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Abstract

Generative Adversarial Nets (GANs) and Conditonal
GANs (CGANs) show that using a trained network as loss
function (discriminator) enables to synthesize highly struc-
tured outputs (e.g. natural images). However, applying a
discriminator network as a universal loss function for com-
mon supervised tasks (e.g. semantic segmentation, line de-
tection, depth estimation) is considerably less successful.
We argue that the main difficulty of applying CGANs to su-
pervised tasks is that the generator training consists of op-
timizing a loss function that does not depend directly on
the ground truth labels. To overcome this, we propose to
replace the discriminator with a matching network taking
into account both the ground truth outputs as well as the
generated examples. As a consequence, the generator loss
function also depends on the targets of the training exam-
ples, thus facilitating learning. We demonstrate on three
computer vision tasks that this approach can significantly
outperform CGANs achieving comparable or superior re-
sults to task-specific solutions and results in stable training.
Importantly, this is a general approach that does not require
the use of task-specific loss functions.

1. Introduction
GANs [10] have become extremely popular due to their

ability to generate sharp, realistic images [2]. GANs train
deep generative models using a minimax game. The idea is
to learn a generator by fooling a discriminator which tries to
distinguish between real and generated examples. CGANs
[22] are an extension to model conditional distributions by
making the generator and the discriminator a function of
the input. This is a very interesting idea showing good re-
sults on image generation tasks. However, CGANs do not
work well on common supervised tasks (e.g. semantic seg-
mentation, instance segmentation, line detection), since the
generator is optimized by minimizing a loss function that
does not depend on the training examples. Practitioners try
to tackle this issue by defining and adding a task dependent
loss function to the objective. Unfortunately, it is very dif-

ficult to balance the two loss functions resulting in unstable
and often poor training.

In this paper we propose to replace the discriminator
with a siamese network. The inputs to the siamese network
are the ground truth, the generated output or perturbations
(random transformations) of these. The discriminator then
attempts to predict whether or not the input pair contains the
generated output (fake) or just the ground truth and its per-
turbations (real). As a consequence, the generator loss de-
pends on the training targets, which results in better, faster
and more robust learning. Applying random perturbations
makes the task of the discriminator more difficult, while, as
we show in the technical section, the generator target still
remains the ground truth. We call our approach Matching
Adversarial Network (MatAN) which can be used as a dis-
criminative model for supervised tasks.

Our experimental evaluation shows that this approach
can achieve very good performance in the tasks of seman-
tic segmentation, road network centerline extraction from
aerial images and instance segmentation. In particular, we
significantly outperform CGANs and achieve comparable
or superior results to supervised approaches that exploit
task-specific solutions. The training of MatAN was sta-
ble (not resulting in degenerative output) in all our exper-
iments, even with different generator and discriminator ar-
chitectures. This is an important advantage over CGANs
which are sensitive to the applied network architectures.

2. Related Work
Generative Adversarial Networks (GANs) [10] can cre-

ate very realistic images; however, the stability of the train-
ing is an issue. To overcome this, many methods attempt to
improve the training performance of GANs. Radford et al.
[26] proposed to use specific network architectures, includ-
ing transposed convolution and leaky ReLu, which result in
better image generation. [28] introduces several practices
for more stable training, e.g. minibatch discrimination. [1]
analyzes the reasons for the instability of GAN training.
[2] proposed the Wasserstein GAN, which achieves better
training by using a discriminator (also called critic) which
estimates the earth mover’s distance between the probabil-
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Figure 1: Our MatAN discriminator is a siamese network: (left) positive examples, (right) negative ones. The input to the
siamese network is passed through a perturbation T or through the identity transformation I . The configurations of T and I
result in different training behavior. The drawing shows the case when the perturbation is only applied to one branch of the
positive samples.

ity density function of the generated and the ground truth
data. This approach has the restriction that the discrimi-
nator must be a 1-Lipschitz function, which is achieved by
weight trimming. This disadvantage is addressed in [11]
by penalizing the norm of the gradients of the discrimina-
tor. Other works improving and analyzing GANs include
[25, 24, 21, 3, 16, 14]. In [7] the generator outputs an image
pair of the same person and the siamese discriminator net
predicts if the image pair is real or generated. In contrast,
our siamese discriminator can take as input a real-generated
pair and functions as a supervised loss.

