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Abstract

This paper presents a novel polarimetric dense monocu-
lar SLAM (PDMS) algorithm based on a polarization cam-
era. The algorithm exploits both photometric and polari-
metric light information to produce more accurate and com-
plete geometry. The polarimetric information allows us to
recover the azimuth angle of surface normals from each
video frame to facilitate dense reconstruction, especially at
textureless or specular regions. There are two challenges in
our approach: 1) surface azimuth angles from the polariza-
tion camera are very noisy; and 2) we need a near real-time
solution for SLAM. Previous successful methods on polari-
metric multi-view stereo are offline and require manually
pre-segmented object masks to suppress the effects of erro-
neous angle information along boundaries. Our fully au-
tomatic approach efficiently iterates azimuth-based depth
propagations, two-view depth consistency check, and depth
optimization to produce a depthmap in real-time, where all
the algorithmic steps are carefully designed to enable a
GPU implementation. To our knowledge, this paper is the
first to propose a photometric and polarimetric method for
dense SLAM. We have qualitatively and quantitatively eval-
uated our algorithm against a few of competing methods,
demonstrating the superior performance on various indoor
and outdoor scenes.

1. Introduction
Polarization is a natural characteristic of light waves,

which conveys rich geometric cues of the surrounding en-
vironment, such as directions and shapes. While human vi-
sion has not evolved to exploit polarization, certain species
of birds and insects[37] are known to sense polarization.
Some shrimps [7] even roll their eyeballs (i.e., rotating
around the gazing direction) to maximize the polarization
contrast. A fundamental challenge in Computer Vision is to
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develop computational algorithms that exploit polarimetric
as well as photometric properties of light transport.

A polarization camera, such as PolarCam [1], has an ar-
ray of linear polarizer on the top of the CMOS sensor, just
like the RGB Bayer filter [14]. The polarization camera
can capture the scene under four polarization angles with a
single shot, and recover the surface azimuth angle at every
pixel in each video frame. An azimuth angle provides an
iso-depth direction on the image domain, along which depth
values can be propagated to fill-in and improve a depthmap.
The challenge is that these azimuth angle estimations are
ambiguous and noisy, and false depth propagations damage
a depthmap quickly. Furthermore, we need a near real-time
algorithm for SLAM (Simultaneous Localization and Map-
ping) applications. An existing polarimetric stereo solution
by Cui et al. [5] requires manually prepared segmentation
masks to prevent false propagations and is offline. This pa-
per develops a fully automatic algorithm based on a polar-
ization camera, which exploits both photometric and polari-
metric information to produce more accurate and complete
depthmaps in real-time.

To achieve this goal, we design efficient algorithms to
resolve the azimuth angle ambiguities, and avoid propagat-
ing false depths at outlier points. Specifically, we use a
rough depthmap to bootstrap the dis-ambiguity process, un-
like the expensive graph optimization adopted in [5]. Dur-
ing the azimuth-based depth propagation, we design a two-
view propagation and cross-validation approach to avoid
propagating outlier points. Our algorithm efficiently iter-
ates 1) two-view depth propagationsand validation, and 2)
depth optimization to produce more accurate and complete
depthmaps. All the algorithmic steps are carefully designed
to enable GPU implementations.

We have evaluated the proposed system on indoor and
outdoor scenes with a hand-held monocular polarization
video camera. The qualitative and quantitative evaluations
demonstrate our superior performance over the traditional
methods. To our knowledge, this paper is the first to propose
a photometric and polarimetric method for dense SLAM.
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Figure 1: Pipeline of our system. Please refer to the main text for more detail.

2. Related work

SLAM: Most visual SLAM algorithms [8, 20, 26] are ded-
icated to improve the camera pose accuracy or system ro-
bustness. They track a sparse set of image feature points to
solve camera motion, and build a sparse 3D map from these
tracked points (see a recent survey [3] for the full review of
the SLAM literature).

