
Inverse Composition Discriminative Optimization for Point Cloud Registration

Jayakorn Vongkulbhisal1,2, Beñat Irastorza Ugalde2, Fernando De la Torre2,3, João P. Costeira1
1ISR - IST, Universidade de Lisboa, Lisboa, Portugal
2Carnegie Mellon University, Pittsburgh, PA, USA

3Facebook Inc., Menlo Park, CA, USA
jvongkul@andrew.cmu.edu, birastor@andrew.cmu.edu, ftorre@cs.cmu.edu, jpc@isr.ist.utl.pt

Abstract

Rigid Point Cloud Registration (PCReg) refers to the
problem of finding the rigid transformation between two
sets of point clouds. This problem is particularly impor-
tant due to the advances in new 3D sensing hardware, and
it is challenging because neither the correspondence nor
the transformation parameters are known. Traditional lo-
cal PCReg methods (e.g., ICP) rely on local optimization
algorithms, which can get trapped in bad local minima in
the presence of noise, outliers, bad initializations, etc. To
alleviate these issues, this paper proposes Inverse Compo-
sition Discriminative Optimization (ICDO), an extension of
Discriminative Optimization (DO), which learns a sequence
of update steps from synthetic training data that search the
parameter space for an improved solution. Unlike DO,
ICDO is object-independent and generalizes even to un-
seen shapes. We evaluated ICDO on both synthetic and real
data, and show that ICDO can match the speed and outper-
form the accuracy of state-of-the-art PCReg algorithms.

1. Introduction
Rigid Point Cloud Registration (PCReg) refers to the

problem of finding the rigid transformation between two
or more point clouds without correspondence (Fig. 1a).
PCReg algorithms are fundamental to 3D data process-
ing, especially nowadays with the ever increasing access to
3D sensors (e.g., iPhone X, Kinect, LIDAR). Applications
of PCReg span 3D reconstruction, pose estimation, track-
ing, etc. Many successful approaches formulate PCReg as
an optimization problem and solve it with local optimiza-
tion algorithms. Unfortunately, these local methods tend to
get trapped in bad local optima without a good initialization.

To achieve robustness against local optima, several au-
thors proposed different formulations and algorithms. A
major class of successful algorithms relies on determinis-
tic annealing strategies [16, 20, 7]. In short, these algo-
rithms first optimize a coarse, non-robust cost function with

(R,t)?

Registered shapeInput shapes

Training data
(R,t)

Initial estimate Solution

(a)

(b)

Figure 1. Rigid Point Cloud Registration (PCReg) with ICDO. (a)
The goal of PCReg is to estimate rigid transformation parameter
that registers two point clouds together. (b) ICDO learns an inverse
composition update rule that searches for the solution from PCReg
examples. The learned update rule of ICDO generalizes to shapes
that are not even in the training set.

a small number of local optima, then continually increase
the robustness by modifying the cost function. One issue
with annealing approaches is that they require a schedule
for such modification, i.e., how fast and to what shape the
cost should be modified. Setting this schedule is not triv-
ial. With an improper schedule, the optimization might take
longer than necessary or even skip the correct solution to a
different optimum altogether.

Recently, Discriminative Optimization (DO) [38] has
been proposed as a learning-based technique to solve
PCReg. DO searches for a solution by mapping a feature
vector to a parameter update vector, where the maps are
learned from a set of training data. Although it was shown
to be very robust, DO has a significant limitation: the fea-
tures and the maps are object-specific, i.e., they only work
for the particular object they were trained on. This limits the

usefulness of DO because it cannot be efficiently applied
to problems that only register each point cloud once, e.g.,
merging point clouds for reconstruction. Meanwhile, a gen-
eral framework for deriving feature vectors for DO has been
proposed, allowing DO to solve other computer vision prob-
lems, such as camera calibration and image denoising [37].
At first glance, it seems this framework can be applied to
solve object-independent PCReg. However, the dimensions
of the derived feature is exponential in the dimensions of the
point clouds, rendering it impractical even for 3D PCReg.

In this work, we reformulate DO to solve object-
independent PCReg. We modify the feature derivation
in [37] to represent the interaction between any two 3D
point clouds1 such that the feature’s dimensions are inde-
pendent of the point cloud’s dimensions. This allows us
to train a single set of maps and use it to register arbitrary
shapes, including unseen ones. Since our update rule is the
inverse composition operation, we call our approach Inverse
Composition Discriminative Optimization (ICDO). We also
show that ICDO can be interpreted as learning an annealing
schedule, allowing fast convergence compared with other
annealing-based local PCReg algorithms while maintaining
high accuracy.

2. Previous Work

Rigid Point Cloud Registration (PCReg): PCReg al-
gorithms can be classified into two classes. (i) Local ap-
proaches use local search algorithms that search around the
current estimated parameters. They are typically fast but
can get trapped in local optima without good initializations.
(ii) Global approaches search the whole configuration space
using globally optimal algorithms, such as branch-and-
bound [40, 8], or formulate the problem with a convex re-
laxation [23, 5]. They do not require any initialization but
are generally slower than local algorithms. Rather than us-
ing just points, there are also algorithms that use other in-
formation, e.g., colors [24, 29], lines [9, 6], planes [22, 28],
and local features from point clouds [41, 21, 15, 13]. For
these algorithms, their optimization module may be either
local [9, 24, 29, 22, 41], global [15, 6, 28], RANSAC-
based [21, 13], or their combinations. Since ICDO is a local
algorithm, we will focus our review in this class.