The idea of using a discriminator as loss function has
been also used in the context of supervised problems, by
making both the generator and the discriminator a function
of the input. This is typically refereed as a conditional GAN
(CGAN) [22]. It has been applied to many problems, in-
cluding text to image generation [27, 34, 8], image descrip-
tion [6, 19], super-resolution [18], shadow detection [23],
style transfer [36], semi-supervised learning [35, 30], gen-
eral image-to-image translation [15, 33, 9], learning from
simulated images [29]. While CGANs are successful in
tasks including image generation, they perform poorly in
tasks with well defined metrics, such as semantic segmen-
tation. We are not aware of any previous work producing
comparable results to state-of-the-art by using only adver-
sarial networks in the loss function.

3. Matching Adversarial Networks
We start our discussion with a short overview of GANs

and conditional GANs. We then formulate a new discrim-
inator consisting of a siamese network. This allow us to
make better use of the training examples, resulting in much
better performance and more stable training.

3.1. Overview of GANs and CGANs
Generative Adversarial Networks (GANs) [10] train

deep generative models using a minimax game. To gen-
erate samples, the generator maps a random noise vector z
into a high dimensional output y (e.g., an image) via a neu-

ral network y = G(z,ΘG). The generator G is trained to
fool a discriminator, D(y,ΘD), which tries to discriminate
between fake (i.e., generated) and real samples. The GAN
minimax game can thus be written as

min
ΘG

max
ΘD

LGAN(ŷ, z,ΘD,ΘG) = Eŷ∼py
log(D(ŷ,ΘD))

+Ez∼p(z) log(1−D(G(z,ΘG),ΘD) (1)

where the first term sums over the positive examples for
the discriminator (i.e., training examples), while the sec-
ond term sums over the negative examples which are gen-
erated by the generator by sampling from the noise prior.
Learning in GANs is an iterative process which alternates
between optimizing the loss LGAN(ŷ, z,ΘD,ΘG) w.r.t. to
the discriminator parameters ΘD and the generator parame-
ters ΘG respectively. The discriminator estimates the ra-
tio of the data distribution pd(y) and the generated dis-
tribution pg(y) : D∗

G(y) = pd(y)
pd(y)+pg(y) . As shown in

[10], the global minimum of the training criterion (equilib-
rium) is where the two probability distributions are iden-
tical: pg = pd, D

∗
G(y) = 1/2. Note that the gradients

w.r.t. to ΘG do not depend on ŷ directly, but only implic-
itly through the current estimate of ΘD. As a consequence,
the generator can produce any samples from the data distri-
bution instead of learning input-output relations in a super-
vised fashion.

To overcome this, GANs can be easily extended to con-
ditional GANs (CGANs) by introducing dependency of the
generator and the discriminator on the input x. So the dis-
criminator for the positive samples becomes D(x, ŷ,ΘD),
while for the negative ones it is D(x, G(x,ΘG, z),ΘD).
SinceD(x, G(x, z,ΘG),ΘD) does not depend on the train-
ing targets, practitioners [15] add an additional discrimina-
tive loss function to the objective, e.g. a pixel-wise `1 norm.
Unfortunately, it is very difficult to balance the influence of
the adversarial and task losses, and a simple linear combina-
tion does not work well in practice. Adding an adversarial
loss to a task-specific one does not necessarily improve the
performance [15].
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(a): α (b): β (c): γ (d): ε (e): ζ

Figure 2: The joint probability distributions of the siamese inputs in case of a 1D toy problem. α is a trivial case with
equilibrium in G(x) = ŷ, but this did not work in practice. In β the equilibrium pd = pg is not achievable, but the network
will converge towards G(x) = ŷ. γ can achieve equilibrium if G(x) = ŷ. δ ( when T1 = I) is the transposed of γ which
can achieve equilibrium if G(x) ∈ T2(ŷ). ε cannot achieve equilibrium, nor is it converging. ζ can achieve equilibrium if
G(x) ∈ T2(ŷ) (like δ).

