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Abstract

In this paper, we propose a simple yet effective method
to learn globally optimized detector for object detection,
which is a simple modification to the standard cross-entropy
gradient inspired by the REINFORCE algorithm. In our
approach, the cross-entropy gradient is adaptively adjusted
according to overall mean Average Precision (mAP) of the
current state for each detection candidate, which leads to
more effective gradient and global optimization of detec-
tion results, and brings no computational overhead. Ben-
efiting from more precise gradients produced by the global
optimization method, our framework significantly improves
state-of-the-art object detectors. Furthermore, since our
method is based on scores and bounding boxes without
modification on the architecture of object detector, it can
be easily applied to off-the-shelf modern object detection
frameworks.

1. Introduction

Object detection is one of the oldest and most fundamen-
tal tasks in computer vision. Compared to the object recog-
nition task, object detection is more challenging because it
requires accurate localization and classification of multiple
objects at the same time. To tackle this problem, most mod-
ern object detectors [5, 6, 16, 18, 20, 22] are trained through
a reduction that converts object detection into a multi-task
learning of object classification and localization for each
object independently. This reduction introduces a gap be-
tween learning and inference, where the process of learning
only needs to evaluate each possible object proposal (RoIs
in [5], anchors in [16,18,21,22]) and feed back to the detec-
tor, but the process of inference is supposed to perform an
optimal selection of redundant candidates to obtain accurate
detection results, which is a global optimization problem
with a constraint on the amount of detections (for instance,
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Figure 1. The key idea of our approach. We propose an end-to-end
framework for learning a globally optimized object detector by us-
ing the policy gradient method. The figure presents the differences
between the existing object detection framework (on the top) and
our proposed framework (on the bottom). Existing object detec-
tion framework assigns each ground truth box to proposals that has
the high IoU value and trains each detection candidate indepen-
dently. By employing the policy gradient method, our framework
supervises boxes by using the global information and directly im-
proves mAP. Red box represents the set of bounding boxes.

100 for COCO evaluation [17]).
In [5, 6, 16, 18, 20, 22], a method called non-maximum

suppression (NMS) has been used to bridge the gap. NMS
performs a test-time post-processing to merge bounding
boxes that might belong to the same object. This method
greedily selects high scoring bounding boxes and eliminates
near-by bounding boxes that have lower scores since they
are likely to cover the same object. NMS is built on the
assumption that more accurate detection candidates have
higher confident scores, which is not explicitly designed
in the objective of detector training in previous methods.
Unsurprisingly, both our survey and experiments (see Sec-
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tions 2 and 4.1) show that the assumption does not hold in
most cases, especially in some challenging datasets such as
COCO. The inconsistency between learning and inference
will harm the detection performance. Therefore, it is impor-
tant to design a framework that closes the gap in the training
phase.

Aside from developing richer and hierarchical features
to get better performance [12,15,18], better objective func-
tions have also been proven to be effective on improv-
ing object detection results in most recent works [16, 25].
Both Focal Loss [16] and Online Hard Example Mining
(OHEM) [25] focus on class imbalance, which may cause
inefficient training because the standard cross-entropy loss
cannot provide useful supervision signals. Both of these
two methods adopt a re-weighting scheme to address this
problem. However, improperly assigned labels can lead to
misleading gradient, which may be amplified by gradient
re-weighting schemes and cause collapse during training.
By utilizing global information of detection candidates, a
generic solution to both the class imbalance and improper
label problem can be proposed, which can further improve
the detection performance.