Local PCReg approaches generally rely on local search
algorithms. Different techniques are used depending on
how the rotation is parametrized. One major class directly
uses rotation matrix, and alternately solve for the parame-
ter (with Procrustes analysis [36]) and the correspondence
weights. These methods include ICP [3, 10] and their vari-
ants [32, 2]. While ICP uses binary weights, many algo-
rithms use the Gaussian of the distance between the points
as weights, e.g., Robust Point Matching (RPM) [16], EM-

1We focus on 3D PCReg. The 2D case can be derived in a similar way.

ICP [18], and Coherent Point Drift (CPD) [26]. More re-
cently, [17] models PCReg as objects moving under a grav-
itational field. Rather than using rotation matrix, another
class of methods relies on other parametrization, e.g., axis-
angle or quaternion, and uses gradient-based techniques to
solve for the parameter. LM-ICP [14] minimizes robust cost
functions with the Levenberg-Marquardt algorithm. Kernel
Correlation (KC) [34] and Gaussian Mixture Registration
(GMR) [20] minimize the L2 distance between the Gaus-
sian mixtures of the point clouds. We note that the algo-
rithms that rely on Gaussian functions require setting their
widths. They either estimate such widths in each itera-
tion [26, 18] or use deterministic annealing [16, 18, 20].

Discriminative Optimization (DO): DO [38] was pro-
posed as a learning-based approach for local PCReg. It
learns an update rule as a linear mapping from a feature
vector to an update parameter2:

xτ = xτ−1 −Dτh(xτ−1) (1)

where xτ ∈ Rp is the transformation parameter in step
τ = 1, . . . ; h : Rp → Rf extracts features from the point
clouds at xτ ; and {Dτ} ⊂ Rf×p, which map the feature to
an update vector, are learned from training data and are spe-
cific to a single shape. The concept of DO is similar to cas-
caded regression [12] and supervised descent [39], which
are widely used in face alignment. Recently, a framework
for deriving feature functions based on gradient descent has
been proposed [37], and DO was further applied to im-
age denoising and camera pose estimation. Note that while
some works use learning-based techniques for PCReg (e.g.,
support vector regression [7] and deep neural network [13]),
they are used to learn new shape representations, not for the
estimation of parameters.

In this work, we build upon DO and extend it in sev-
eral ways. (i) Instead of the summation rule in (1), ICDO
uses inverse composition as the update rule. Learning-based
composition rules have been used for image-based pose es-
timation and tracking [12, 35], but they have not been ap-
plied to PCReg. (ii) Unlike DO which is shape-specific,
ICDO generalizes across different shapes, even those not
included in the training data. (iii) We show how to derive
the feature function with much smaller dimensions than the
framework in [37]. (iv) We also show that the learned maps
can be interpreted as an annealing schedule, avoiding the
need to manually set one like in previous PCReg methods.

3. Inverse Composition DO (ICDO)
In this section, we introduce our PCReg algorithm

called Inverse Composition Discriminative Optimization
2Bold capital letters denote a matrix X, bold lower-case letters a col-

umn vector x, non-bold letters a scalar x. 0n,1n ∈ Rn are the vector of
zeros and ones. Vector xi denotes the ith column of X. Bracket subscript
[x]i denotes the ith element of x. ‖x‖ denotes `2-norm

√
x>x.

(ICDO). We first describe our motivation from gradient-
based PCReg and inverse composition PCReg, then we de-
scribe how to combine them with the DO framework [37]
to solve shape-independent PCReg. We provide the inter-
pretation of ICDO, its computational complexity, and im-
plementation details at the end of the section.

3.1. Motivation: Gradient-based PCReg

Given two point clouds represented by the matrices M ∈
R3×NM for the model shape and S ∈ R3×NS for the scene
shape, the goal of 3D rigid PCReg is to find a transformation
parameter x such that the transformed scene is similar to the
model: T (S,x) ∼ M. Here, we consider x = [r>, t>]>,
where r parametrizes rotation such that R(r) is a rotation
matrix (e.g., r can be an axis-angle vector, a quaternion, or
a rotation matrix itself); t ∈ R3 is a translation vector; and
T transforms a point cloud as

T (S,x) = R(r)S + t1>NS
. (2)

To solve PCReg, many works formulate it as an opti-
mization problem. For example, the ICP algorithm solves

minimize
pij∈{0,1},x

NM∑
i=1

NS∑
j=1

pij‖mi − T (sj ;x)‖2, (3)

where pij ∈ {0, 1} denote correspondences. We can see
the cost function of (3) is not continuous, so ICP requires to
alternate between solving for x and pij . On the other hand,
KC [34] and GMR [20] propose to solve

minimize
x

−
NM∑
i=1

NS∑
j=1

exp(−(1/σ)‖mi − T (sj ;x)‖2), (4)

where σ controls the width of the Gaussian function. The
cost function in (4) is continuous and differentiable, allow-
ing gradient-based algorithms, such as gradient descent, to
solve PCReg. One problem with (4) is that it is not easy
to set σ: If σ is too large then the cost function could be
too coarse and disregard details of the shapes, while a small
σ could lead to a large number of local minima [20]. To
handle this issue, GMR uses deterministic annealing, i.e.,
it initializes with large σ then reduces it as the problem is
solved. This scheduling can be difficult to set, and may lead
to more computation time than necessary.

More generally, instead of using a Gaussian with specific
widths, we may consider a generalization of (4):

minimize
x

NM∑
i=1

NS∑
j=1

ψ(‖mi − T (sj ;x)‖), (5)

where ψ is a 1D penalty function. We can see that other
functions can be used in place of the Gaussian, but this

makes it more complicated to select a function ψ and how
to modify it to obtain a robust PCReg algorithm. In this
work, we tackle this issue by learning from training data.
Specifically, our algorithm learns to search for the solution
of PCReg, where each step imitates the gradient descent on
a ψ which is not expressed explicitly. We will show that
our algorithm can be interpreted as learning the annealing
of ψ from the training data, bypassing the need to manually
design and modify it. Before we describe our algorithm, we
look at the inverse composition operation, which we will
use to update our parameters.

