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Abstract

Probabilistic methods for point set registration have
demonstrated competitive results in recent years. These
techniques estimate a probability distribution model of the
point clouds. While such a representation has shown
promise, it is highly sensitive to variations in the den-
sity of 3D points. This fundamental problem is primar-
ily caused by changes in the sensor location across point
sets. We revisit the foundations of the probabilistic regis-
tration paradigm. Contrary to previous works, we model
the underlying structure of the scene as a latent probabil-
ity distribution, and thereby induce invariance to point set
density changes. Both the probabilistic model of the scene
and the registration parameters are inferred by minimiz-
ing the Kullback-Leibler divergence in an Expectation Max-
imization based framework. Our density-adaptive regis-
tration successfully handles severe density variations com-
monly encountered in terrestrial Lidar applications. We
perform extensive experiments on several challenging real-
world Lidar datasets. The results demonstrate that our ap-
proach outperforms state-of-the-art probabilistic methods
for multi-view registration, without the need of re-sampling.

1. Introduction
3D-point set registration is a fundamental problem in

computer vision, with applications in 3D mapping and
scene understanding. Generally, the point sets are acquired
using a 3D sensor, e.g. a Lidar or an RGBD camera. The
task is then to align point sets acquired at different po-
sitions, by estimating their relative transformations. Re-
cently, probabilistic registration methods have shown com-
petitive performance in different scenarios, including pair-
wise [19, 14, 15] and multi-view registration [10, 6].

In this work, we revisit the foundations of the probabilis-
tic registration paradigm, leading to a reformulation of the
Expectation Maximization (EM) based approaches [10, 6].
In these approaches, a Maximum Likelihood (ML) formu-
lation is used to simultaneously infer the transformation

Figure 1. Two example Lidar scans (top row), with signifi-
cantly varying density of 3D-points. State-of-the-art probabilistic
method [6] (middle left) only aligns the regions with high density.
This is caused by the emphasis on dense regions, as visualized by
the Gaussian components in the model (black circles in bottom
left). Our method (right) successfully exploits essential informa-
tion available in sparse regions, resulting in accurate registration.

parameters, and a Gaussian mixture model (GMM) of the
point distribution. Our formulation instead minimizes the
Kullback-Leibler divergence between the mixture model
and a latent scene distribution.

Common acquisition sensors, including Lidar and
RGBD cameras, do not sample all surfaces in the scene
with a uniform density (figure 1, top row). The density of
3D-point observations is highly dependent on (1) the dis-
tance to the sensor, (2) the direction of the surface relative
to the sensor, and (3) inherent surface properties, such as
specularity. Despite recent advances, state-of-the art prob-



abilistic methods [19, 10, 6, 15, 14] struggle under varying
sampling densities, in particular when the translational part
of the transformation is significant. The density variation is
problematic for standard ML-based approaches since each
3D-point corresponds to an observation with equal weight.
Thus, the registration focuses on regions with high point
densities, while neglecting sparse regions.

This negligence is clearly visible in figure 1 (bottom
left), where registration has been done using CPPSR [6].
Here the vast majority of Gaussian components (black cir-
cles) are located in regions with high point densities. A
common consequence of this is inaccurate or failed regis-
trations. Figure 1 (middle right) shows an example regis-
tration using our approach. Unlike the existing method [6],
our model exploits information available in both dense and
sparse regions of the scene, as shown by the distribution of
Gaussian components (figure 1, bottom right).

1.1. Contributions

We propose a probabilistic point set registration ap-
proach that counters the issues induced by sampling den-
sity variations. Our approach directly models the underly-
ing structure of the 3D scene using a novel density-adaptive
formulation. The probabilistic scene model and the trans-
formation parameters are jointly inferred by minimizing the
Kullback-Leibler (KL) divergence with respect to the latent
scene distribution. This is enabled by modeling the acqui-
sition process itself, explicitly taking the density variations
into account. To this end, we investigate two alternative
strategies for estimating the acquisition density: a model-
based and a direct empirical method. Experiments are per-
formed on several challenging Lidar datasets, demonstrat-
ing the effectiveness of our approach in difficult scenarios
with drastic variations in the sampling density.

