"’ )
d=1

where v¢ is the coefficient vector at position i of the d-th
neighbor and n X n represents the size of local neighbors.
s¢ and s/ denotes the prediction vector at location 4 before
and after the refinement operation, respectively. Each po-
sition in BRN is position-adaptive with a different propa-
gation coefficient, which can be automatically learned via
back-propagation without explicit supervision.

Implementation details. As shown in Table [2} BRN is
composed of 7 convolutional layers, each with the kernel
size of 3 x 3. The ReLU nonlinearity operations are per-
formed between two convolutional layers. We do not utilize
pooling layers and large strides in convolutional layers in
order to keep the same resolution between input and output
feature maps.

Layer Channel Kernel size Bias size
1 64 (K+3)x64x3x3 64
2 64 64 x 64 x3x3 64
3 64 64 x 64 x 3 x 3 64
4 128 64 x 128 x 3 x 3 128
5 128 128 x 128 x 3 x 3 128
6 128 128 x 128 x 3 x 3 128
7 nxn 128X (nxn)x3x3 nxmn

Table 2. The parameters of the BRN, where K = 1 represents the
one-channel saliency map.

The propagation matrices can model spatial relations a-
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mong neighbors to help refine the predicted map generated
by the RLN. Compared to the initial saliency map, the re-
fined one should not change too much in terms of the visual
appearance. To achieve this, we adopt the following initial-
ization in BRN:

ki(z,¢c) =6,

b(c) {1 l=Lc=(nxn+1)/2

0 others

where [ € {1,2,..., L} denotes the I-th convolutional lay-
er of BRN. k; is the convolutional kernel initialized by the
Gaussican distribution § ~ N (u,0?), where pp = 0,0 =
0.1. =z is the position in each kernel and c represents the
index of the channel. We set all bias parameters in the /-th
layer (I < L) to 0. For the L-th layer, biases are set to 0 ex-
cept that the value at the center position of n X n neighbors
is set to 1. Following this initialization, saliency prediction
of a certain pixel will be primarily influenced by the central
coefficient of the propagation map and also be be affected
by the other coefficients.

(6)

4. Experiments
4.1. Experimental Setup

Evaluation Datasets. We evaluate the proposed frame-
work on five popular datasets: ECSSD [31], DUT-
OMRON [32], THURI5K [5], HKU-IS [17], and DUT-
S [27]. ECSSD contains 1,000 natural and complex images
with pixel-accurate ground truth annotations. The images
are manually selected from the Internet. DUT-OMRON
has more challenging images with 5,168 images. All im-
ages are resized so as to the maximal dimension is 400
pixels long. THURI1SK includes 6,232 categorized im-
ages with ’butterfly’, *coffee’, ’dog’, ’giraffe’ and "plane’.
HKU-IS has 4,447 images which are selected by meeting at
least one of the following three criteria: multiple salient ob-
jects with overlapping, objects touching the image bound-
ary and low color contrast. DUTS is the latest released
dataset containing 10,553 images for training and 5,019 im-
ages for testing. Both training and test sets contain very
complex scenarios with high content variety.

Evaluation Criteria. We utilize three evaluation metrics
to evaluate the performance of our method with other salient
object detection methods, including Precision-Recall (PR)
curve, F-measure score and mean absolute error (MAE).
Given a saliency map with continuous values normalized
to the range of 0 and 255, we compute the corresponding
binary maps by using every possible fixed integer thresh-
old. Then we compute the precision/recall pairs of all bina-
ry maps to plot the PR curve by a mean value over all salien-
cy maps in a given dataset. Also, we utilize the F-measure
score to evaluate the quality of a saliency map, which is for-
mulated by a weighted combination of Precision and Recall.