3.2. Inverse composition PCReg

Our algorithm is based on the inverse composition (IC)
framework [1]. For PCReg, The composition operation
can be described as follows. Two parameter vectors x1 =
[r>1 , t

>
1]> and x2 = [r>2 , t

>
2]> are composed as

x1 ⊕ x2 =

[
R−1(R(r2)R(r1))
R(r2)t1 + t2

]
, (6)

whereR−1 reverts a rotation matrix back to its parametriza-
tion. We also define (x)−1 to be the inverse of x: x1⊕x2⊕
(x2)−1 = x1. In terms of transformation T , we can see that

T (S,x1 ⊕ x2) = T (T (S,x1),x2). (7)

With the above notation, we compare IC with the for-
ward composition (FC). Consider (5) with a differentiable
ψ, and let x and x+ denote the current and the next esti-
mates, resp. FC operates by alternately computing (i) the
gradient that transforms T (S;x) towards M and (ii) the FC
update (we disregard the step size in ∆x):

∆x = −
NM∑
i=1

NS∑
j=1

∂T (sj ;x⊕ x̃)

∂x̃

∂ψ(‖mi − T (sj ;x⊕ x̃)‖)
∂T (sj ;x⊕ x̃)

∣∣∣∣∣
x̃=0
(8)

x+ = x⊕∆x. (9)

In contrast, IC alternately computes (i) the gradient that
transforms M towards T (S;x) and (ii) the IC update:

∆x = −
NM∑
i=1

NS∑
j=1

∂T (mi; x̃)

∂x̃

∂ψ(‖T (mi; x̃)− T (sj ,x)‖)
∂T (mi; x̃)

∣∣∣∣∣
x̃=0
(10)

x+ = x⊕ (∆x)−1, (11)

where 0 denotes the identity transformation parameter.
Similar to image alignment [1], we see that FC requires re-
computing ∂T (sj ;x⊕x̃)

∂x̃ at every iteration as it depends on x,
while IC’s ∂T (mi;x̃)

∂x̃ is constant at x̃ = 0. The IC frame-
work allows ∂T (mi;x̃)

∂x̃ to be computed only once, leading to
less computation than FC. In this work, we rely on an up-
date similar to IC, but instead of using the gradient of ψ in
∆x, we will learn the update from training data.

3.3. Learning and performing update steps

In order to learn the update step under the IC update rule,
we follow the DO framework from [37], which is based on
mapping a feature vector to an update vector. First, we de-
scribe our update rule, followed by how to learn the maps
and apply them to solve PCReg.

Update rule: Given an initialization x0 = 0, the two
point clouds denoted as θ = (M,S), and a function h that
extracts features from the point clouds, ICDO updates the
estimated parameter at step τ using the IC operation

xτ = xτ−1 ⊕ (Dτh(xτ−1; θ))−1, (12)

where Dτ , τ = 1, 2, . . . are matrices that map the feature
function h(xτ−1; θ) to an update vector ∆x. This update
rule differs from the additive update rule of DO. Another
major difference lies in the fact that the features and the
maps of DO are shape-specific, while here we will show
how to derive a shape-independent function h in Sec. 3.4.
Next, we describe how we learn the maps.

Learning update maps: Suppose we are given a train-
ing set {(xk∗, θk)}Kk=1, where θk = (Mk,Sk) contains the
two point clouds of the kth training instance, and xk∗ is the
ground truth registration parameter satisfying T (Sk;xk∗) ∼
Mk. At step τ , we wish to learn a map Dτ such that the up-
dated xkτ , k = 1, . . . ,K in (12) move towards xk∗ . Similar
to [37], this is done using the following regularized linear
least-squares regression:

Dτ = arg min
D̃

1

K

K∑
k=1

‖((xk∗)−1⊕xkτ−1)−D̃h(xkτ−1; θk)‖22+λ‖D̃‖2F .

(13)
Here, ((xk∗)

−1 ⊕ xkτ−1) is the difference between xkτ−1 and
xk∗ under the IC operation. After a map is learned, we up-
date the training instances using the update rule (12). We re-
peat this process until a terminating criteria is reached, e.g.,
a maximum number of maps. Alg. 1 shows a pseudocode
for training ICDO.

Solving PCReg: The pseudocode for solving PCReg
with ICDO is summarized in Alg. 2. Suppose we trained
a total of T maps. We first perform the update using (12)
until step T , then we continue using DT to update until
a termination criteria is reached, e.g., the update is small.
However, we found that many times using DT to update
causes the parameter to bounce around the correct solution
without converging to it. This behavior resembles subgradi-
ent method with constant step size [4], which may not con-
verge to a minimum. To alleviate this issue, we attempted to
scale the update with 1/(τ − T) and 1/

√
τ − T for τ > T

but we found that the updates diminished too fast, leading
to a premature termination. The strategy that we found ef-
fective is to use ∆x from the average of the updates from
the current and the previous iterations (line 6 in Alg. 2).
This strategy resembles the momentum approach [27] used
frequently in first-order optimization.

3.4. From gradient to features

In this section, we describe how to derive the feature
function h based on the gradient of (5). We parametrize
rotation with the axis-angle vector in R3, but the derivation
can also be used with other parametrizations. The steps to
derive h is similar to those in [37]. First, we define a cost
function (without an explicit expression) that penalizes reg-
istration residuals. Then, we take the cost’s derivative and
represent it as an inner product between two functions. Fi-
nally, we discretize the functions into a feature vector h and
a matrix D, allowing us to learn D from training data. The
details are as follows.