2. Related work
The problem of 3D-point set registration is extensively

pursued in computer vision. Registration methods can be
coarsely categorized into local and global methods. Local
methods rely on an initial estimate of the relative transfor-
mation, which is then iteratively refined. The typical ex-
ample of a local method is the Iterative Closest Point (ICP)
algorithm. In ICP, registration is performed by iteratively
alternating between establishing point correspondences and
refining the relative transformation. While the standard ICP
[1] benefits from a low computational cost, it is limited by
a narrow region of convergence. Several works [23, 21, 4]
investigate how to improve the robustness of ICP.

Global methods instead aim at finding the global solu-
tion to the registration problem. Many global methods rely
on local ICP-based or probabilistic methods and use, e.g.,
multiple restarts [17], graph optimization [24], branch-and-
bound [3] techniques to search for a globally optimal regis-

tration. Another line of research is to use feature descriptors
to find point correspondences in a robust estimation frame-
work, such as RANSAC [20]. Zhou et al. [27] also use
feature correspondences, but minimize a Geman-McClure
robust loss. A drawback of such global methods is the re-
liance on accurate geometric feature extraction.

Probabilistic registration methods model the distribution
of points as a density function. These methods perform
alignment either by employing a correlation based approach
or using an EM based optimization framework. In cor-
relation based approaches [25, 15], the point sets are first
modeled separately as density functions. The relative trans-
formation between the points set is then obtained by mini-
mizing a metric or divergence between the densities. These
methods lead to nonlinear optimization problems with non-
convex constraints. Unlike correlation based methods, the
EM based approaches [19, 10] find an ML-estimate of the
density model and transformation parameters.

Most methods implicitly assume a uniform density of
the point clouds, which is hardly the case in most applica-
tions. The standard approach [22] to alleviate the problems
of varying point density is to re-sample the point clouds in
a separate preprocessing step. The aim of this strategy is to
achieve an approximately uniform distribution of 3D points
in the scene. A common method is to construct a voxel
grid and taking the mean point in each voxel. Compara-
ble uniformity is achieved using the Farthest Point Strategy
[8], were points are selected iteratively to maximize the dis-
tance to neighbors. Geometrically Stable Sampling (GSS)
[11] also incorporates surface normals in the sample selec-
tion process. However, such re-sampling methods have sev-
eral shortcomings. First, 3D scene information is discarded
as observations are grouped together or removed, leading to
sparsification of the point cloud. Second, the sampling rate,
e.g. voxel size, needs to be hand picked for each scenario
as it depends on the geometry and scale of the point cloud.
Third, a suitable trade-off between uniformity and sparsity
must be found. Thus, such preprocessing steps are compli-
cated and their efficacy is questionable. In this paper, we
instead explicitly model the density variations induced by
the sensor.

There exist probabilistic registration methods that tackle
the problem of non-uniform sampling density [2, 13]. In
[2], a one class support vector machine is trained for pre-
dicting the underlying density of partly occluded point sets.
The point sets are then registered by minimizing the L2 dis-
tance between the density models. In [16], an extended EM
framework for modeling noisy data points is derived, based
on minimizing the KL divergence. This framework was
later exploited for outlier handling in point set registration
[13]. Unlike these methods, we introduce a latent distribu-
tion of the scene and explicitly model the point sampling
density using either a sensor model or an empirical method.



3. Method

In this work, we revisit probabilistic point cloud registra-
tion, with the aim of alleviating the problem of non-uniform
point density. To show the impact of our model, we employ
the Joint Registration of Multiple Point Clouds (JRMPC)
[10]. Compared to previous probabilistic methods, JRMPC
has the advantage of enabling joint registration of multiple
input point clouds. Furthermore, this framework was re-
cently extended to use color [6], geometric feature descrip-
tors [5] and incremental joint registration [9]. However, our
approach can be applied to a variety of other probabilistic
registration approaches. Next, we present an overview of
the baseline JRMPC method.

3.1. Probabilistic Point Set Registration

Point set registration is the problem of finding the rela-
tive geometric transformations between M different sets of
points. We directly consider the general case whereM ≥ 2.
Each set Xi = {xij}Nij=1, i = 1, . . . ,M , consists of 3D-
point observations xij ∈ R3 obtained from, e.g., a Lidar
scanner or an RGBD camera. We let capital letters Xij de-
note the associated random variables for each observation.
In general, probabilistic methods aim to model the probabil-
ity densities pXi(x), for each point set i, using for instance
Gaussian Mixture Models (GMMs).