3.2. Matching Adversarial Networks (MatANs)

We propose to use a siamese architecture for our discrim-
inator, allowing us to exploit the training points explicitly
in our loss function. The branches of our siamese network
y1,y2 takes as input either perturbations (random transfor-
mations) of the ground truth yi = Ti(ŷ) or the generated
output y2 = Tg(G(x)). Depending on the configuration
of the perturbations, which we denote as t, the perturbation
can be set to identity transformation Ti() = I(). We refer
the reader to Fig. 1 for an illustration of our siamese dis-
criminator architecture. We refer the reader to Fig. 3 for
an example of the perturbations we employ for a seman-
tic segmentation task. Each branch of the siamese network
undergoes a complex multi-layer non-linear transformation
with parameters ΘM mapping the input yi to a feature space
m(y,ΘM ). Then d is calculated as an element-wise abso-
lute value (i.e., abs) applied to the difference of the two
feature vectors m() coming from the two branches.

d(y1,y2,ΘM ) = abs(m(y1,ΘM )−m(y2,ΘM )) (2)

Based on the negative mean of the d vector, the discrimina-
tor predicts whether a sample pair is fake or real. This is a
linear transformation followed by a sigmoid function

D(y1,y2, b,ΘM ) = σ(−
K∑
i

di(y1,y2,ΘM )/K+b) (3)

where b is a trained bias and K is the number of features.
This formulation ensures that the magnitude of d should be
small for positive examples and large for the negative (i.e.,
generated) pairs. Similarly to GANs, we train our network
as a minimax game with the objective:

min
ΘG

max
ΘM ,b

LMatAN(ŷ,x,ΘM ,ΘG) =

Ey1,y2∼pdata(x,y,t) logD(T1(ŷ), T2(ŷ),ΘM , b)+

Ey1,x∼pdata(x,y,t) log(1−D(T1(ŷ), Tg(G(x,ΘG)),ΘM , b))
(4)

We do not require a noise since we do deterministic pre-
dictions. We optimize by alternating between updating the
discriminator and the generator parameters and apply the
modified generator loss:

LMatAN,G = − logD(T1(ŷ), Tg(G(x,ΘG)), |ΘM , b) (5)

This formulation enables the generator to match the
ground truth labels, while the discriminator must learn to
differentiate between the pairs including the generated out-
put and the pairs not. The perturbations serve the purpose of
making the matching of the ground truth (positive samples
to the discriminator) non trivial, which would be the case if
the input of the siamese branches would be identical, result-
ing always in d = 0. We show in our analysis that in certain
configurations the generator learns the ground truth, despite
applying random perturbations on it. To investigate the ef-
fect of the perturbations, we analyze the joint probability
distribution of the branch inputs. This is the extension of the
standard GAN to two variable joint distributions. We apply
a simplified model assuming one training sample and a per-
turbation which transforms the training sample to a uniform
distribution. In case of multiple samples the distribution of
the GT would consist of multiple points.

The optimal matching discriminator We set the first
input of the siamese network always y1 = T1(ŷ). The
second input is y2 = T2(ŷ) for the positive samples and
y2 = Tg(G(x)) for the negatives. T1, T2, Tg might be the
identity transformation, depending on the Ti() configura-
tion. For a given t perturbation configuration the discrimi-
nator loss function can be written as:

LMatAN,D = Ey1,y2∼pd(y1,y2) log(D(y1,y2)+

Ey1,y2∼pg(y1,y2) log(1−D(y1,y2)) (6)

where pd() is the joint distribution of T1(ŷ), and T2(ŷ) and
pg() is the joint distribution of T1(ŷ) and Tg(G(x)). Fol-
lowing [10], the optimal value of the discriminator for a
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(a): Input (b) GT (c) Perturbations
Figure 3: Perturbations: (a) Cityscapes input image, (b) the corresponding ground truth divided in patches, (c) rotation
perturbations applied independently patch wise on the ground truth.