" ECSSD [31] THURI15K [5] HKU-IS [17]] DUTS [27] DUT-OMRON [32]
F-measure | MAE | F-measure | MAE | F-measure | MAE | F-measure | MAE | F-measure | MAE
Ours 0.903 0.045 0.716 0.077 0.882 0.037 0.768 0.051 0.709 0.063
SRM [29] 0.892 0.056 0.708 0.077 0.874 0.046 0.757 0.059 0.707 0.069
Amulet [33] 0.869 0.061 0.670 0.094 0.839 0.052 0.676 0.085 0.647 0.098
UCEF [34] 0.841 0.080 0.645 0.112 0.808 0.074 0.629 0.117 0.613 0.132
KSR [30] 0.782 0.135 0.604 0.123 0.747 0.120 0.602 0.121 0.591 0.131
RFCN (28] 0.834 0.109 0.627 0.100 0.835 0.089 0.712 0.090 0.627 0.111
DS [20] 0.821 0.124 0.626 0.116 0.785 0.078 0.632 0.091 0.603 0.120
DCL [18]] 0.827 0.151 0.676 0.161 0.853 0.136 0.714 0.149 0.684 0.157
DHS [22]] 0.871 0.063 0.673 0.082 0.852 0.054 0.724 0.067 - -
LEGS [26] 0.785 0.119 0.607 0.125 0.732 0.119 0.585 0.138 0.592 0.133
MCDL [36] 0.796 0.102 0.620 0.103 0.757 0.092 0.594 0.105 0.625 0.089
MDF [[17]] 0.805 0.108 0.636 0.109 - - 0.673 0.100 0.644 0.092
BL [23] 0.684 0.217 0.532 0.219 0.660 0.207 0.490 0.238 0.499 0.239
DRFI [[12]] 0.733 0.166 0.576 0.150 0.722 0.145 0.541 0.175 0.550 0.138

Table 1. Quantitative evaluation in terms of F-measure and MAE scores. The best two scores are shown in red and blue colors, respectively.

B

7
-

(a) Image (b) GT (c) Baseline

u!

(d) CWM (e) RM (f) BRN

Figure 6. Visual examples of the proposed modules.

(14 ~2)Precision x Recall

F =
K ~2Precision + Recall

(7

« is set to be 0.3 to emphasize more on precision over recall
as suggested in [1].

Given the saliency map S and ground truth mask G, the
MAE score can be calculated by the element-wise differ-
ence between S and G,

1 W H
MAE = W ;; 15(t,7) = G@, ), (8)
where S(i, j) represents the saliency score at position (i, j)
and W and H are width and height.

Implementation Details. We have implemented our
network on a single Nvidia GTX 1080 GPU. Pre-trained
ResNet-50 is used to initialize the convolutional layers in
the RLN network (i.e. the convl to convb block). Other
convolutional parameters are randomly assigned. We train
our model on the training set of DUTS and test on its testing
set and other datasets. All training and test images are re-
sized to 384 <384 as the input to the RLN and 480x 480 to
the BRN. We do not use validation set and train the model
until its training loss converges. We use the SGD method
to train our network. A fixed learning rate is set to le-10
for training the RLN and 1e-8 for the BRN with the weight
decay 0.0005. We use the softmax entropy loss to train both
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networks. For the recurrent structure, the time step ¢ is set to
2 and we employ three top supervisions between the ground
truth and prediction maps.

4.2. Performance Comparison

We compare the proposed algorithm against 13 state-
of-the-art algorithms, including the deep learning based
methods as well as other non-deep competitors, DRFI [12],
BL [25], LEGS [26], MDF [17], MCDL [36], DS [20], D-
CL [118], DHS [22]], RFCN [28]], KSR [30], UCF [34], A-
mulet [33] and SRM [29].

Quantitative Evaluation. First, we compare the pro-
posed method with the others in terms of PR curves, F-
measure curves and F-measure scores, which are shown in
Figure [/l Among all datasets and evaluation metrics, the
proposed method performs favorably against other counter-
parts. Also, we show F-measure and MAE scores in Table
As we can see, our approach generates the best score
across all datasets. More results can be found in the supple-
mentary material.