Different from previous approaches, JRMPC derives the
densities pXi(x) from a global probability density model
pV (v|θ), which is defined in a reference coordinate frame
given parameters θ. The registration problem can then
be formulated as finding the relative transformations from
point set Xi to the reference frame. We let φ(·;ω) : R3 →
R3 be a 3D transformation parametrized by ω ∈ RD. The
goal is then to find the parameters ωi of the transformation
from Xi to the reference frame, such that φ(Xij ;ωi) ∼ pV .
Similarly to previous works [10, 6], we focus on the most
common case of rigid transformation φ(x;ω) = Rωx+ tω .
In this case, the density model of each point set is obtained
as pXi(x|ωi, θ) = pV (φ(x;ωi)|θ).

The density pV (v|θ) is composed by a mixture of Gaus-
sian distributions,

pV (v|θ) =

K∑
k=1

πkN (v;µk,Σk) . (1)

Here, N (v;µ,Σ) is a Gaussian density with mean µ and
covariance Σ. The number of components is denoted by K
and πk is the prior weight of component k. The set of all
mixture parameters is thus θ = {πk, µk,Σk}Kk=1.

Different from previous works, the mixture model pa-
rameters θ and transformation parameters ω are inferred
jointly in the JRMPC framework, assuming independent
observations. This is achieved by maximizing the log-

likelihood function,

L(Θ;X1, . . . ,XM ) =

M∑
i

Ni∑
j

log(pV (φ(xij ;ωi)|θ)) . (2)

Here, we denote the set of all parameters in the model
as Θ = {θ, ω1, . . . , ωM}. Inference is performed with
the Expectation Maximization (EM) algorithm, by first
introducing a latent variable Z ∈ {1, . . . ,K} that as-
signs a 3D-point V to a particular mixture component
Z = k. The complete data likelihood is then given by
pV,Z(v, k|θ) = pZ(k|θ)pV |Z(v|k, θ), where pZ(k|θ) = πk
and pV |Z(v|k, θ) = N (v;µk,Σk). The original mixture
model (1) is recovered by marginalizing the complete data
likelihood over the latent variable Z.

The E-step in the EM algorithm involves computing the
expected complete-data log likelihood,

Q(Θ;Θn)=

M∑
i

Ni∑
j

EZ|xij ,Θn[log(pV,Z(φ(xij ;ωi), Z|θ))] .

(3)
Here, the conditional expectation is taken over the latent
variable given the observed point xij and the current esti-
mate of the model parameters Θn. In the M-step, the model
parameters are updated as Θn+1 = arg maxΘQ(Θ; Θn).
This process is then repeated until convergence.

3.2. Sampling Density Adaptive Model

To tackle the issues caused by non-uniform point den-
sities, we revise the underlying formulation and model as-
sumptions. Instead of modeling the density of 3D-points,
we aim to infer a model of the actual 3D-structure of the
scene. To this end, we introduce the latent probability dis-
tribution of the scene qV (v). Loosely defined, it is seen
as a uniform distribution on the observed surfaces in the
scene. Intuitively, qV (v) encodes all 3D-structure, i.e.
walls, ground, objects etc., that is measured by the sen-
sor. Different models of qV (v) are discussed is section 3.4.
Technically, qV might not be absolutely continuous and is
thus regarded a probability measure. However, we will de-
note it as a density function to simplify the presentation.

Our goal is to model qV (v) as a parametrized density
function pV (v|θ). We employ a GMM (1) and minimize
the Kullback-Leibler (KL) divergence from pV to qV ,

KL(qV ||pV ) =

∫
log

(
qV (v)

pV (v|θ)

)
qV (v) dv . (4)

Utilizing the decomposition of the KL-divergence
KL(qV ||pV ) = H(qV , pV )−H(qV ) into the cross entropy
H(qV , pV ) and entropy H(qV ) of qV , we can equivalently
maximize,

E(Θ) = −H(qV , pV ) =

∫
log (pV (v|θ)) qV (v)dv (5)



In (5), the integration is performed in the reference frame
of the scene. On the other hand, the 3D points xij are ob-
served in the coordinate frames of the individual sensors.
As in section 3.1, we relate these coordinate frames with the
transformations φ(·;ωi). By applying the change of vari-
ables v = φ(x;ωi), we obtain

E(Θ) =
1

M

M∑
i=1

∫
R3

log (pV (φ(x;ωi)|θ)) · (6)

qV (φ(x;ωi))|det(Dφ(x;ωi))|dx .