(a): Input (b) Pix2Pix CGAN [15] (c) MatAN β MS (ours) (d) GT

Figure 4: Segmentation results on Cityscapes: Pix2Pix (b) captures the larger objects with homogeneous texture, but it
hallucinates objects in the image. In contrast, our method (c) can produce results very similar to the ground truth.

fixed G is:

D∗(y1,y2) =
pd(y1,y2)

pd(y1,y2) + pg(y1,y2)
(7)

Similarly to [10], the equilibrium of the adversarial training
would be whenD = 1/2, pd = pg the GT and the generated
data distributions match. The equilibrium conditions de-
pend on which non-identity perturbations are applied. See
Fig. 2 for illustrations. The equilibrium for each:

α: T1() = T2() = Tg() = I(): Equilibrium can be
achieved if ŷ = G(x), however in practice this did not work
since d(ŷ, ŷ) = 0 regardless of m().

β: T1() = Tg() = I(): Only T2(ŷ) perturbation
is applied. Here pg(y1,y2) is approximately a Dirac-
delta, thus pg(ŷ, G(x)) � pd(ŷ, T2(ŷ)) always, which

implies that the equilibrium of D = 1/2 is not achiev-
able. However, since d is the output of a Siamese net-
work d(G(x), ŷ) = 0, if G(x) = ŷ. Since D is a mono-
tonically decreasing function of d(G(x), ŷ) and d ≥ 0,
the maximum is at G(x) = ŷ. So the discriminator val-
ues for the generator after discriminator training will be:
D(ŷ, ŷ) > D∗(ŷ, T (ŷ)) > D∗(ŷ,y),y 6∈ T (ŷ), and so
the generator loss has its minimum in ŷ.

γ: T2() = Tg() = I(): Only T1(ŷ) is applied. Equi-
librium can be achieved if G(x) = ŷ, since in this case the
two joint distributions pd, pg match.

δ: T1() = I(): T2(ŷ) and Tg() are applied. Equilib-
rium can be achieved if G(x) ∈ T2(ŷ), since in this case
the two joint distributions pd, pg match.
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(a): Input (b) Cross Entropy perturbed (c) MatAN ζ (ours) (d) GT

Figure 5: Segmentation results on Cityscapes when trained with perturbed GT. Note that with MatAN the generator learns
continuous poles, however these were not observed as training samples. When using cross entropy loss, the net only learns
blobs.

ε: Only Tg() = I(). Since pg(T1(ŷ), G(x)) �
pd(T1(ŷ), T2(ŷ)), there is no equilibrium.

ζ: All perturbations are applied. Equilibrium is achiev-
able if G(x) ∈ T2(ŷ), the generator produces any of the
perturbations.

We show an ablation study for these configurations on
the Cityscapes semantic segmentation task in Table 1. Note,
that no additional discriminative loss function is necessary.

Patch-wise discriminator: We divide the output image
into small overlapping patches and use each patch as an in-
dependent training example. As perturbation we apply ran-
dom rotations in the range of [0, 360o] with random flips re-
sulting in an uniform angle distribution. We implement the
rotation over a larger patch than the target to avoid boundary
effects. Note that, as shown in Fig. 3, the perturbations are
applied independently to each patch and thus the discrimi-
nator cannot be applied in a convolutional manner.

4. Experiments

We demonstrate the effectiveness of MatAN on three
computer vision tasks with structured outputs: semantic
segmentation, road centerline detection and instance seg-
mentation. We provide an ablation study on Cityscapes [5]
and further experiments on the aerial images of the Toron-
toCity dataset [31].