To address the above-mentioned challenges, we pro-
pose an end-to-end training framework for object detection,
which attempts to learn globally optimized object detectors
by employing a policy gradient method. Our method is ef-
fective yet simple to implement, which is a simple modi-
fication to the standard cross-entropy gradient inspired by
the REINFORCE algorithm [31] in reinforcement learning,
as shown in Figure 1. In our approach, the cross-entropy
gradient is adaptively adjusted according to overall mean
Average Precision (mAP) of the current state for each object
proposal, which leads to more effective gradients and global
optimization of detection results. Moreover, no computa-
tional overhead is introduced. Benefiting from more precise
gradient produced by the global optimization in our method,
our framework significantly improves state-of-the-art object
detectors, such as Faster R-CNN [22] and Faster R-CNN
with Feature Pyramid Networks [15] (FPN). Without tricks,
our method improves the COCO-style mAP by 2.0% over
a strong baseline of Faster R-CNN and 1.8% over Faster
R-CNN with FPN on the COCO object detection dataset.
Furthermore, since our method is based on the confident
score and bounding box regression without modification on
the architecture of object detector, it can be easily applied
to off-the-shelf modern object detection frameworks.

2. Related work
Benefiting from better features, the past few years have

witnessed a great development in object detection [6, 8,
15, 22]. Compared to other high-level image understand-
ing tasks in computer vision, such as semantic segmenta-
tion [19], it is more difficult to design an end-to-end solu-

tion for object detection. Consequently, region-based meth-
ods have been widely used for accurate object detection,
which reduces the problem of object detection to many in-
dependent subproblems of evaluating dense or sparse re-
gions. However, utilizing global information in object de-
tection has rarely been explored in recent works.

CNN-based Object Detectors: Convolutional neural
networks (CNN) was first introduced to the field of ob-
ject detection by Girshick et al. [6], which almost doubled
the detection performance on PASCAL VOC datasets. The
method, called R-CNN, employs CNN for localization by
performing a region-based recognition operation, which de-
composes images with multiple objects into several pre-
extracted regions of interest (RoIs). Fast R-CNN [5]
and Faster R-CNN [22] further develop and accelerate the
method by sharing CNN feature and combining CNN-based
region proposal networks, respectively. Different from R-
CNN-style detectors which use a propose-refine pipeline to
achieve highly accurate detection results, one-stage object
detectors [16, 18, 20] aim to achieve real-time detection ap-
plications. Most one-stage detectors use an anchor-refine
pipeline, where anchors are fixed on each pixel of feature
maps. In all of the above-mentioned object detectors, pro-
posals are treated independently in the training phase.

Objective Function of Object Detection: In Fast R-
CNN and its descendants, a multi-task loss of classification
and regression is used for region-based recognition. Labels
of region proposals are assigned according to a hard thresh-
old criterion. Since the number of foreground RoIs and
background RoIs are usually imbalanced and varied during
training, vanilla objective function may produce useless or
misleading learning signal, thus training at most positions
is inefficient. To address the problem of class imbalance,
Online Hard Example Mining [25] and Focal Loss [16] are
proposed to improve the training of sparse and dense ob-
ject detection respectively. Previous works show that better
objective functions will significantly improve detection per-
formance.

Modifications on Non-maximum Suppression: There
have been some efforts to modify NMS for better detection
results. For example, Hosang et al. proposed a parametric
auxiliary model Gnet [10] to integrate information among
neighboring bounding boxes to re-score bounding boxes af-
ter the standard pipeline of object detectors. Gnet focuses
on penalizing double detections, which reduces redundant
boxes. On the contrary, another modification on NMS, soft-
NMS [1], tries to keep boxes that are eliminated during per-
forming NMS and rescore these boxes. Both Gnet and soft-
NMS improve the final detection results, which indicates
that detections are both redundant and inaccurate and the
assumption of NMS does not hold in most cases. Different
from these works, our method does not change the NMS
method but employs a smooth and more precise objective
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Figure 2. The overall framework of proposed approach. The goal of learning global optimized object detector is to maximize the mAP
between detection results and ground truth boxes. Object detector are trained by two supervision signals: a smooth L1 loss function for
bounding box regression and a policy gradient for the global optimization.

function to train object detectors, which treats NMS as a
part of the detector.