Here, |det(Dφ(x;ωi))| is the determinant of the Jacobian
of the transformation. From now on, we assume rigid trans-
formations, which implies |det(Dφ(x;ωi))| = 1.

We note that if {xij}Nii=1 are independent samples from
qV (φ(x;ωi)), the original maximum likelihood formulation
(2) is recovered as a Monte Carlo sampling of the objective
(6). Therefore, the conventional ML formulation (2) relies
on the assumption that the observed points xij follow the
underlying uniform distribution of the scene qV . However,
this assumption completely neglects the effects of the acqui-
sition sensor. Next, we address this problem by explicitly
modeling the sampling process.

In our formulation, we consider the points in set i to be
independent samples xij ∼ qXi of a distribution qXi(x). In
addition to the 3D structure qV of the scene, qXi can also
depend on the position and properties of the sensor, and the
inherent properties of the observed surfaces. This enables
more realistic models of the sampling process to be em-
ployed. By assuming that the distribution qV is absolutely
continuous [7] w.r.t. qXi , eq. (6) can be written,

E(Θ)=

M∑
i=1

∫
R3

log (pV (φ(x;ωi)|θ))
qV (φ(x;ωi))

qXi(x)
qXi(x) dx.

(7)
Here, we have also ignored the factor 1/M . The frac-
tion fi(x) = qV (φ(x;ωi))

qXi (x) is known as the Radon-Nikodym
derivative [7] of the probability distribution qV (φ(x;ωi))
with respect to qXi(x). Intuitively, fi(x) is the ratio be-
tween the density in the latent scene distribution and the
density of points in point cloud Xi. Since it weights the ob-
served 3D-points based on the local density, we term it the
observation weighting function. In section 3.4, we later in-
troduce two different approximations of fi(x) to model the
sampling process itself.

3.3. Inference

In this section, we describe the inference algorithm used
to minimize (7). We show that the EM-based frame-
work used in [10, 6] also generalizes to our model. As
in section 3.1, we apply the latent variable Z and the
complete-data likelihood pV,Z(v, k|θ). We define the ex-

pected complete-data cross entropy as,

Q(Θ,Θn) = (8)
M∑
i=1

∫
R3

EZ|x,Θn [log (pV,Z(φ(x;ωi), Z|θ))] fi(x)qXi(x) dx.

Here, Θn is the current estimate of the parameters. The E-
step involves evaluating the expectation in (8), taken over
the probability distribution of the latent variable,

pZ|Xi(k|x,Θ) =
pXi,Z(x, k|Θ)∑K
k=1 pXi,Z(x, k|Θ)

=
πkN (φ(x;ωk);µk,Σk)∑K
l=1 πlN (φ(x;ωl);µl,Σl)

. (9)

To maximize (8) in the M-step, we first perform a
Monte Carlo sampling of (8). Here we use the assump-
tion that the observations are independent samples drawn
from xij ∼ qXi . To simplify notation, we define αnijk =
pZ|Xi(k|xij ,Θn). Then (8) is approximated as,

Q(Θ,Θn) ≈ Q(Θ,Θn) = (10)
M∑
i=1

1

Ni

Ni∑
j=1

K∑
k=1

αnijkfi(xij) log (pV,Z(φ(xij ;ωi), k|θ)) .

Please refer to the supplementary material for a detailed
derivation of the EM procedure.

The key difference of (10) compared to the ML case
(3), is the weight factor fi(xij). This factor effectively
weights each observation xij based on the local density
of 3D points. Since the M-step has a form similar to (3),
we can apply the optimization procedure proposed in [10].
Specifically, we employ two conditional maximization steps
[18], to optimize over the mixture parameters θ and trans-
formation parameters ωi respectively. Furthermore, our ap-
proach can be extended to incorporate color information us-
ing the approach proposed in [6].

3.4. Observation Weights

We present two approaches of modeling the observation
weight function fi(x). The first is based on a sensor model,
while the second is an empirical estimation of the density.

3.4.1 Sensor Model Based

Here, we estimate the sampling distribution qXi by model-
ing the acquisition sensor itself. For this method we there-
fore assume that the type of sensor (e.g. Lidar) is known
and that each point set Xi consists of a single scan. The
latent scene distribution qV is modeled as a uniform dis-
tribution on the observed surfaces S. That is, S is a 2-
dimensional manifold consisting of all observable surfaces.