ResNet Gen. mIoU Pix. Acc
Original Ground Truth:

Cross Ent. 66.9 94.7
MatAN α NoPer. 6.0 58.1
MatAN β NoAbs. 21.3 77.5

MatAN β 63.3 94.1
MatAN MS β 66.8 94.5

MatAN γ Match2Per. 63.5 93.3
MatAN δ PertGen. 60.2 93.8

MatAN β MS + Cross Ent. 65.1 94.2

Perturbed Ground Truth:
Pert. GT 44.8 78.0

Pert. Cross Entropy 42.7 85.1
MatAN ε GT Perturb 25.9 82.8
MatAN ζ All Perturb 58.1 93.8

Table 1: Mean IoU and pixelwise accuracy results from 3
fold cross-validation on the Cityscapes validation set with
the ResNet generator. All values are in %. The greek let-
ters denote the perturbation configuration. The multi-scale
MatAN achieves almost the same performance as cross-
entropy and is 200% higher than CGAN [15]. When we ap-
plied the perturbations to the GT, the MatAN could achieve
considerably higher results than this noisy GT or cross-
entropy.

4.1. Implementation Details

Network architecture: We use the same generator archi-
tecture in all experiments, a ResNet-50 [12] based encoder
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(a): GT (b) CGAN [15] (c) MatAN (ours)

Figure 6: Road centerline extraction: The output of the network is shown in red. Our MatAN can capture the topology even
for parallel roads.

Method Seg. Validation set Test set
F1 Precision Recall CRR F1 Precision Recall CRR

OSM (human) * - - - - - 89.7 93.7 86.0 85.4
DeepRoadMapper [20] * X - - - - 84.0 84.5 83.4 77.8

Seg3+thinning X 91.7 96.0 87.8 87.8 91.0 93.6 88.4 88.0
HED [32] * - - - - - 42.4 27.3 94.9 91.2

Seg2+thinning - 89.7 94.9 85.1 82.5 88.4 92.7 84.5 78.0
CGAN - 75.7 76.4 74.9 75.1 77.0 67.65 89.7 81.8

CGAN + L1 - 78.5 95.1 66.8 68.9 68.6 93.3 54.3 55.0
MatAN (ours) - 92.5 95.7 89.5 88.1 90.4 91.4 89.5 87.1

Table 2: Road topology recovery metrics in %. The Seg. column indicates if the method uses extra semantic segmentation
labeling (background, road, building). * indicates that the results are from [20, 32].

and a decoder containing transposed convolutions for up-
sampling as well as identity ResNet blocks [13] as non-
linearity. The output of the net has always half the size
of the input. As default we use 32 × 32 input size for the
discriminator in all experiments with 50% overlap of the
patches. For CityScapes we report results also with a multi-
scale discriminator. In the discriminator we apply ResNets
without batch norm.

Learning details: We use the Adam optimizer [17] with
10−4 learning rate, weight decay of 2 · 10−4 and batch
size of 4. We use dropout with 0.9 keep probability in
the generator and to the feature vector d of the discrimi-
nator. We train the networks until convergence, which gen-
erally requires on the order of 10K iterations. Each itera-
tion (generator and discriminator update) takes 4 seconds
on an NVIDIA Tesla P100 GPU. We normalize the output
to [−1, 1] by a tanh if the output image has a single chan-

nel (e.g. road centerline) or by a rescaled softmax in case of
segmentation.

4.2. Semantic segmentation on Cityscapes

Pixel-wise cross-entropy is well aligned with the pixel-
wise intersection over union (IoU) metric and is used as
the task loss for state-of-the-art semantic segmentation net-
works. As we show, our MatAN loss can achieve almost the
same performance. We do an ablation study where the gen-
erator architecture is fixed (i.e. the ResNet based encoder-
decoder), but the discriminator function is changed. We
downsample the input image to 1024 × 512. We randomly
split the official validation set to half-half and use one half
for early stopping of the training and compute the results
on the other half. We repeat this three times and report the
mean performance.