Define g to be the following residual function

gij(x̃;x) = T (mi; x̃)− T (sj ;x), (14)

where x is the current parameter estimate. To update x un-
der IC, we consider the following optimization problem

minimize
x̃∈R6

J(x̃) =

NM∑
i=1

NS∑
j=1

ψ(‖gij(x̃;x)‖), (15)

for some 1D function ψ. Next, we compute ∆x = −∂J(x̃)∂x̃
at x̃ = 06. For simplicity, we consider a single term (i, j):

∆xij , −
∂

∂x̃
ψ(‖gij(x̃;x)‖)

∣∣∣∣
x̃=06

= −
[
−[mi]×

I3

]
gij(06;x)

‖gij(06;x)‖︸ ︷︷ ︸
=wij

∂ψ(‖gij(x̃;x)‖)
∂‖gij(x̃;x)‖

∣∣∣∣
x̃=06

(16)
We can see that only the rightmost term is dependent on ψ.
Since we assume we do not have access to ψ, we will learn
this term from training data using the algorithm in Sec. 3.3.
To do so, we need to express ∆x as Dh(x). This is done
by replacing the term with a function ϕ : R → R, then
factorizing it as a convolution with Dirac delta function δ:

∆xij = −wijϕ(‖gij(06;x)‖) (17)

= −wij

∫
V

ϕ(v)δ(v − ‖gij(06;x)‖)dv, (18)

where V = R. Consider only an element l of ∆xij , we see

[∆xij]l = −
∫
V

[wij]lϕ(v)δ(v − ‖gij(06;x)‖)dv. (19)

We can see that (19) is an inner product between−ϕ(v) and
[wij]lδ(v − ‖gij(06;x)‖). This is similar to [Dh]l, which
can be considered as the inner product between h and row l
of D. Following this connection, we will express the prod-
uct between ϕ(v) and [wij]lδ(v−‖gij(06;x)‖) as a matrix-
vector product [Dh]l. To do so, we discretize the space V
into q boxes, leading to (19)’s discretized counterpart:

[∆xij]l ≈ −ϕ>[wij]leγ(q
r ‖gij(06;x)‖), (20)

where γ : R → {0, 1, . . . , q} rounds up any number in
[0, q], or returns 0 otherwise; r ∈ R controls the discretiza-
tion range; δ is discretized into the standard basis vector
eβ ∈ {0, 1}q (We define e0 = 0q); and ϕ is discretized into
a vector ϕ ∈ Rq . With these discretizations, we can put
everything back to the full ∆x as

∆x =

NM∑
i=1

NS∑
j=1

∆xij ≈ Dh(x; θ), (21)

D = −I6 ⊗ϕ> (22)

hr,q(x; θ) =

NM∑
i=1

NS∑
j=1

6⊕
l=1

[wij]leγ(q
r ‖gij(06;x)‖), (23)

where ⊗ is the Kronecker product, and
⊕

is vector con-
catenation. We can see that (21) factorizes ∆x in (16) into
a product of two terms: D ∈ R6×6q which contains the un-
known ϕ, and hr,q : R6 × (RNM × RNS) → R6q which
contains the known information about the two point clouds.
This factorization allows us to use h as the feature function
to learn the update maps with the algorithm in Sec. 3.3.

Our derivation of the feature function differs from that
in [37]. If we follow [37], we will consider ψ̂(gij(x̃;x))

with ψ̂ : R3 → R instead of ψ(‖gij(x̃;x)‖) with ψ : R →
R. Using ψ̂ would allow learning an anisotropic penalty
instead of an isotropic one in ψ, but the feature h of ψ̂ will
have the dimension of 6q3 for 3D cases. This is much larger
than 6q of (23), which is independent of the point cloud’s di-
mension. Moreover, the maps learned from ψ̂ would require
a much larger number of training data to prevent overfitting.

3.5. Intrepreting ICDO

We can see from Sec. 3.4 that h is derived such that
Dh approximates the negative gradient of an unknown ψ
from (15). Thus, we can interpret ICDO as imitating gra-
dient descent on (15). In addition, we can also make the
following more specific interpretations of ICDO. (i) Sam-
pling on a gradient field: Since h is a weighted sum of
the discretized Dirac delta (23) and D contains the gradi-
ent field ϕ of ψ (22), we can interpret Dh as performing a
weighted sampling from the gradient field. (ii) Annealing:
In practice, different Dτ are used in each step τ . This al-
lows ICDO to learn how such gradient field changes with
τ , similar to an annealing schedule (empirical analysis pro-
vided in Sec. 4.1). (iii) Predetermined step sizes: While
many gradient-based algorithms use line search to estimate
step sizes, ICDO directly incorporates them into Dτ . Thus,
we can interpret ICDO as using predetermined (by training)
step sizes, similar to the subgradient method where the step
sizes are set in advance (e.g., to decay in each step [33, 4]).