Dense visual SLAM produces dense depthmaps, impor-
tant in many applications such as object detection, recog-
nition, obstacle avoidance, and augmented reality. Some
methods [35, 38] apply dense stereo as a post-processing.
For robustness and accuracy, fusion algorithms use RGB-
D cameras [27, 6, 40], which however increase power con-
sumptions and limit the operating capabilities to short-range
indoor scenes. Semi-dense SLAM uses more image pixels,
in particular along edges, to make tracking more robust and
produce denser geometry [12, 11, 10]. However, their ge-
ometry still contains many holes. We apply the method in
[10] to solve camera poses in realtime and compute a dense
depthmap per keyframe for dense mapping.

Recently, unconventional cameras have been used with
SLAM algorithms. Kim et al. used an event camera to cope
with fast camera motions and low-light or high dynamic
range scenes [19]. Jo et al. built a novel sensor “SpeDo”,
which solves 6 DOF ego-motions through speckle defocus
imaging [16]. None of them builds dense 3D maps. This
paper uses an unconventional sensor, polarization camera,
to enhance the quality of 3D reconstruction.

Polarimetric 3D modeling: Light polarization encodes
surface normal information (i.e., azimuth and zenith an-
gles), which have been exploited in many 3D reconstruction
algorithms. The polarimetric shape cues are ambiguous.
Earlier methods [2, 24, 25] assumed smooth object surfaces.
Recent methods employ shape-from-shading [21, 33, 36]
or photometric stereo [29, 9] to deal with the ambigui-
ties. Some algorithms integrate polarimetric constraints
with multi-view stereo [32, 23, 5] or a RGB-D camera [17].
All existing methods are computationally expensive and de-
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Figure 2: (a) four images with different polarization angles;
(b) estimated azimuth angle map without FlatField cali-
bration (bottom bar shows the phase angle); (c) angle map
with our FlatField calibration.

signed for offline object-level 3D modeling. This paper pro-
poses the first online polarimetric dense SLAM solution,
which works for objects, indoors, and outdoors.

3. Preliminaries

Polarization camera Our polarimetric dense monocoular
SLAM (PDMS) system is based on a polarization cam-
era, which has an array of four types of linear polarizers in
front of its CMOS sensor and generates a four-channel im-
age. Each channel measures the intensity of a light passing
through one of the polarizers. From this polarization image,
we can generate a “phase-map”, which has two quantities
per pixel: 1) the azimuth angle, equivalent to the direction
of the surface normal vector projected onto an image plane
(up to ±π/2 ambiguity); 2) the degree of linear polariza-
tion (DOLP), which is a form of confidence metric in the
azimuth estimation. We follow standard techniques in com-
puting the phase-map, whose details can be found in our
supplementary material.

Flat-field calibration A polarization camera requires ex-
tra careful flat-field calibration [22], which is to compen-
sate the sensitivity and dark current variations across dif-
ferent pixels in the CMOS sensor. Typically, the flat-field
can be calibrated by capturing an image of a uniform sig-
nal, where each pixel value is proportional to its sensitivity.



Digital cameras often have build-in flat-field calibration by
their manufacturers before shipping, which is usually insuf-
ficient for a polarization camera, because the input signal
should be unpolarized at the same time. Otherwise, the sig-
nal after going through the polarizer array is no longer uni-
form, violating the assumptions in the flat-field calibration.
We have experimented several different light sources and
setups and eventually find that a LCD monitor covered by
3-5 layers of A4 printing papers produces the designed uni-
form and unpolarized input. We then take 100 images and
compute the average image to smooth out noises. This aver-
age image is the flat-field, encoding the relative sensitivity
of different pixels. Denoting this average image as F , the
multiplier factor map could be computed by: F̂ = max(F )

F .
We calibrate the raw image as,

Icorr = Iraw ◦ F̂ , (1)

where the operator ◦ is an element-wise multiplication to
correct the pixel sensitivities. Figure 2(c) shows the result
of the flat-field calibration.