We test the perturbation configurations listed in Fig. 2
and provide the results in Table 1. When there is no per-
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(a): GT (b) DWT [4] (c) MatAN (ours) (d) MatAN contours
Figure 7: (a) Ground truth building polygons overlay over the original image. (b)-(c) final extracted instances, each with a
different color. (d) shows the prediction of the deepnet for the building contours which is used to predict the instances. The
GT of this task has a small systemic error due to image parallax. In contrast to DWT, MatAN does not overfit on this noise.

turbation (MatAN α NoPer.), the network does not learn.
In our experiments the configurations β and γ (the gener-
ated output is matched to the GT or the perturbations of the
GT) perform similarly. We tested these with a single scale
discriminator input size of 32 × 32. It might be surprising
at first that MatAN γ is able to learn, but the joint PDF ex-
plains this. Both β and γ can only achieve equilibrium if the
GT is generated as output and not a perturbation. Therefore
a single discriminator (not patch-wise) would also enable
to learn the ground truth. We also apply the discriminator
in a multi-scale way by extracting patches on 16, 32 and 64
scales and resize them to 16. This achieves very close re-
sults to cross-entropy and is listed as MatAN β MS. Matan
β NoAbs shows that the use of an `1 distance in (2) for d
is critical. Removing it results in a large performance de-
crease.

Combining our adversarial loss with the cross entropy
loss performs slightly worse than using each loss separately.
This shows that fusing loss functions is not trivial.

In configuration δ PertGen. the generated output is per-
turbed, therefore equilibrium can be achieved in any of the
perturbations of the ground truth. Here overlap was not ap-
plied for the discriminator patches. The results show that
the network still learns the original ground truth (instead of
a perturbed one). This can be explained by the patchwise
discriminator. An output satisfying all the the discriminator
is probably very close to the original ground truth. A deter-
ministic network will rather output a straight line/boundary
on an image edge than randomly rotated versions where the
cut has to align with the patch boundary.

Applying perturbations to both branches of the true sam-
ples can be considered as a noisy ground truth, e.g. two
labelers provide different output for similar image regions.
The perturbations simulate this with a known distribution
of the noise. The entry Pert. GT shows the mIoU of a per-
turbed GT compared to the original one. When Cross En-
tropy is trained with this noisy labels (Pert. Cross Entropy),

U-Net Gen. [15] mIoU Pix. Acc
Cross Ent. 50.9 91.8

Pix2Pix CGAN [15] 21.5 73.1
Pix2Pix CGAN [15] * 22.0 74.0

Pix2Pix CGAN+L1 [15] * 29.0 83.0
CycGAN [36] * 16.0 58.0
MatAN β MS 48.9 91.4

MatAN β Pix2Pix arch. MS 48.4 91.5

Table 3: Mean IoU and pixelwise accuracy results from 3
fold cross-validation on the Cityscapes validation set with
the U-Net generator of [15]. All values are in %. * marks
the results reported from other papers on the validation set.
Our MatAN achieves much higher performance.

the network looses the fine details and performs around the
same as the provided GT, see Fig. 5. The results with per-
turbed GT are in Table 1. If the generated output is not
perturbed, equilibrium cannot be achieved, resulting in low
performance (MatAN ε GT Perturb). If the output is also
perturbed (MatAN ζ ALL Perturb), equilibrium is possible
in any of the perturbed GT. Since perturbations are rota-
tions applied patch-wise, a consistent solution for the entire
image will be similar to the GT. Note that in this case the
generator is trained to infer a consistent solution. For exam-
ple, a continuous pole was predicted (as seen in Fig 5 (c)),
yet it almost never occurs in the perturbed training images.

Additionally, we show a comparison to the Pix2Pix
CGAN [15] by replacing our generator with the U-net archi-
tecture of Pix2Pix. To show that the performance increase
is not simply caused by the ResNet blocks, we change our
discriminator design to match the Pix2Pix discriminator. As
shown in Table 3, this achieves lower mIoU values, but still
doubles the performance of Pix2Pix. Moreover, this is close
to the performance achieved by training the generator using
the cross-entropy loss. This indicates that the stability of the
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learned loss function is not sensitive to the choice of gener-
ator architecture, and that the decrease in performance rela-
tive to ResNet-based models is due to the reduced capabil-
ity of the U-net architecture. We implemented the Pix2Pix
CGAN method [15] and applied it without the additional
task loss. This is far behind MatAN. This can only learn
the large objects which appear with relatively homogeneous
texture, e.g. road, sky, vegetation, building. As also re-
ported in [15], this method ”hallucinates” objects into the
image. We see this as a sign that the input-output relation is
not captured properly with CGANs using no task loss. Ad-
ditionally, we report the numbers from the original Pix2Pix
[15] paper, showing that even by adding L1 CGAN is out-
performed by MatAN. CycleGAN [36] scores even lower
than Pix2Pix.