Algorithm 1 Training ICDO
Input: {(xk∗, θk)}Kk=1, T , λ, r0, q, α
Output: {Dτ}Tτ=1

1: Initialize xk0 := 0,∀k; and r := r0
2: for τ = 1 to T do
3: Compute h̃k := hr,q(x

k
τ−1; θk),∀k from (23)

4: Compute Dτ with (13)
5: Compute xkτ := xkτ−1 ⊕ (Dτ h̃

k)−1,∀k
6: Compute r := r0/α

τ

7: end for

Algorithm 2 Solving PCReg with ICDO
Input: θ, {Dτ}Tτ=1, r0, q, α
Output: x

1: Initialize x := 0; τ := 1; and r := r0
2: while not converge do
3: Compute h̃ := hr,q(x; θ) with (23)
4: Compute ∆x := Dmin(τ,T)h̃
5: if τ > T then
6: Compute ∆x := (∆x + ∆x−)/2
7: end if
8: Compute x := x⊕ (∆x)−1

9: Compute ∆x− := ∆x
10: Compute r := r0/α

τ

11: Compute τ := τ + 1
12: end while

3.6. Computational complexity

We can see that the most demanding step of ICDO is the
computation of the feature h, which is O(NMNS) due to
the pairwise residual gij . This is equivalent to straightfor-
ward implementations of other PCReg algorithms, as they
all require computing the pairwise distances. However, ICP
can use kd-tree to find the nearest neighbors, which reduce
the complexity to O(NM logNS). Similarly, Gaussian-
based approaches, such as CPD, KC, and GMR, can use fast
Gauss transform (FGT) [19] to compute their correlation,
which reduces the complexity to O(NM + NS). Unfortu-
nately, the function learned by ICDO can be more general
and we do not know of a way to improve its complexity.

3.7. Implementation details

Normalization: PCReg algorithms are generally sen-
sitive to variations in the point clouds, e.g., density and
scale. These issues are further complicated by the fact that
ICDO is learning-based, thus normalization is very impor-
tant. First, we remove the mean of M from both M and
S to maintain their relative configuration. Next, we per-
form two normalizations for scale and density. (i) Scale:
Suppose that we have the registration RS + t ∼ M. If
the shapes are scaled by ρ, e.g., M̂ = ρM, we will have

RŜ + ρt ∼ M̂: only the translation vector is scaled but
not rotation, making it harder to learn effectively. To pre-
vent this effect, we scale both M and S by

√
NM/η, where

η is the mean of M’s singular values. (ii) Density: Con-
sider θ(1) = (M,S) and θ(2) = ([M,M],S), i.e., the θ(2)’s
model density is doubled. This causes an undesirable ef-
fect that h(x, θ(2)) = 2h(x, θ(1)), meaning the update step
of θ(2) will be double that of θ(1), while the shapes are the
same. To handle this issue, we divide h in (23) by NMNS .

Speeding up computation: We found that the most time-
consuming step is the aggregation of [wij]l into h in (23).
To reduce computation, we reduce the number of terms
in (23) by reducing the value of r in each iteration (recall
that r controls the range of discretization, see (20)). Since
we keep q constant, an additional advantage of this reduc-
tion is that the discretized boxes become finer as iteration
increases, allowing more details to be captured. Note that
we do not reduce r beyond iteration T in test, and this re-
duction does not affect the fact the ICDO learns an anneal-
ing schedule (see Fig. 2). Also, while this reduction speeds
up computation, it does not change ICDO’s complexity.

Training: We found that the training error in Alg. 1 re-
duces too fast, which causes the latter maps to have small
updates. To handle this issue, we add random rotation in
N (0, 10) degrees and translation vector with the norm in
N (0, 0.1) to the data in each training iteration, and adjust
the ground truth xk∗ accordingly. In addition, notice that
D in (22) is block-diagonal with nonzero values only in the
elements of ϕ. In practice, we also found that the off-block-
diagonal elements have very small values. With these ob-
servations, we constrain all elements outside the diagonal
blocks to be zero when we learn the maps in (13).

Termination criteria: We terminate the algorithm when
the rotation and the total displacement in the past 5 itera-
tions amount to less than 0.5 degrees and 3 × 10−3, resp.
We also terminate if the number of iterations reaches 200.

4. Experiments
In this section, we evaluate ICDO with both synthetic

and real experiments. We begin this section by describ-
ing baseline algorithms and performance measure. Then,
we describe how we train the maps, analyze the maps, and
show that the annealing effect is inherently learned by our
algorithm. Finally, we present the comparison against other
PCReg algorithms with synthetic and real data. All experi-
ments were performed in MATLAB on a single thread of a
machine with Intel i7-4770K 3.50GHz 16GB RAM.

Baselines: We use 4 baselines.3 (i) ICP [3]. (ii)
IRLS [2], which is similar to ICP but uses the Huber func-
tion as penalty. (iii) CPD [26], which maximizes the like-
lihood that one point cloud is generated by the Gaussian

3We do not compare with DO [38] as it is shape-specific and requires 3-
4 minutes to train each shape, thus DO is impractical for our experiments.

mixture of the other. (iv) GMR [20], which minimizes L2

distance between the two Gaussian mixtures. Recall from
Sec. 2 that GMR is gradient-based and uses deterministic
annealing. This makes GMR most similar to ICDO. We ob-
tained the MATLAB codes from the authors’ websites, ex-
cept ICP which we used MATLAB’s implementation. Note
that CPD and GMR’s fast Gauss transform (FGT) is in C.

Performance measure: We use the registration error,
defined as the pointwise RMSE of the model in the ground
truth pose and the model in the estimated pose:

(1/
√
NM)‖T (M;x)− T (M;xgt)‖F , (24)

where ‖ · ‖F is the Frobenius norm, and x and xgt are the
estimated and the ground truth poses, resp.