Thus, we define qV (A) = 1
|S|
∫
S∩A dS for any measur-

able set A ⊂ R3. For simplicity, we use the same notation
qV (A) = P(V ∈ A) for the probability measure qV of V .
We use |S| =

∫
S

dS to denote the total area of S.
We model the sampling distribution qXi based on the

properties of a terrestrial Lidar. It can however be extended
to other sensor geometries, such as time-of-flight cameras.
We can without loss of generality assume that the Lidar is
positioned in the origin x = 0 of the sensor-based refer-
ence frame in Xi. Further, let Si = φ−1

i (S) be the scene
transformed to the reference frame of the sensor. Here, we
use φi(x) = φ(x, ωi) to simplify notation. We note that the
density of Lidar rays is decreasing quadratically with dis-
tance. For this purpose, we model the Lidar as light source
emitting uniformly in all directions of its field of view. The
sampling probability density at a visible point x ∈ Si is then
proportional to the absorbed intensity, calculated as n̂T

xx̂
‖x‖2 .

Here, n̂x is the unit normal vector of Si at x, ‖ · ‖ is the
Euclidean norm and x̂ = x/‖x‖.

The sampling distribution is defined as the probability of
observing a point in a subset A ⊂ R3. It is obtained by
integrating the point density over the part of the surface S
intersecting A,

qXi(A)=

∫
Si∩A

gi
|S|

dSi, gi(x)=

{
a
n̂T
xx̂
‖x‖2 , x ∈ Si ∩ Fi
ε , otherwise

(11)
Here, Fi ⊂ R3 is the observed subset of the scene, ε is
the outlier density and a is a constant such that the prob-
ability integrates to 1. Using the properties of qV , we can
rewrite (11) as qXi(A) =

∫
A
gi d(qV ◦ φi). Here, qV ◦ φi

is the composed measure qV (φi(A)). From the proper-
ties of the Radon-Nikodym derivative [7], we obtain that
fi = d(qV ◦φi)

dqXi
= 1

gi
. In practice, surface normal esti-

mates can be noisy, thus promoting the use of a regular-
ized quotient fi(x) = a ‖x‖2

γn̂T
xx̂+1−γ , for some fix parameter

γ ∈ [0, 1]. Note that the calculation of fi(x) only requires
information about the distance ‖x‖ to the sensor and the
normal n̂x of the point cloud at x. For details and deriva-
tions, see the supplementary material.

3.4.2 Empirical Sample Model

As an alternative approach, we propose an empirical model
of the sampling density. Unlike the sensor-based model in
section 3.4.1, our empirical approach does not require any
information about the sensor. It can thus be applied to arbi-
trary point clouds, without any prior knowledge. We mod-
ify the latent scene model qV from sec. 3.4.1 to include a 1-
dimensional Gaussian distribution in the normal direction of
the surface S. This uncertainty in the normal direction mod-
els the coarseness or evenness of the surface, which leads to

1 2 3 4 5 6

Figure 2. Visualization of the observation weight computed using
our sensor based model (left) and empirical method (right). The
3D-points in the densely sampled regions in the vicinity of the Li-
dar are assigned low weights, while the impact of points in the
sparser regions are increased. The two approaches produce visu-
ally similar results. The main differences are seen in the transitions
from dense to sparser regions.

variations orthogonal to the underlying surface. In the local
neighborhood of a point v̄ ∈ S, we can then approximate
the latent scene distribution as a 1-dimensional Gaussian in
the normal direction qV (v) ≈ 1

|S|N (n̂T
v̄(v − v̄); 0, σ2

n̂(v̄)).
It is motivated by a locally planar approximation of the sur-
face S at v̄, where qV (v) is constant in the tangent directions
of S. Here, σ2

n̂(v̄) is the variance in the normal direction.
To estimate the observation weight function f(x) =

qV (φ(x))
qX(x) , we also find a local approximation of the sam-

pling density qX(x). For simplicity, we drop the point set
index i in this section and assume a rigid transformation
φ(x) = Rx + t. First, we extract the L nearest neigh-
bors x1, . . . , xL of the 3D point x in the point cloud. We
then find the local mean x̄ = 1