End-to-end Training for Object Detector: Since CNN
was introduced to the field of object detection, there has
been much interest in designing an end-to-end learning
framework for object detection. Faster R-CNN [22] com-
bines the region proposal module to the pipeline of ob-
ject detection, where a trainable region proposal networks
(RPN) was proposed and significantly improves the qual-
ity of region proposals. [10] and [9] merge NMS into the
end-to-end learning framework for modern object detec-
tors. However, all of these efforts focus on utilizing local
information of proposal boxes, which attempts to address
the problem of double detections and occlusion. Although
some efforts have been made on post-processing detection
results such as [2, 24], global planning of detection results
for modern object detector has not been visited yet.

3. Approach

The key idea of global optimization for object detection
is presented in Figure 1. Existing learning frameworks train
each detection candidate independently with a multi-task
loss of classification and localization. Global optimization
method supervises detector using the policy gradients from
the differences between detection results set and ground
truth bounding boxes set, where the global information be-
tween objects can be utilized.

3.1. Overview of Faster R-CNN

We start by reviewing the Faster R-CNN [22] detector
breifly, on which our framework is built.

There are two stages in Faster R-CNN, which are the Re-
gion Proposal Network (RPN) and Fast R-CNN head. RPN
consists of several convolutional layers and produces con-
fident scores and bounding boxes for each reference box,
called anchor. Anchors that have different scales and as-
pect ratio are fixed at each position of feature maps, where
a dense and class-agnostic prediction is performed to find
object proposals. Fast R-CNN head extracts feature using
RoIPool operation for each RoI, and performs classification
and bounding box regression. These two stages share the
same features for fast inference.

During training, a multi-task learning scheme with a
cross-entropy loss for classification and a smooth L1 loss
for localization is used, which can be formulated as:

L = Lcls + αLloc. (1)

where α is a balancing weight between classification and lo-
calization. After labels are assigned to each RoI, the multi-
task learning procedure is performed for each RoI in par-
allel. We argue that the relation information between RoIs
that is ignored in Faster R-CNN can be further utilized to
improve object detectors.



3.2. Problem Formulation

Given an image I , object detection is a task that maps
the image to a set of bounding boxes with class informa-
tion B = {(bi, yi)}, where the number of bounding boxes
equals to the number of objects of interest and bounding
boxes are the minimum enclosing rectangles of correspond-
ing objects. In most modern object detectors, a redundant
set of detection candidates B′ are provided, which means

|B′| ≥ |B|. (2)

Evaluation of bounding box detection task does not require
object detector to provide a set of bounding boxes that con-
tains exact |B| detections, on the contrary, the number of
objects in the image is agnostic for object detector. There-
fore, a constraint on the amount of detections is used in both
COCO benchmark [17] and PASCAL VOC [3].

The objective of object detection can be formulated as

H = maxθ mAP(Fθ(I), B), (3)
subject to |Fθ(I)| ≤ Nbb

where F is the object detector that takes an image as in-
put and produces a set of detection candidates, θ is the set
of parameters in F and Nbb is the threshold of maximum
detection candidates. mAP the evaluation function used in
both [17] and [3], which computes mean Average Preci-
sion between detection candidates and ground truth boxes
with a fixed threshold (0.5 for PASCAL VOC) or a range of
threshold ([0.5:0.95] in 0.05 increments for COCO bench-
mark).

As described in the previous section, detection systems
are traditionally trained using the multi-task loss to opti-
mize each detection candidate independently. In order to
utilize the global information in object detection, the set of
detection candidates are jointly processed in our proposed
method, which aims to maximum mAP between detection
candidates and ground truth boxes. Therefore, the objec-
tive of learning globally optimized object detector can be
written as follows:

L(θ) = −EI(mAP(Fθ(I), BI)) + λ ‖ θ ‖2 (4)

where EI is the expectation over all training images and
the second term is the regularization term with a positive
regularization factor λ.