Visual Comparison. To qualitatively evaluate the pro-
posed method, we visualize some example saliency maps of
our method with respect to the above-mentioned approaches
in Figure [§] The examples are shown in various scenarios,
including multiple salient objects (row 1-2), the small ob-



" ECSSD THURI15K HKU-IS DUTS DUT-OMRON
F-measure | MAE | F-measure | MAE | F-measure | MAE | F-measure | MAE | F-measure | MAE
Baseline 0.861 0.058 0.659 0.099 0.838 0.050 0.696 0.073 0.643 0.092
CWM 0.867 0.054 0.667 0.084 0.840 0.047 0.716 0.060 0.661 0.075
RM 0.893 0.048 0.702 0.080 0.875 0.041 0.760 0.054 0.712 0.066
BRN 0.903 0.045 0.716 0.077 0.882 0.037 0.768 0.051 0.709 0.063
Table 3. Performance of the proposed modules.
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Figure 7. The first row shows the performance of the proposed method with other state-of-the-art methods in terms of PR curves. The
second shows F-measure curves. The last show the precision, recall, and F-measure scores across four datasets. For all metrics, the
proposed method achieves better performance than others on all datasets.

ject (row 3), the object touching the image boundary (row
4) and salient objects sharing similar color appearance with
the background (row 5-7). From this picture, we can see
that our method can produce more accurate saliency maps
which are much closer to the ground truth masks.

4.3. Ablation Study

In this section, we provide the results about the contribu-
tion of each component in the proposed network.

Performance of the RLN and BRN. To investigate the
efficacy of the proposed Recurrent Localization Network
(RLN) and the Boundary Refinement Network (BRN), we

conduct ablation experiments across all five datasets. We
utilize the Base Network described in Section 3.1.1 as our
baseline model. The overall results in terms of F-measure
and MAE scores are shown in Table [3l Based on the base-
line network, we analyze the performance of each proposed
component, i.e., the inception-like Contextual Weighting
Module (CWM), Recurrent Module (RM), and BRN.

We first evaluate the CWM and the overall performance
can be improved for F-measure and MAE scores, respec-
tively. The increased performance benefits from the role
that CWM plays in filtering out the noise and cluttered
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Figure 8. Example results of the proposed method with state-of-the-art.

background information. Besides, through RM, the salien-
cy map can capture contextual dependencies to distinguish
confusing local pixels, so the mistakes can be corrected by
the network. Both modules can help the network localize
salient objects more accurately and remove distractors in
background. The final BRN can also show the improve-
ment, deriving from the learned propagation to help adap-
tively refine the boundaries of predicted map generated by
the RLN.

We also provide examples of the RLN and BRN. As
shown in Figure @ with the connection of CWM, RM and
BRN, the proposed method can generate more accurate re-
sults.

Performance of the controlled experiments. We com-
pare our proposed RLN with different variants on DUTS
dataset, as shown in Figure E} ’RM’-k denotes there are k
recurrent modules in our experiment. 'RM-1*" represents
no parameters are shared between ¢t = 0 and ¢t = 1. 'RM-
1#* represents that we train the RLN with only one loss at
t = 1. It can be seen that the performance increases with
more time steps. Also, top supervision of each time step and
recurrent mechanism are important for the whole network.

5. Conclusion

In this paper, we propose a novel Localization-to-
Refinement network for salient object detection from the
global and local view. The Recurrent Localization Net-
work (RLN) can learn to better localize salient objects by
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Figure 9. The F-measure scores and PR curves of the controlled
experiments on the DUTS dataset.

the weighted response map and a novel recurrent structure
is proposed for iteratively refining each convolutional block
over time. The Boundary Refinement Network (BRN) can
refine the prediction map by the spatial relationship of each
pixel and the neighbors. This is achieved via the propaga-
tion coefficient map learned by a small deep network. Ex-
perimental evaluation verify that the proposed model can
consistently improve the state-of-the-art performance on all
five benchmark datasets and all popular evaluation metrics.
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