L

∑
l xl and covariance

C = 1
L−1

∑
l(xl − x̄)T(xl − x̄). This yields the local

sampling density estimate qX(x) ≈ L
NN (x; x̄, C). Let

C = BDBT be the eigenvalue decomposition of C with
B = (b̂1, b̂2, b̂3) and D = diag(σ2

1 , σ
2
2 , σ

2
3), and eigenval-

ues sorted in descending order. Since we assume the points
to originate from a locally planar region, we deduce that
σ2

1 , σ
2
2 � σ2

3 . Furthermore, b̂3 and σ2
3 approximate the nor-

mal direction of the surface and the variance in this direc-
tion. We utilize this information for estimating the local
latent scene distribution, by setting v̄ = φ(x̄), n̂v̄ = Rb̂3
and σ2

n̂(v̄) = σ2
3 . We then obtain,

f(x) =
qV (φ(x))

qX(x)
∝ σ1σ2e

1
2 (x− x̄)TB

(
σ
−2
1 0 0

0 σ
−2
2 0

0 0 0

)
BT(x− x̄)

.

(12)
Here, we have omitted proportionality constants indepen-
dent of the point location x in f(x), since they do not
influence the objective (7). A detailed derivation is pro-
vided in the supplementary material. In practice, we found
f(x) ∝ σ1σ2 to be a sufficiently good approximation since



σ−2
1 , σ−2

2 ≈ 0 and x̄ ≈ x.
Note that the observation weights fi(xij) in (10) can be

precomputed once for every registration. The added com-
putational cost of the density adaptive registration method
is therefore minimal and in our experiments we only ob-
served an increase in computational time of 2% compared
to JRMPC. In figure 2, the observation weights fi(xij) are
visualized for both the sensor based model (left) and empir-
ical method (right).

4. Experiments
We integrate our sampling density adaptive model in

the probabilistic framework JRMPC [10]. Furthermore,
we evaluate our approach, when using feature information,
by integrating the model in the color based probabilistic
method CPPSR [6].

First we perform a synthetic experiment to highlight the
impact of sampling density variations on point set registra-
tion. Second, we perform quantitative and qualitative evalu-
ations on two challenging Lidar scan datasets: Virtual Photo
Sets [26] and the ETH TLS [24]. Further detailed results are
presented in the supplementary material.

4.1. Experimental Details

Throughout the experiments we randomly generate
ground-truth rotations and translations for all point sets.
The point sets are initially transformed using this ground-
truth. The resulting point sets are then used as input for
all compared registration methods. For efficiency reasons
we construct a random subset of 10k points for each scan
in all the datasets. The experiments on the point sets from
VPS and ETH TLS are conducted in two settings. First,
we perform direct registration on the constructed point sets.
Second, we evaluate all compared registration methods, ex-
cept for our density adaptive model, on re-sampled point
sets. The registration methods without density adaptation,
however, are sensitive to the choice of re-sampling tech-
nique and sampling rate. In the supplementary material we
provide an exhaustive evaluation of FPS [8], GSS [11] and
voxel grid re-sampling at different sampling rates. We then
extract the best performing re-sampling settings for each
registration method and use it in the comparison as an em-
pirical upper bound in performance.
Method naming: We evaluate two main variants of the
density adaptive model. In the subsequent performance
plots and tables, we denote our approach using the sensor
model based observation weights in section 3.4.1 by DARS,
and the empirical observation weights in section 3.4.2 by
DARE.
Parameter settings: We use the same values for all the
parameters that are shared between our methods and the
two baselines: the JRMPC and CPPSR. As in [10], we
use a uniform mixture component to model the outliers.

Figure 3. The synthetic 3D scene. Left: Rendering of the scene.
Right: Top view of re-sampled point set with varying density.

In our experiments, we set the outlier ratio 0.005 and fix
the spatial component weights πk to uniform. In case of
pairwise registration, we set the number of spatial compo-
nents K = 200. In the joint registration scenario, we set
K = 300 for all methods to increase the capacity of the
model for larger scenes. We use 50 EM iterations for both
the pairwise and joint registration scenarios. In case of color
features, we use 64 components as proposed in [6].