3.3. Global Optimization for Object Detector

Since non-maximum suppression is a hard selection op-
eration on detection candidates, the optimization problem
described in equation 4 cannot be solved by standard gra-
dient decent algorithm. To tackle this problem, we propose
a policy gradient based method inspired by REINFORCE
algorithm [31] to address the global optimization problem

for object detection. Detectors such as Faster R-CNN can
be viewed as an agent that interacts with an external envi-
ronment , in our case, images. The aim of the agent is to get
maximum possible mAP between selected detection candi-
dates and ground truth boxes, which can be regarded as the
reward to the agent. The parameters of the object detectors,
θ, define a policy pθ, which results in an action that is used
to select detections. After each action, the agent presents
a set of detection candidates and observes a reward from
evaluation system. Unlike reinforcement learning problems
that are based on sequences of decisions such as robot con-
trol and video games, states, in our case, features of images,
consist of descriptions of the environment, which are not
determined by the previous states or actions. Strictly speak-
ing, the above formulation is not a full reinforcement learn-
ing framework, which is beyond our scope in this paper.
Here we concentrate in employing policy gradient method
as a gradient approximation tool to utilize global informa-
tion and improve the procedure of training object detector.

In summary, the goal of end-to-end training is to min-
imize the negative expected evaluation metric, i.e., mean
average precision (mAP):

L(θ) = −EI(rI) = −EI(mAPI) (5)

Policy Gradient for Global Optimization: For object de-
tection task, expected reward r is non-differentiable because
of non-maximum suppression. In order to compute ∇L(θ)
directly, we can use a policy gradient method, which com-
putes the expected gradient of the non-differentiable reward
function as follows:

∇LI(θ) = −Ea[r(a)∇θ log(pa)] (6)

where action a can be defined as ”selecting a set of bound-
ing boxes from all candidates”. If there are m candidates c
categories and n boxes selected at each time, the number of
all possible actions will reach #a =

(
m×c
n

)
, which can be

very large (for instance, if m = 1000, n = 10 and c = 80,
#a = 3×1042). Exploring such a large action space is hard
and inefficient.

To apply objective in Equation 6 to the training proce-
dure of object detector, we use some approximation tricks
to reduce the size of action space and obtain more efficient
gradient. Since our proposed method is applied on the pre-
trained object detectors, we can assume that the pre-trained
detector can correctly produce categories of input regions:

pb = P (b, l)� P (b, l′),∀l′ 6= l, (7)

where P (b, l) is the softmax output of bounding boxes b at
category l. Therefore, each bounding box can be assigned to
a ground truth category and will not be sampled as other cat-
egories during the policy gradient training. pb is the prob-
ability that detector recognizes b as the ground truth class,
i.e, score of b.



pa is the probability of action a, therefore, pa =∏
b∈a pb. We can further simplify Equation 6 as:

Ea[r(a)∇θ log(pa)]
=

∑
a

p(a)r(a)∇θ log(
∏
b∈a

pb)

=
∑
a

[p(a)r(a)
∑
b∈B′

[δ(a, b)∇θ log(pb)]]

=
∑
b∈B′

[∇θ log(pb)
∑
a

[p(a)r(a)δ(a, b)]]

we can define r(b) =
∑
a[p(a)r(a)δ(a, b)]. Note that sum-

ming up all possible actions is impractical, so we sampled
k = 10 actions according to pa stochastically to compute
r(b) in our implementation. We find that sampling several
actions during a single gradient calculation, instead of sam-
ple one action per iteration as typical implementations in
previous policy gradient methods, is more efficient and will
significant stabilize the training procedure. Therefore, ex-
pected policy gradient can be written as:

∇LI(θ, b) ≈ −r(b)∇θ log(pb). (8)

Policy Gradient with a Baseline: Baseline is widely used
in policy gradient based algorithm to reduce the variance of
the gradient estimation [23, 27]:

∇LI(θ, b) ≈ −(r(b)− r′)∇θ log(pb), (9)

where the baseline r′ can be chosen arbitrarily [31] as long
as it does not depend on the action a. Adding a base-
line term will not change the expectation of the gradient,
since baseline is irrelevant with confident score pb. Here we
choose the mAP of detection results obtained by performing
NMS as the baseline. Intuitively, we can see that bounding
boxes that have higher IoU with ground truth boxes than
selected ones will get positive rewards, while actions of se-
lecting low IoU boxes will be penalized. Besides, we set the
rewards of boxes that have already been selected to zero.