4.1. Training and analyzing the maps Dτ

Training the maps: We generated synthetic data to train
the maps from seven 3D shapes: Bunny and armadillo from
Stanford’s 3D scan repository [11] and all 5 shapes from
the UWA dataset [25]. Each training model Mk was gen-
erated by randomly picking a shape; scaling it so that all
points are in [−1, 1]3; and randomly rotating in [0, 180] de-
grees. Next, we copied the model as the scene shape Sk,
then added a random rotation in [0, 85] degrees and transla-
tion in [−0.2, 0.2]3 to only Sk. Then, we applied the follow-
ing modifications to Mk and Sk independently: Randomly
sampling 200− 400 points; adding Gaussian noise with SD
in [0, 0.03]; and mimicking incomplete shape by randomly
sampling a 3D vector u, then removing the points where
their dot product with u are in the top 0− 30% (this is done
only either M or S but not both). No outliers were added
for the training data as we found this degraded the results.
We found λ = 10−8, r = 3, q = 100, α = 1.15, and
T = 20 work well across all experiments. We used a total
of 105 training samples, and ICDO took 96 minutes to train.

Analyzing the maps: Fig. 2a shows D5 as an example
of the learned maps. Here, ϕbτ denotes the vector in the di-
agonal block b of map Dτ . We observe that ϕ1

τ , ϕ2
τ , and ϕ3

τ

which map to the update in rotation r are similar, while ϕ4
τ ,

ϕ5
τ , and ϕ6

τ for translation t are also similar. This is because
the distribution of the data is isotropic. Since the maps of
the same type are similar, we visualize ϕ1

τ and ϕ4
τ of dif-

ferent τ in Fig. 2b. We can see that the peaks of the curves
move toward 0 as τ increases. Since we can interpret the
maps as imitating a gradient field (Sec. 3.4), we also show
the numerical integration of ϕ1

τ and ϕ4
τ in Fig. 2c, where we

can see the functions squeeze closer to 0. These visualiza-
tions indicate that ICDO is learning an annealing schedule
for PCReg from training data, unlike previous works which
need to set one manually. Note that since the maps of ro-
tation and translation are different, the vector fields of the
updates cannot be integrated into a single cost function4.

4We tried to learn a shared ϕ for all rotation and translation that allows

(a)

N
um

. I
nt

.

N
um

. I
nt

.

(b) (c)

Residual range Residual range Residual range Residual range

1

2

3

4

5

6

100 200 300 400 500 600
0 1 2 3

-50

0

50

100

0 1 2 3
-20

0

20

40

60

0 1 2 3

0

5

10

0 1 2 3

0

5

10

15

Figure 2. A visualization of the maps Dτ . (a) The learned matrix D5 (blue - low value, yellow - high value). (b) Plots of the diagonal
blocks ϕ1

τ and ϕ4
τ of Dτ for different τ , where we align each element in the vectors to the residual range [0, r] they represent. Note that

the length in x-axis of each vector differs since r decreases as τ increases. (c) Numerical integration of ϕ1
τ and ϕ4

τ from (b).

4.2. Synthetic data

We use 7 shapes (cat, centaur, dog, gorilla, gun, horse,
and wolf) from TUM 3D object in clutter dataset [31] for
testing. These shapes were selected so that they did not
overlap with those in training. The initial shapes were nor-
malized to lie in [−1, 1]3. Following [38], we tested 5 mod-
ifications: (i) Number of points from 100 to 2000 [default =
200 to 400]; (ii) Initial angle from 0◦ to 180◦ [default = 0◦

to 60◦]; (iii) Noise SD from 0 to 0.1 [default = 0 to 0.03];
(iv) Outlier ratio against the number of inliers from 0 to 2
[default = 0]; (v) Incomplete shape from 0 to 0.9 [default
= 0] (generated the same way as in training). All tests in-
cluded random translation in [0, 0.3]3. Outlier points were
randomly generated in [−1.25, 1.25]3. While one parameter
was varied, other parameters were set to the default values.
For each setting, we tested 500 pairs of point clouds sam-
pled from the 7 shapes. Unlike in training, the model and
scene points were independently sampled. Here, we con-
sider a registration successful if the registration error is less
than 0.15. We also report the computation time.

Fig. 3 shows the results of the synthetic experiment. We
can see that ICDO is comparable to the state-of-the-art al-
gorithms: It performed almost perfectly under varying num-
ber of points, noisy data, and outlier ratios. ICDO has less
success than CPD and GMR for large initial angles, while
being more successful than ICP and IRLS. GMR even has
some success with 180◦ initial angle because its scheduled
annealing can smooth the shapes enough to avoid bad op-
tima. However, a downside is GMR can also oversmooth,
leading to some failure even with 0◦ initial angle. In con-
trast, ICDO with learned annealing has more success with
lower angles and less success with high angles. Interest-
ingly, ICDO works well with outliers even it was not trained
with them. This is because ICDO (and also GMR) use a pre-
determined annealing schedule, so outliers have little effect
on its performance. In contrast, outliers can thwart CPD’s
Gaussian width estimation and create more local minima
for ICP and IRLS which use closest matches, leading to
bad registration. Under similar reasons, ICDO and GMR
are the most robust to incomplete shapes. In terms of com-

numerical integration to a cost function, but its result was not good.

(a) (b)

Figure 4. Real data examples (modified for visualization). (a)
Stanford’s dragon. (b) ETH laser registration dataset (Apartment
and Gazebo Summer).

putation time, ICDO is generally slightly slower than IRLS
and CPD while being much faster then GMR (Recall that
CPD and GMR use C code for FGT while ICDO is com-
pletely written in MATLAB, so their times are not directly
comparable). This experiment demonstrates that ICDO can
be trained and tested on different sets of shapes, while being
able to obtain competitive success and time as state-of-the-
art algorithms.

4.3. Real data

We perform experiments on two real datasets to eval-
uate ICDO. (i) Stanford’s dragon [11] and (ii) ETH laser
registration dataset [30]. Fig. 4 shows examples from the
datasets. We provide the details and results below.