In addition to the above mentioned parameters, we use
the L = 10 nearest neighbors to estimate σ1 and σ2 in sec-
tion 3.4.2. To regularize the observation weights fi(xij)
(section 3.4) and remove outlier values, we first perform
a median filtering using the same neighborhood size of
L = 10 points. We then clip all the observation weights that
exceed a certain threshold. We fix this threshold to 8 times
the mean value of all observation weights within a point
set. In the supplementary material we provide an analysis
of these parameters and found our method not to be sensi-
tive to the parameter values. For the sensor model approach
(section 3.4.1) we set γ = 0.9. We keep all parameters fix
in all experiments and datasets.
Evaluation Criteria: The evaluation is performed by com-
puting the angular error (i.e. the geodesic distance) be-
tween the found rotation, R, and the ground-truth rota-
tion, Rgt. This distance is computed via the Frobenius
distance dF (R,Rgt), using the relation dG(R1, R2) =

2 sin−1(dF (R1, R2)/
√

8), which is derived in [12]. To
evaluate the performance in terms of robustness, we report
the failure rate as the percentage of registrations with an an-
gular error greater than 4 degrees. Further, we present the
accuracy in terms of the mean angular error among inlier
registrations. In the supplementary material we also pro-
vide the translation error.

4.2. Synthetic Data

We first validate our approach on a synthetic dataset to
isolate the impact of sampling density variations on pair-
wise registration. We construct synthetic point clouds by
performing point sampling on a polygon mesh that simu-
lates an indoor 3D scene (see figure 3 left). We first sample
uniformly, and densely. We then randomly select a virtual
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Figure 4. Recall curves with respect to the angular error. (a) Re-
sults on the synthetic dataset. Our DARE approach closely fol-
lows the upper bound, DAR-ideal. (b) Results on the combined
VPS and TLS ETH datasets. In all cases, our DARE approach
significantly improves over the baseline JRMPC [10].

Avg. inlier error (◦) Failure rate (%)

JRMPC 2.44±0.87 90.4
JRMPC-eub 1.67±0.92 46.0
ICP 1.73±1.04 62.6
ICP-eub 1.81±0.99 55.7
CPD 1.88±1.25 90.0
CPD-eub 1.30±0.95 40.8

DARE 1.45±0.89 43.3

Table 1. A comparison of our approach with existing methods in
terms of average inlier angular error and failure rate for pairwise
registration on the combined VPS and TLS ETH dataset. The
methods with the additional -eub in the name are the empirical
upper bounds using re-sampling. Our DARE method improves
over the baseline JRMPC, regardless of re-sampling settings, both
in terms of accuracy and robustness.

sensor location. Finally, we simulate Lidar sampling den-
sity variations by randomly removing points according to
their distances to the sensor position (see figure 3 right). In
total the synthetic dataset contains 500 point set pairs.

Figure 4a shows the recall curves, plotting the ratio of
registrations with an angular error smaller than a threshold.
We report results for the baseline JRMPC and our DARE
method. We also report the results when using the ideal
sensor sample model to compute the observation weights
fi(xij), called DAR-ideal. Note that the same sampling
function was employed in the construction of the virtual
scans. This method therefore corresponds to an upper per-
formance bound of our DARE approach.

The baseline JRMPC model struggles in the presence of
sampling density variations, providing inferior registration
results with a failure rate of 85 %. Note that the JRMPC
corresponds to setting the observation weights to uniform
fi(xij) = 1 in our approach. The proposed DARE, signifi-
cantly improves the registration results by reducing the fail-
ure rate from 85 % to 2 %. Further, the registration perfor-
mance of DARE closely follows the ideal sampling density
model, demonstrating the ability of our approach to adapt
to sampling density variations.

4.3. Pairwise Registration

We perform pairwise registration experiments on the
joint Virtual Photo Set (VPS) [26] and the TLS ETH [24]
datasets. The VPS dataset consists of Lidar scans from two
separate scenes, each containing four scans. The TLS ETH
dataset consists of two separate scenes, with seven and five
scans respectively. We randomly select pairs of different
scans within each scene, resulting in total 3720 point set
pairs. The ground-truth for each pair is generated by first
randomly selecting a rotation axis. We then rotate one of
the point sets with a rotation angle (within 0-90 degrees)
around the rotation axis and apply a random translation,
drawn from a multivariate normal distribution with standard
deviation 1.0 meters in all directions.