Joint Training with Cross-entropy Loss: To make the as-
sumption in Equation 7 hold during training, an auxiliary
cross-entropy loss can be used to further utilize the annota-
tion information and stabilize training. We can summarize
the formulation of final gradient as:

∇LI(θ, b) ≈ −((r(b)− r′) + γ)∇θ log(pb), (10)

where γ is the weight of cross-entropy loss. We can com-
pute derivatives as follows:

∂LI(θ, b)

∂x
≈ ((r(b)− r′) + γ)(pb − 1) (11)

where x is the input to the softmax function. Policy gradi-
ent can be regarded as an adjustment of cross-entropy loss,

Algorithm 1 Learning Global Optimized Object Detector
Input: A Set of image {I}, corresponding ground truth

bounding boxes {B}
Output: object detector Fθ

1: initialize Fθ with ImageNet pre-trained model or train
Fθ in normal way

2: for i← 1, 2, ...,M do
3: Sample random minibatch from {I}
4: Compute RoIs or anchors for image I
5: Assign ground truth boxes to RoIs or anchors
6: Compute detections candidates and results after

NMS
7: Compute smooth L1 loss Lbb for bounding box re-

greesion
8: Compute policy gradient gcls according to equa-

tion 11
9: Update θ with gradient∇θLbb + gcls

10: end for
11: return object detector Fθ

which dynamically adjusts the final gradient according to
the current detection results for each detection candidate. It
can be observed that the key elements of our method in-
clude: (1) ensuring that better detection candidates have
higher confident scores, (2) making detector aware of the
NMS during training phase and (3) amplifying the gradi-
ent of hard examples, which are the missing pieces in tradi-
tional detector learning.

The overall framework of our proposed approach is sum-
marized in Figure 2. Algorithm 1 details the training proce-
dure of the proposed method.

4. Experiments
4.1. Implementations

We evaluate our proposed method on the challenging 80
category COCO detection dataset [17]. All of our models
are trained using the union of 80k train images and a 35k
subset of val images (trainval35k). We report the stan-
dard COCO metrics including COCO-style mAP, mAP50,
mAP75, mAPS , mAPM and mAPL on a 5k subset of val
images (minival) 1.

Following [7, 15, 16], we use the networks that are pre-
trained on the ImageNet1k classification dataset [13] as
backbone networks and fine-tune our models on the object
detection dataset. All of our models are trained based on
ResNet-101 model that is provided by authors of [8].

Our proposed method is a generic solution for training
object detector. In this section, we adopt our method in

1We use the same split as used in https://github.com/
rbgirshick/py-faster-rcnn

https://github.com/rbgirshick/py-faster-rcnn
https://github.com/rbgirshick/py-faster-rcnn


Detection model training method greedy NMS soft NMS mAP mAP50 mAP75 mAPS mAPM mAPL

Faster R-CNN standard X 36.3 57.3 38.8 17.7 42.4 51.4
Faster R-CNN standard X 36.9 57.2 40.1 18.0 42.7 52.1
Faster R-CNN OHEM X 36.9 57.3 40.2 17.7 42.7 52.4
Faster R-CNN ours (γ = 0) X 37.6 60.0 40.2 19.6 42.6 52.0
Faster R-CNN ours (γ = 1) X 38.3 60.6 40.9 20.7 43.2 52.6
Faster R-CNN ours (γ = 1) X 38.5 60.8 41.3 20.9 43.4 52.7
Faster R-CNN with FPN standard X 37.7 58.5 40.8 19.3 41.7 52.3
Faster R-CNN with FPN ours (γ = 1) X 39.5 60.2 43.3 22.7 44.1 51.9