System overview Figure 1 shows the overview of our
system architecture. The inputs to our program are the
grayscale video frames and a phase angle map per frame
captured by a polarization camera. We use an existing
visual odometry (VO) algorithm [10] to solve the camera
poses. In the next, we initialize a depthmap per keyframe by
the PatchMatch stereo [13], which helps to resolve the π/2-
ambiguities in the azimuth angles. The followed depth con-
sistency check produces a sparse set of inlier 3D points with
high confidence for each keyframe. Our system then iterates
two steps, 1) two-view depth propagation and validation,
and 2) depth optimization, to produce the final depthmap.
Finally, we fuse those depthmaps at different keyframes to
create an integrated triangle mesh.

Pose estimation Our system employs a state-of-the-art
visual odometry software, DSO [10], while any other
software can be used (e.g., ORB-SLAM [26] or LSD-
SLAM [11]). We take the mean of the four channel intensi-
ties to generate a grayscale image as an input to DSO. DSO
generates camera poses and key-frames.

4. Polarimetric dense mapping on GPU

Our polarimetric dense mapping consists of two ma-
jor components, initialization and iterative processing, and
both are designed to run entirely on GPU. The iterative pro-
cessing further iterates two steps: 1) two-view depth prop-
agation and validation; 2) depthmap optimization. We now
explain the details of each step, where the overall algorithm
including the initialization steps are given in Algorithm 1.

Algorithm 1: Depth Estimation on Keyframe Kt

Input : {Ii,Φi,Pi}i∈1,2,...,t
Input : zt−1

Output: zt

Initilization:
1 z0

t ← PatchMatchStereo(It, ...,It−2)
2 Φ′t ← Disambiguity(Φt)
3 X0

t ← DepthConsistCheck(z0
t , zt−1)

4 a0 ← z0
t

Iterative Optimization:
for i← 1 to itmax do

5 N i
t ← TraceDepthOnKt(Φ′t, zinlier

t )
6 N i

r ← TraceDepthOnKr(Φ′r , zinlier
t )

7 Xi
t ← Xi−1

t ∪ PropagationCheck(N i
t ,N i

r )
8 zi

t ← OptimizeDataTerm(zi−1
t , at−1, Xi

t)
9 ai

t ← OptimizeSmoothTerm( zi
t, at−1)

end

Figure 3: The disambiguated azimuth angle by [5] (shown
in left) and by our method (shown in right). The original
phase angle map is shown in Figure 2 (c).

4.1. Initialization

Depthmap initialization: Given a keyframeKt, the system
reconstructs an initial depthmap z0

t by the GPU-accelerated
PatchMatch stereo [13] with the regularizer introduced in
[15]. The symbol t denotes a keyframe index. The
depthmap is computed within a predefined depth range
[zmin, zmax]. We remove spurious depth values in z0

t via
a simple consistency check with the depthmap zt−1 com-
puted at the previous key-frame: we reproject zt−1 into
Kt and filter out depth values where the depth difference
is more than 1% of (zmax − zmin). The remaining points
are considered as inliers whose depths will be propagated
and optimized in the iterative processing. We denote this
initial set of inliers as X0

t .
Azimuth angle dis-ambiguation The azimuth angle esti-
mation inherently suffers from a π/2-ambiguity, due to two
different types of polarized reflections: specular and dif-
fuse. In many pixels, polarized specular reflection is domi-
nant and this ambiguity can be ignored. In the other cases,
the azimuth angle estimation needs to be corrected by π/2.
Cui et al. proposed an effective graph-based solution [5],



but is computationally too expensive for realtime applica-
tions.

We found that the following process works well and runs
efficiently on GPU. The idea is simple. Depth values would
be constant along a direction perpendicular to the true az-
imuth angle. We trace iso-depth contours for the two pos-
sible azimuth angles, and simply pick the contour with the
smaller variance in depth values (where available) based on
the initial depthmap. The azimuth ambiguity occurs for dif-
fuse dominant surfaces and the disambiguity process is ap-
plied to pixels whose degree of linear polarization (DOLP)
is below 0.30. Note that this process fails where the depth
values are completely missing, but works well where depth
values are noisy. Figure 3 shows a comparison between our
simple method and the graph optimization method in [5].
Our method correctly resolves the ambiguity for most of
the pixels under the cast shadow of the halmet and book
(see the highlighted region).