Table 4b shows pairwise registration comparisons in
terms of angular error on the joint dataset. We compare
the baseline JRMPC [10] with both of our sampling den-
sity models: DARE and DARS. We also show the results
for DARS without using normals, i.e. setting γ = 0 in sec-
tion 3.4.1, in the DARS-g0 curve. All the three variants
of our density adaptive approach significantly improve over
the baseline JRMPC [10]. Further, our DARE model pro-
vides the best results. It significantly reduces the failure rate
from 90.4% to 43.3%, compared to the JRMPC method.

We also compare our empirical density adaptive model
with several existing methods in the literature. Table 1
shows the comparison of our approach with the JRMPC
[10], ICP1 [1], and CPD [19] methods. We present numeri-
cal values for the methods in terms of average inlier angular
error and the failure rate.

Additionally, we evaluate the existing methods using re-
sampling. In the supplementary material we provide an
evaluation of different re-sampling approaches at different
sampling rates. For each of the methods JRMPC [10],
ICP [1], and CPD [19], we select the best performing re-
sampling approach and sampling rate. In practical applica-
tions however, such comprehensive exploration of the re-
sampling parameters is not feasible. In this experiment,
the selected re-sampling settings serve as empirical upper
bounds, denoted by -eub in the method names in table 1.

From table 1 we conclude that regardless of re-sampling
approach, our DARE still outperforms JRMPC, both in
terms of robustness and accuracy. The best performing
method overall was the empirical upper bound for CPD
with re-sampling. However, CPD is specifically designed
for pairwise registration, while JRMPC and our approach
also generalize to multi-view registration.

4.4. Multi-view registration

We evaluate our approach in a multi-view setting, by
jointly registering all four point sets in the VPS indoor

1We use the built-in Matlab implementation of ICP.



(a) CPPSR (b) DARE-color

Figure 5. Joint registration of the four point sets in the VPS indoor dataset. (a) CPPSR [6] only aligns the high density regions and neglects
sparsely sampled 3D-structure. (b) Corresponding registration using our density adaptive model incorporating color information.
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Figure 6. A multi-view registration comparison of our density
adaptive model and existing methods, in terms of angular error
on the VPS indoor dataset. Our model provides lower failure rate
compared to the baseline methods JRMPC and CPPSR, also in
comparison to the empirical upper bound.

dataset. We follow a similar protocol as in the pairwise reg-
istration case (see supplementary material). In addition to
the JRMPC, we also compare our color extension with the
CPPSR approach of [6]. Table 2 and figure 6 shows the
multi-view registration results on the VPS indoor dataset.
As in the pairwise scenario, the selected re-sampled ver-
sions are denoted by -eub in the method name. We use
the same re-sampling settings for JRMPC and CPPSR as
for JRMPC in the pairwise case. Both JRMPC and CPPSR
have a significantly lower accuracy and a higher failure rate
compared to our sampling density adaptive models. We fur-
ther observe that re-sampling improves both JRMPC and
CPPSR, however, not to the same extent as our density
adaptive approach. Figure 5 shows a qualitative comparison
between our color based approach and the CPPSR method
[6]. In agreement with the pairwise scenario (see figure 1)

Avg. inlier error (◦) Failure rate (%)

CPPSR 2.57±0.837 87.4
CPPSR-eub 1.63±0.807 20.9
JRMPC 2.38±1.01 92.1
JRMPC-eub 2.13±0.83 38.6

DARE-color 1.26±0.61 14.5
DARE 1.84±0.80 36.0

Table 2. A multi-view registration comparison of our density adap-
tive model with existing methods in terms of average inlier angular
error and failure rate on the VPS indoor dataset. Methods with -
eub in the name are empirical upper bounds. Our model provides
improved results, both in terms of robustness and accuracy.

CPPSR locks on to the high density regions, while our den-
sity adaptive approach successfully registers all scans, pro-
ducing an accurate reconstruction of the scene. Further, we
provide additional results on the VPS outdoor dataset in the
supplementary material.

5. Conclusions

We investigate the problem of sampling density varia-
tions in probabilistic point set registration. Unlike previous
works, we model both the underlying structure of the 3D
scene and the acquisition process to obtain robustness to
density variations. Further, we jointly infer the scene model
and the transformation parameters by minimizing the KL
divergence in an EM based framework. Experiments are
performed on several challenging Lidar datasets. Our pro-
posed approach successfully handles severe density vari-
ations commonly encountered in real-world applications.
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