Table 1. Ablation experiments for our proposed method, evaluated on COCO minival set. All models are trained on trainval35k
set. Standard denotes that training object detector use the combination of cross-entropy loss and smooth L1 loss. All results are based
on ResNet-101 network and share the same hyper-parameters. We can see that our proposed method improves COCO-style mAP by 2.0
points over a strong baseline of Faster R-CNN and 1.8 points over Faster R-CNN with FPN.

state-of-the-art object detectors, such as Faster R-CNN [22]
and Faster R-CNN with Feature Pyramid Networks [15]
(FPN) to evaluate our method. To demonstrate the effec-
tiveness of our method, we make some modifications to
the original implementation to build stronger baselines for
object detection. Although our baseline models signifi-
cantly outperform original models reported in pervious pa-
pers [15, 22], our method can further improve the detection
performance greatly.

Object Detection with Faster R-CNN: Faster R-CNN is a
combination of region-based object detector (Fast R-CNN)
and Region Proposal Networks (RPN), which can be end-
to-end trained from image input to detection candidates.
Convolutional neural networks are used to produce image
features, which are shared by both object detector and re-
gion proposal network for faster inference.

The original Faster R-CNN models are built on the
VGG-style networks [28], which are relatively shallow and
inefficient compared to prevalent deeper architectures such
as ResNet [8] and its descendants [30, 32]. Following
[8, 15], we use the ResNet network of depth 101 layers
(ResNet-101) as the backbone architecture for feature ex-
traction in our experiments. The base ResNet-101 model is
pre-trained on ImageNet1k dataset as initialization for ob-
ject detection task. During training phase, layers in first two
stages of ResNet-101 and all batch normalization layers are
freezed for more stable training. Different from the original
implementation of Faster R-CNN with ResNets [8], which
extracts features from the final convolutional layer of the 4-
th stage, the whole model with dilated convolution layers is
used for deeper and larger features, as [14]. In our imple-
mentation, features are extracted from the last convolutional
layer of ResNet, i.e., the final convolutional layer of the 5-th
stage, and convolutional layers in the 5-th stage are replaced
by dilated convolutional layers to reduce the feature stride
and maintain the field of view simultaneously [19]. To make
the best use of ImageNet pre-trained model, the weights of
dilated layers are initialized by corresponding convolutional

layers.

Region Proposal Network takes image features as in-
put and outputs a set of object proposals with confident
scores. We use a convolutional layer with kernel size
3 × 3 to map image features from ResNet to a 512-d fea-
ture map. Two branches of classification and localization
are used to produce 2A scores and 4A coordinates respec-
tively for each point at feature map with two 1 × 1 convo-
lutional layers as described in [22], where A is the num-
ber of anchors. Following [15], anchors have areas of
{322, 642, 1282.2562, 5122} pixels with multiple aspect ra-
tios of {1 : 2, 1 : 1, 2 : 1} for each scale are used in RPN.
Thus we setA to 15 in our implementation. During training,
labels of anchors are assigned according to their IoU with
ground truth boxes. An anchor is assigned a positive label
if it has an IoU with ground truth boxes higher than 0.7, and
assigned a negative label if it has an IoU with ground truth
boxes lower than 0.3. Note that anchors that have the high-
est IoU with ground truth boxes are also assigned positive
labels and the rest of anchors are ignored during training.
During training and inference, RPN produces region pro-
posals after performing NMS with threshold 0.7 on all an-
chors. Proposals are eliminated if their shorter sizes are less
than 2 pixels, different from 16 pixels in previous works.
Because we find it is important to keep small proposals,
which can greatly improve the detection performance on
small objects (mAPS).