4.2. Two-view propagation and validation

The success of azimuth-based depth propagation criti-
cally depends on the accuracy of the seed points where the
tracing starts. Depth discontinuity is one major failure mode
illustrated in Figure 4. Note that previous works rely on ob-
ject segmentation information as input to avoid propagat-
ing incorrect depth values at object boundaries [41, 5]. We
need a fully automated realtime solution for SLAM. Our
approach is to perform the azimuth-based depth propaga-
tion in the current keyframe and one well-separated refer-
ence keyframe simultaneously, and perform two-view con-
sistency check to avoid propagating outliers.

Let Kt denote the current keyframe. We choose the ref-
erence keyframe Kr that is well-separated from Kt. More
precisely, Kr is chosen to be the most recent key-frame
whose rotation differs by more than 30 degrees from Kt.
Two-view depth propagation To ensure high quality prop-
agation, in the i-th iteration, we propagate the inlier 3D
points Xi

t in both Kt and Kr simultaneously. For a pixel x
with unknown depth (either inKr orKs), we collect the in-
lier 3D points in Xi

t that are projected on its iso-depth con-
tour, and compute a probability distribution for the depth
of x. We estimate[30] a mixture of a Gaussian distribution
N (µ, σ) and a uniform distribution between [zmin, zmax]
to model this depth distribution, where the uniform distribu-
tion accounts for random depth noisy. After that, we model
the depth at x by the Gaussian component N (µ, σ). Note
this propagation can be easily parallelized for all pixels in
Kt and Kr. But we only consider the propagated 3D points
in Kt as the set of candidate inlier points ∆Xi

t.
Two-view consistency check Now, we use the propagated
3D points in the reference view Kr to cross validate the
candidate points in ∆Xi

t. We project them to the keyframe
Kt, and check the depth consistency at their projected posi-

(a) (b)

(c) (d)

Figure 4: Naı̈ve depth propagation magnifies 3D recon-
struction errors. (a) is the input frame, and (b) shows the
initial ‘inlier’ 3D points X0

t with some noisy 3D points (in
white color) along the book’s edge. (c) and (d) are the re-
sults by naı̈ve depth propagation, visualized from two dif-
ferent viewpoints, where the noisy 3D points are incorrectly
propagated along iso-depth contours.

tions. Suppose the pixel xr in Kr is projected to xt in Kt

according to its mean depth µr. According to our propa-
gation, the depth of xt is modeled by a Gaussian distribu-
tion Nt(µt, σt). We evaluate xr’s depth distribution in Kt

and compare its consistency withNt(µt, σt) to decide if the
propagated 3D point at xt should be discarded.

Specifically, we sample xr’s depth distribution
Nr(µr, σr) in the reference view, and compute its depth
in the keyframe Kt according to these sampled depths. In
this way, we can compute xr’s depth distribution in the
keyframe Kt, denoted as Nr→t(µr→t, σr→t). Now, we
compute the KL divergence between Nr→t(µr→t, σr→t)
and Nt(µt, σt), and discard the propagated 3D point at xt
if the KL divergence is larger than 0.5 or if the absolute dif-
ference of |µt − µr→t| is larger than 1% of |zmax − zmin|.
If a pixel xt in Kt is not projected by any point xr in Kr,
we also discard its propagated depth.

After discarding inconsistent points in ∆Xi
t, we update

the inlier set to Xi+1
t = Xi

t ∪∆Xi
t to move the depthmap

optimization to finish an iteration.

4.3. Depthmap optimization

The last step of the iteration enforces the photometric,
polarimetric, and spatio-temporal regularization constraints
to optimize the depthmap. Specifically, we minimize an en-
ergy function with a data term and a smooth term over three
neighboring keyframes Kt,Kt−1,Kt−2,

E =

∫
Ω

λEdata + Esmooth. (2)
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Figure 5: More inlier pixels (marked as green) are recon-
structed during the iterations.