4.3. Road centerline extraction

Roads are represented by their centerlines as vectors in
the map. We perform experiments on the aerial images of
the TorontoCity dataset [31] resized to 20 cm/pixel. We en-
code the problem as a one channel image generation with
[−1, 1] values and rasterize the vector data according to this
as 6 pixel wide lines to serve as training samples. At inter-
sections we added circles to avoid the need for generating
very sharp edges which is difficult for neural networks. We
use the metrics expressing the quality of the road topology
introduced in [20].

We compare our method (the β config) to the HED [32]
deepnet based edge detector and DeepRoadMapper [20]
which first extracts the road centerlines from the segmenta-
tion mask of the roads and then reasons about graph connec-
tivity. Additionally, we use semantic segmentation followed
by thinning as a baseline with the same generator as in
MatAN. In particular, we tested two variants Seg3+thinning
which exploits extra 3 class labeling (background, road,
buildings) for semantic segmentation, and Seg2+thinning
which exploits two labels instead (background, road). For
comparison we also use OpenStreetMap as a human base-
line. As last we compare to CGANs [15] using the adver-
sarial loss and also the adversarial loss combined with L1.
We have trained our generator architecture with the CGAN
loss but it was not generating reasonable outputs even after
15k iterations. This shows that CGANs are sensitive to the
network architecture.

As shown in Table 2, the two best results are achieved by
our method and Seg3+thinning, which exploits additional
labels (i.e., semantic segmentation). Without this extra la-
beling the segmentation based method (Seg2) and [20] falls
behind. The Pix2Pix CGAN approach [15] generates road
like objects but they are not aligned with the input image
resulting in poor results. OSM achieves similar numbers
to the best automatic methods, which shows that mapping
roads is not an easy task especially since it can be ambigu-

Method mAP Pr. @50% R. @ 50% WCov.
ResNet * 22.4 44.6 18.0 38.1
FCN * 16.0 35.1 20.3 38.9

DWT [4] * 43.4 75.1 76.8 64.4
MatAN (ours) 42.2 82.6 75.9 64.1

Table 4: Instance segmentation results on the TorotonCity
validation set with the metrics given in [31]. All the values
are in %. WCov. stands for weighted coverage, mAP for
mean precision, R. for recall and Pr. for precision. We re-
fer the reader to [31] for more details about the metrics. *
marks implementations of others.

ous what counts as road. We refer the reader to Fig. 6 for
qualitative results.

4.4. Instance segmentation

We predict the building instances in the TorontoCity
dataset [31] on aerial images resized to 20 cm/pixel. We
randomly crop, rotate and flip images with size 768 × 768
pixels and use a batch size of 4. We jointly generate the 3
class semantic segmentation and the instance contours as a
binary image ([−1, 1]). We train the net as a single MatAN
(β config) showing that it can be used as a single loss for a
multi task network. We obtain the instances from the con-
nected components as the result of subtracting the skeleton
of the contour image from the semantic segmentation. We
compare our results with baseline methods reported in [31],
as well as the Deep Watershed Transform (DWT) [4] which
also predicts the instance boundaries. As shown in Table 4,
our method outperforms DWT by 7% in Precision @ 50%,
while been similar in all other metrics. We refer the reader
to Fig. 7 for visual results.

Limitations Our method is a discriminative model and is
not intended to train conditional generative models, e.g. im-
age generation [15], where an input can be mapped to mul-
tiple outputs.

5. Conclusion and future work

We have presented an Adversarial Network, which we
call Matching Adversarial Network (MatAN). The discrim-
inator is replaced by a siamese network taking also random
perturbations of the ground truth as input. As we have
shown in our experiments, this significantly outperforms
CGANs, achieves similar or even superior results to task
specific loss functions and results in stable training. As fu-
ture work we plan to investigate more applications, different
perturbations and the effect of noisy ground truth.
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