Stanford’s dragon [11]: This dataset comprises 15
scans at every 24◦ of a dragon statue. Following [20, 7], we
attempted to merge scans at±24◦,±48◦,±72◦,±96◦, with
a total of 30 pairs for each angle. A registration is success-
ful if q>qgt > 0.99 where q and qgt are the estimated and
the ground truth unit quaternions, resp. Each point cloud
was downsampled to 2000 points. The result is presented in
Table 1. The results of the baselines were taken from SVR
paper [7], which improves GMR by learning the weight of
each Gaussian. We can see that ICDO is second to SVR
while outperforming ICP, CPD, and GMR, illustrating the
robustness of our approach against methods which consider
all point as having equal weights. Our implementation took
7.7 seconds to register each pair on average.

ETH laser registration dataset [30]: This dataset con-
sists of 3D laser scans from 8 outdoor and indoor environ-
ments. Each environment has 31 to 45 scans (total 275), and
contains dynamic objects such as people and furniture dis-
placement, which can be considered as outliers. The scans
were recorded sequentially as the scanner traversed the en-

ICP IRLS CPD GMR ICDO

(b) Initial Angle(a) Number of Points (c) Noise SD (d) Outliers (e) Incomplete Shape

0 50 100 150

Initial Angle

0

0.2

0.4

0.6

0.8

1

S
uc

ce
ss

 r
at

e

0 50 100 150

Initial Angle

10-2

10-1

100

101

102

C
om

pu
ta

tio
n

tim
e

(s
)

0 0.3 0.6 0.9

Ratio Removed

0

0.2

0.4

0.6

0.8

1

S
uc

ce
ss

 r
at

e

0 0.3 0.6 0.9

Ratio Removed

10-2

10-1

100

101

102

C
om

pu
ta

tio
n

tim
e

(s
)

0 0.04 0.08

Noise SD

0

0.2

0.4

0.6

0.8

1

S
uc

ce
ss

 r
at

e

0 0.04 0.08

Noise SD

10-2

10-1

100

101

102

C
om

pu
ta

tio
n

tim
e

(s
)

0 0.8 1.6

Outlier Ratio

0

0.2

0.4

0.6

0.8

1

S
uc

ce
ss

 r
at

e

0 0.8 1.6

Outlier Ratio

10-2

10-1

100

101

102

C
om

pu
ta

tio
n

tim
e

(s
)

100 500 1000 1500 2000

Number of Points

0

0.2

0.4

0.6

0.8

1

S
uc

ce
ss

 r
at

e

100 500 1000 1500 2000

Number of Points

10-2

10-1

100

101

102

C
om

pu
ta

tio
n

tim
e

(s
)

Figure 3. Results for synthetic data experiment over different modifications. (Top) Success rate. (Bottom) Computation time.

Table 1. Successful registration on Stanford’s dragon.
Pose ICP CPD GMR SVR ICDO
±24◦ 28 26 29 30 30
±48◦ 19 18 20 29 26
±72◦ 13 14 13 16 15
±96◦ 1 3 2 4 0

vironments. In this experiment, we merge consecutive scans
in both forward and backward directions (total 534 pairs).
We preprocessed each point cloud by using a box grid filter
(MATLAB’s pcdownsample) at 10cm interval to make
the density more uniform, then subsampled to 1000 points.

Fig. 5 shows the cumulative error plots in terms of the
absolute registration error (in meters) and the relative reg-
istration error. The latter is defined as the registration er-
ror divided by the largest distance between any two model
points. We can see that ICDO achieved the best result in
both measures. Recall that ICDO was trained with synthetic
data synthesized from 7 shapes, which have no similarity to
the data in this section. This demonstrates the potential of
ICDO as a robust learning-based PCReg algorithm which
can generalize to different classes of objects. In terms of
the average computation time, we have ICP at 0.06s, IRLS
at 0.35s, CPD at 1.62s, GMR at 18.66s, and ICDO at 2.14s.

5. Conclusion

We proposed Inverse Composition Discriminative Op-
timization (ICDO) for Point Cloud Registration (PCReg).
ICDO learns a set of maps from a feature vector to an update
vector, which is inversely composed with the previous esti-
mates. We also derived a feature function where its dimen-
sion is independent of the dimension of the point cloud, and

0 2 4 6 8 10

Error (m)

0

0.2

0.4

0.6

0.8

1
R

at
io

 o
f D

at
a

ICP IRLS CPD GMR ICDO

0 0.2 0.4 0.6

Relative Error

0

0.2

0.4

0.6

0.8

1

R
at

io
 o

f D
at

a

0 0.5 1 1.5 2
0.8

0.85

0.9

0.95

1

0 0.05 0.1
0.8

0.85

0.9

0.95

1

Figure 5. Results of ETH laser registration dataset in cumulative
plots. (Left) Absolute registration error. (Right) Relative error.

show that it can learn to register arbitrary shapes even when
learned with different ones. We also show that ICDO is es-
sentially learning annealing schedule, avoiding the need to
set it manually. Our experiments show that ICDO can match
or outperform state-of-the-art algorithms in both synthetic
and real data.

A downside of ICDO is that its complexity is quadratic
in the number of points, making it unsuitable for large point
clouds. This issue may be resolved by subsampling, or
learning the weights to reduce the number of relevant points
like in [7]. In addition, since ICDO is similar to subgradient
method (Sec. 3.5), its convergence can be slow [4]. Finding
a way to estimate step sizes, similar to line search, could
lead to a fewer number of iterations required to converge.
Acknowledgments This research was supported in part by Fundação para
a Ciência e a Tecnologia (project FCT [SFRH/BD/51903/2012] and a
PhD grant from the Carnegie Mellon-Portugal program), the National Sci-
ence Foundation under the grants RI-1617953, and the EU-Horizon 2020
project #731667 (MULTIDRONE). The content is solely the responsibility
of the authors and does not necessarily represent the official views of the
supporting agencies.