Here, the weight λ balances the relative significance of the
smoothness regularization term, and is set to 5.0 in all our
experiments, and Ω is the image plane.
Data term Our data term is defined between two images,
a source keyframe (Kt) and a reference keyframe (Kt−1 or
Kt−2). For denotation simplicity, we denote the source as I
and the reference as I′ in the following. The data term con-
sists of a photometric error and a contour error, combined
with a weight τ . On very pixel p, we have,

Edata(p) = (1− τ(p))Ephoto(dp,np) + τ(p)Econtour(zp).
(3)

The spatially variant weight τ(p) is defined as τ(p) =
e−ζ|∇Ip|

η

, where ∇Ip is the image gradient at p. We fix
the parameters η = 0.8, ζ = 3.1 in all our experiments.
This weight τ(p) is stronger on featureless areas and weaker
nearby image edges, since the photometric term tends to
produce better result at those well textured regions.

The photometric error with parameters of the surface
normal np and the distance to the origin dp follows the con-
ventional approach [13] with the detailed definition in our
supplementary file. The contour consistency error is evalu-
ated as

Econtour(zp) =

{
|zp − µp|, if p ∈ Xi

t;
c, otherwise.

(4)

where the zp is the depth at the pixel p (i.e. the distance
from a 3D point to the camera image plane), µp is the mean
of the Gaussian distribution of p’s depth computed through
propagation. The depth zp at a pixel p = (px, py) can be
computed from the parameters dp,np as,

zp =
−dpf

[px − cx, py − cy, f ]np
. (5)

Here, f is the camera focal length and (cx, cy) is the princi-
pal point.
Smooth term The smoothness term also consists of two
components, namely,

Esmooth(p) =τ(p)|∇zp|ε
+ λaτ(p)|sin(φ)∇xzp − cos(φ)∇yzp|ε,

(6)

Here, the | · |ε defined as Huber norm with threshold of
ε. And the τ(p) is the gradient adaptive weight defined in
Equation 3 which gives a strong penalization on feature-
less area. The weight λa balances these two terms, and is
fixed to 0.4 in all our experiments. In second term, the op-
erators ∇x and ∇y compute the derivative along on x-axis
and y-axis respectively, and φ is the azimuth angle after dis-
ambiguation. This term is adopted from [5], which enforces
the depthmap gradient to be consistent to the azimuth angle,
i.e. tan(φp) = ∇yzp/∇xzp.

Optimization method The energy function in Equation (2)
is difficult to optimize, with a non-convex data term and a
convex regularizer [34, 28, 15]. Similar to [28], we intro-
duce an auxiliary variable a to simplify this problem, which
turns the original energy function into,

E′ =

∫
Ω

λEdata(z,n) +Esmooth(a) +
1

2θ
‖a− z‖22 . (7)

This auxiliary variable decouples the data term and smooth-
ness term, so that they can be optimized separately. The last
term 1

2θ ‖a− d‖
2
2 is introduced to coupling the original and

auxiliary variables together by gradually reducing θ during
iterations.

After this decoupling, the data term becomes

Edata(p) =(1− τp)Ephoto(dp,np)

+ τpEcontour(zp) +
1

2θ
‖ap − zp‖22 ,

(8)

Note that the dp can be converted from zp by Equation 5.
We adopted the PatchMatch variant [13] to minimize it,
which performs a parallel updating scheme that could run
efficiently on GPU architecture.

On the other hand, the smoothness term becomes,

Esmooth =τp|∇ap|ε + λaτp|sin(φ)∇xap − cos(φ)∇yap|ε

+
1

2θ
‖ap − zp‖22 ,

(9)

and we can solve d by the ROF method [4], which is easy
to implement for parallel computation. At the first iteration,
we set the parameter θ = 3.0. We then iterate the opti-
mization ofEdata andEsmooth while reducing the coupling
parameter θ with a factor of 1.5 over the iterations.

Figure 5 shows the propagated inlier 3D points in the 0th,
3rd, and 6th iterations, where the inlier pixels are colored in
green. As we can see, more inlier points will be generated
during the iterations, and featureless areas (e.g. the white
table) are filled with propagated inliers.