For each region proposal, a RoIAlign operation intro-
duced in [7] is performed to extract a position sensitive and
fixed size feature map from image feature. Unlike [7] us-
ing a 7 × 7 RoIAlign operator, we find denser sampling
(e.g., 14 × 14, as [11]) will extract more information for
large objects and feed back more information to backbone
CNN, which is helpful to get more precise predictions and
fine-tune backbone network more sufficiently. Since the 5-
th stage of ResNet has been used for feature extraction, we
apply an extra 3×3 convolutional layer with stride 2 to pro-
duce a size of (7, 7, 256) feature for each RoI, followed by



Figure 3. Baseline model (top) vs. globally optimized object detector (bottom, Faster R-CNN model). We only keep the boxes with the
confident scores higher than 0.5. We can see that wrong detections with high confident scores can be barely found in results of our model.

two 1024-d fully connected layers before the final classifi-
cation and bounding box regression layer that is used in [15]
to form a head architecture of detector. Each of the above
layer is followed by a ReLU activation, and dropout [29]
is not used. Note that compared to conv5 head [8] and 2-
fc MLP head [15], our head architecture has less parameters
(∼ 33% compared to 2-fc MLP for faster R-CNN) and GPU
memory usage.

Object Detection with Feature Pyramid Networks: FPN
is a top-down architecture with lateral connections to build
high-level semantic feature maps for several scales, which
can significantly improve the detection results for objects
at vastly different scales. We adopt this design to build a
stronger baseline than Faster R-CNN and evaluate the gen-
erality of our proposed method.

Following [15], we build a feature pyramid upon the
backbone ResNet model by using features from final con-
volutional layer of each stage. Since dilated layers are
used in the final stage of ResNet, only features from the
2-nd, 3-rd and 5-th stage are utilized, which are denoted
by {C2, C3, C5}. We apply a 1 × 1 convolutional layers
on each of these feature maps, followed by lateral con-
nections to produce 256-channel feature maps at different
scales {P2, P3, P5} and apply a 3 × 3 convolutional lay-
ers with stride 2 on C5 to produce the coarsest resolution
map P6. Anchors that have areas of {322, 642, 1282} are
assigned to {P2, P3, P5} respectively, and anchors that have
areas of {2562, 5122} are assigned to P6. We find that mini-
batch is mainly composed of small RoIs during training,
thus samples that are assigned to coarse feature maps are
usually sufficient. Merging large anchors to P6 can improve
the detection results on large objects (mAPL).

Optimization: We follow the image-centric sampling strat-
egy [5,22] to train our models. All input images are resized
such that their shorter side is 800 pixels, following [7, 15].

We adopt synchronized SGD training on 8 GPUs. Each
mini-batch has 2 images per GPU. For each image, 256 an-
chors are sampled for training RPN and 512 RoIs [7] are
sampled with a ratio of 1:3 of positive and negatives [5, 7]
for training detector. We use a weight decay of 0.0001 and
a momentum of 0.9. For Faster R-CNN, we train our mod-
els for 80k iteration, with a learning rate of 0.01 which is
decreased by 10 at the 50k iteration and 65k iteration. For
Faster R-CNN with FPN, we train our models for 160k it-
eration, with a learning rate of 0.01 which is decreased by
10 at the 100k iteration and 130k iteration. For global opti-
mization learning, additional 22.5k iteration training using
our proposed method is performed on baseline object detec-
tion model with a learning of 0.001 which is decreased by
10 at the 15k iteration. During training, we compute mAP
over each image to produce the policy gradient described in
Section 3.3. In our implementations, mAP is calculated at
multiple (0.5:0.95) IoU threshold following COCO evalua-
tion, where we computes per-instance precision at multiple
IoU thresholds and then average them to obtain AP of the
input image. Other training details are as in [22].

Inference: We evaluate all our models using single-view
testing. At test time, we set the number of region proposal
before and after performing NMS to 8000 and 1000 respec-
tively. The threshold of final NMS is set to 0.5, which is
consistent with training.

4.2. Ablation Experiments

To investigate the performance of our proposed method,
we conducted several ablation experiments. Experiment re-
sults are presented in Table 1.

Comparisons with baselines: For fair comparisons with
baseline models without global optimization training,
global optimization learning is performed on the baseline
object detection models, where their performance cannot
be further improved by continuing training. Both baseline



Model backbone test set mAP mAP50 mAP75 mAPS mAPM mAPL

SSD [18] ResNet-101 test-dev2015 26.8 46.5 27.8 9.0 28.9 41.9
DSSD [4] ResNet-101 test-dev2015 33.2 53.3 35.2 13.0 35.4 51.1
Faster R-CNN with FPN [7] ResNet-101 test-dev2015 37.3 59.6 40.3 19.8 40.2 48.8
RetinaNet [16] ResNet-101 test-dev2015 39.1 59.1 42.3 21.8 42.7 50.2
Faster R-CNN with FPN [15] ResNet-101 minival 35.2 58.2
Faster R-CNN with TDM [26] Inception-ResNetv2 minival 38.1 58.6 40.7 17.4 41.1 54.7
Faster R-CNN (ours) ResNet-101 minival 38.3 60.6 40.9 20.7 43.2 52.6
Faster R-CNN with FPN (ours) ResNet-101 minival 39.5 60.2 43.3 22.7 44.1 51.9

Table 2. Object detection single model results. We compare results of our proposed method with state-of-the-art models, evaluated on
COCO minival set.

models and our proposed models are trained using the same
hyper-parameters with the proposed modifications, follow-
ing above-mentioned details.

We can see that our proposed method improves mAP of
Faster R-CNN detector by 2.0 points over a strong baseline
of 36.3 and improves Faster R-CNN with FPN model by 1.8
points over the baseline of 37.7 under the greedy NMS set-
ting. In addition, the performance on small objects (mAPS)
and accurate detection (mAP75) is boosted by large margins
of 3.0 and 2.1 over Faster R-CNN, 3.4 and 2.5 over Faster
R-CNN with FPN, respectively, which is the core problem
that we want to tackle using the idea of global optimiza-
tion. In summary, our proposed method greatly improves
the baseline models. Experiment results demonstrate the
effectiveness of our method. Examples of detection results
are shown in Figure 3.

Comparisons with other methods: We compared our pro-
posed method with other modifications on objective func-
tion and NMS using the Faster R-CNN model.

We first compared our method with OHEM [25], which
achieved 36.9 mAP and improved the baseline model by
0.6 points. We can see that our model outperforms OHEM
model by 1.4 points, showing that our method is more ef-
fective than OHEM for training sparse detectors.

Furthmore, we tested our models by performing soft
NMS [1] during inference. Soft NMS is another attempt
that aims to close the gap between learning and inference. It
can be observed that soft NMS achieves similar results with
OHEM, which improves the baseline model by 0.6 mAP.
We note that soft NMS improves our proposed model less
than the baseline model by 0.4 points (∼ 66% of improve-
ment), which indicates that our method can further close the
gap between the phase of training and inference.

How important is joint learning? To understand the im-
portance of joint learning of policy gradient and cross-
entropy loss, we trained a model using policy gradient with-
out cross-entropy term (γ = 0). We argue that adding the
term of cross-entropy can further utilize the annotation in-
formation and stabilize training process. Results show that

this modification can improve the final results by 0.6 mAP.
Note that even without cross-entropy loss, policy gradient
can keep the learning process stable and improve the base-
line model by 1.3 points. This result suggests that policy
gradient plays a more important role in our method.

4.3. Comparisons with State-of-the-art

We evaluated our proposed method on the bounding box
detection task of the challenge COCO dataset and compare
our results to recent state-of-the-art methods Results are
presented in Table 2 for our models that are based on Faster
R-CNN and Faster R-CNN with FPN baselines. Compared
to existing methods, our approach achieves a very competi-
tive results in COCO dataset. Our Faster R-CNN with FPN
model outperforms other single model results on minival
set.

5. Conclusion

In this paper, we have presented a new method for learn-
ing globally optimized object detector via policy gradient,
which is a simple yet effective modification to standard
cross-entropy gradient.

While our method is designed for Faster R-CNN like ob-
ject detectors, it can also be easily applied to off-the-shelf
modern object detection frameworks, which is an interest-
ing future work.
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