Finally, depthmaps at different keyframes are fused into
the final surface model by the InfiniTAM system [18].
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Figure 6: Our dataset captured by a PolarM[1] Camera. The top row shows some sample frames of the original sequence;
the second row shows the camera motion trajectory; and the bottom row shows the mesh fused by our system.

5. Experiments

We evaluate our system with a polarization camera, the
PolarM [1] camera, mounted with an 8-mm lens. The video
resolution is 772× 600 pixels, and the camera intrinsic pa-
rameters and lens distortions are calibrated beforehand with
the calibration package [39]. All experiments are carried
out on a computer with an Intel Core-i7 5820k CPU and
64G RAM and an NVIDIA GTX Titan X GPU running
Ubuntu 14.04. Our polarimetric dense monocular SLAM
(PDMS) takes 1.2 seconds to process a keyframe, includ-
ing the depth initialization, dis-ambiguiation, and iterative
processing. Each iteration of depth propagation, validation,
and optimization takes 124 ms.

Typical results with surface fusion Figure 6 shows our
results on various indoor and outdoor scenes, where the
first row shows some sample input frames, and the second
and third rows are the camera trajectories and fused dense
mesh respectively. The examples bear, desk, vase, and pig
are captured indoors under office light, while the examples
hammer and statue are captured outdoors under nature illu-
mination. Several examples contain large untextured areas
(e.g. statue, desk, pig, vase), some examples contain ob-
jects with strong specular reflection (e.g. statue, vase). Our
method consistently performs well on these various exam-
ples.

Compare with other dense reconstruction sys-
tems We compare our system with Remode[30] and
MonoFusion[31]. We modified the code shared by the
authors of Remode to use DSO [10] for camera tracking
to ensure a fair comparison. The MonoFusion [31] does

not have open source implementations, so we implement
it by ourselves with the more recent PatchMatch stereo
algorithm[13]. We further reinforce MonoFusion by incor-
porating a smoothness regularizer [15] in the PatchMatch
stereo. All these three methods only use photometric
information to solve a dense depthmap per keyframe.
Comparison with them demonstrate the effectiveness of
incorporating polarimetric information. Figure 9 shows
the depthmaps computed at a single keyframe for the
bear, hammer, statue, and desk examples. To make the
comparison easier, for each example, we further provide
a color-coded surface normals which is computed from
the depthmap. Remode[30] generates much sparse re-
construction which leads to poorly fused mesh (see the
supplementary video). The bear example is relatively easy
with rich texture everywhere except the hat (highlighted
in a red rectangle) to facilitate stereo matching. Our
method produces smoother and denser point clouds, which
can be better seen from the normal map. The hammer
example is captured in outdoor under strong sunlight,
where RGB-D sensors will not work. For this example,
only our method captures the shape of the hammer faith-
fully. The PatchMatch stereo[13] in our implementation
of MonoFusion generates noisy 3D points floating in
space. The regularizer[15] can alleviate this problem, but
still generates distorted reconstruction, especially at the
handle (see the region highlighted by a red frame). These
comparisons are most evident in the normal map. The
statue is a challenging outdoor example, with some black
metal statues sit on a white featureless base. Again, the
PatchMatch stereo generates a large hole on the featureless
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Figure 7: Comparison with the method in [5]. We register
all the depthmaps computed by [5] together to compare with
our fused result.

base, even the regularizer will not solve this problem. In
comparison, our method recovers iso-depth contours to
propagate depth information into the hole from its boundary
(more comparisons are in the supplmentary video). The
desk examples is a small scale scene with multiple objects.
Unlike the other methods, our method captures faithful
shape details.

Comparison with [5] We further compare our system
with [5] which is an offline polarimetric multi-view stereo
method. The authors of [5] kindly run their system on our
data with camera poses solved by our method. Figure 7
shows the comparison on an indoor scenes. The method in
[5] produces noisy results on the vase, because it is designed
for reconstructing a single object with manually prepared
segmentation masks to avoid propagating outliers at occlu-
sion boundaries. In comparison, the two-view propagation
and validation strategy in our method successfully solved
this problem. Furthermore, the method in [5] takes around
100 seconds to reconstruct a depthmap, while our method
takes only 1.2 seconds, achieving a significant speedup by
two magnitudes.

Quantitative Analysis In order to quantitatively analyze
the improvement made by the polarimetric approach, we
evaluate the reconstruction quality of a planar surface in
the statue example. As shown in the lower right corner
of Figure 8, we mark some pixels (as indicated in red) as
the region of interest to compute the cumulative distribu-
tion function (CDF) of reconstruction errors of our method,
MonoFusion, and the reinforced MonoFusion. We do not
include Remode[30] because it tends to generate a sparse
set of reliable points, which leads to poor fusion. To obtain
a reference ‘ground truth’, we apply RANSAC to fit a plane
from some manually picked 3D points on the base. For each
reconstructed 3D point, we compute its shortest distance to
this fitted plane as its reconstruction error. In this way, we
can evaluate the reconstruction error for all the three meth-
ods. The CDFs of the three methods are shown in Figure 8,
where the horizontal axis is the reconstruction error and the
vertical axis is the percentage of pixels. In this chart, the
unit of reconstruction error is set to the length of the white
base under the statues. These curves tell us at each error
level what percent of 3D points have accuracy higher than
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Figure 8: The cumulative distribution function (CDF)
curves of the reconstruction errors from our method, the
PatchMatch stereo [13] and the PatchMatch reinforced with
a regularizer[15]. The image in the lower-right corner
shows the region of interest in red.

that error level. It is clear that our polarimetric method pro-
duces more accurate result than both PatchMatch stereo[13]
and the one reinforced with a regularizer[15]. For example,
60% of 3D points of our reconstructed points have a error
smaller than 0.01, while that percentage drops to 40% and
32% for the reinforced MonoFusion and MonoFusion re-
spectively.

6. Conclusion

This paper presents a polarimetric dense monocular
SLAM (PDMS) algorithm that reconstructs a dense 3D
depthmap in real-time for each keyframe of the input video.
These individual depthmaps are further fused to produce an
integrated triangle mesh to facilitate other applications. Our
method exploits a novel camera, the polarization camera,
to enhance 3D reconstruction at featureless and specular
regions, which are long-standing difficulties in multi-view
stereo vision. In particular, we design an iterative frame-
work of two-view depth propagation, validation, and opti-
mization to make the polarimetric multi-view stereo work
without manually segmented object masks. To our knowl-
edge, this is the first real-time polarimetric dense monocular
SLAM algorithm.

Acknowledgements
This project is supported by the Canada NSERC Discov-
ery project 611664 and Discovery Acceleration Supplement
611633.

References
[1] The polarm camera. https://www.4dtechnology.

com/products/polarimeters/polarcam/.

https://www.4dtechnology.com/products/polarimeters/polarcam/
https://www.4dtechnology.com/products/polarimeters/polarcam/


Our Result MonoFusion [31] Our reinforced MonoFusion Remode [30]

Figure 9: Comparison with Remode[30], MonoFusion[31], and our reinforced MonoFusion. Please refer to the main text for
details.



[2] G. A. Atkinson and E. R. Hancock. Recovery of surface
orientation from diffuse polarization. IEEE Trans. on Image
Processing (TIP), 15(6):1653–1664, 2006.

[3] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scara-
muzza, J. Neira, I. Reid, and J. J. Leonard. Past, present,
and future of simultaneous localization and mapping: To-
ward the robust-perception age. IEEE Trans. on Robotics,
32(6):1309–1332, 2016.

[4] A. Chambolle. An algorithm for total variation minimiza-
tion and applications. Journal of Mathematical Imaging and
Vision, 20(1):89–97, 2004.

[5] Z. Cui, J. Gu, B. Shi, P. Tan, and J. Kautz. Polarimetric
multi-view stereo. In Proc. of Computer Vision and Pattern
Recognition (CVPR), 2017.

[6] A. Dai, M. Niesner, M. Zollhöfer, S. Izadi, and C. Theobalt.
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