References
[1] S. Baker and I. Matthews. Lucas-Kanade 20 years on: A

unifying framework. IJCV, 56(3):221–255, 2004. 3
[2] P. Bergström and O. Edlund. Robust registration of point sets

using iteratively reweighted least squares. Computational
Optimization and Applicat., 58(3):543–561, 2014. 2, 6

[3] P. J. Besl and H. D. McKay. A method for registration of 3-D
shapes. IEEE TPAMI, 14(2):239–256, 1992. 2, 6

[4] S. Boyd, L. Xiao, and A. Mutapcic. Subgradient methods.
Lecture Notes of EE392o, Stanford University, 2003. 4, 5, 8

[5] J. Briales and J. Gonzalez-Jimenez. Convex global 3d regis-
tration with lagrangian duality. In CVPR, 2017. 2

[6] M. Brown, D. Windridge, and J.-Y. Guillemaut. Globally
optimal 2d-3d registration from points or lines without cor-
respondences. In ICCV, 2015. 2

[7] D. Campbell and L. Petersson. An adaptive data representa-
tion for robust point-set registration and merging. In ICCV,
2015. 1, 2, 7, 8

[8] D. Campbell and L. Petersson. GOGMA: Globally-optimal
gaussian mixture alignment. In CVPR, 2016. 2

[9] A. Censi. An icp variant using a point-to-line metric. In
ICRA, 2008. 2

[10] Y. Chen and G. Medioni. Object modelling by registration
of multiple range images. Image and Vision Computing,
10(3):145–155, 1992. 2

[11] B. Curless and M. Levoy. A volumetric method for building
complex models from range images. In Proceedings of the
23rd annual conference on Computer graphics and interac-
tive techniques, pages 303–312. ACM, 1996. 6, 7

[12] P. Dollár, P. Welinder, and P. Perona. Cascaded pose regres-
sion. In CVPR, 2010. 2

[13] G. Elbaz, T. Avraham, and A. Fischer. 3d point cloud reg-
istration for localization using a deep neural network auto-
encoder. In CVPR, 2017. 2

[14] A. W. Fitzgibbon. Robust registration of 2d and 3d point sets.
Image and Vision Computing, 21(13):1145–1153, 2003. 2

[15] N. Gelfand, N. J. Mitra, L. J. Guibas, and H. Pottmann. Ro-
bust global registration. In Proc. Eurographics Symposium
Geometry Processing, 2005. 2

[16] S. Gold, A. Rangarajan, C.-P. Lu, P. Suguna, and E. Mjol-
sness. New algorithms for 2D and 3D point matching:
pose estimation and correspondence. Pattern Recognition,
38(8):1019–1031, 1998. 1, 2

[17] V. Golyanik, S. Aziz Ali, and D. Stricker. Gravitational ap-
proach for point set registration. In CVPR, 2016. 2

[18] S. Granger and X. Pennec. Multi-scale em-icp: A fast and
robust approach for surface registration. In ECCV, 2002. 2

[19] L. Greengard and J. Strain. The fast gauss transform. SIAM
Journal on Scientific and Statistical Computing, 12(1):79–
94, 1991. 5

[20] B. Jian and B. C. Vemuri. Robust point set registration using
gaussian mixture models. IEEE TPAMI, 33(8):1633–1645,
2011. 1, 2, 3, 6, 7

[21] H. Lei, G. Jiang, and L. Quan. Fast descriptors and corre-
spondence propagation for robust global point cloud regis-
tration. IEEE TIP, 2017. 2

[22] K. L. Low. Linear least-squares optimization for point-to-
plane icp surface registration. Technical Report TR04-004,
Department of Computer Science, University of North Car-
olina, Chapel Hill, 2004. 2

[23] H. Maron, N. Dym, I. Kezurer, S. Kovalsky, and Y. Lip-
man. Point registration via efficient convex relaxation. ACM
Transactions on Graphics (TOG), 35(4):73, 2016. 2

[24] H. Men, B. Gebre, and K. Pochiraju. Color point cloud reg-
istration with 4d icp algorithm. In ICRA, 2011. 2

[25] A. Mian, M. Bennamoun, and R. Owens. On the repeatabil-
ity and quality of keypoints for local feature-based 3d object
retrieval from cluttered scenes. IJCV, 89(2):348–361, 2010.
6

[26] A. Myronenko and X. Song. Point set registration: Coherent
point drift. IEEE TPAMI, 32(12):2262–2275, 2010. 2, 6

[27] Y. Nesterov. Introductory Lectures on Convex Optimization.
Springer, 2004. 4

[28] D. Pani Paudel, A. Habed, C. Demonceaux, and P. Vasseur.
Robust and optimal sum-of-squares-based point-to-plane
registration of image sets and structured scenes. In ICCV,
2015. 2

[29] J. Park, Q.-Y. Zhou, and V. Koltun. Colored point cloud reg-
istration revisited. In CVPR, 2017. 2

[30] F. Pomerleau, M. Liu, F. Colas, and R. Siegwart. Challenging
data sets for point cloud registration algorithms. The Inter-
national Journal of Robotics Research, 31(14):1705–1711,
Dec. 2012. 7

[31] E. Rodolà, A. Albarelli, F. Bergamasco, and A. Torsello. A
scale independent selection process for 3d object recognition
in cluttered scenes. IJCV, 102(1-3):129–145, 2013. 7

[32] S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP
algorithm. In Proc. Int. Conf. 3-D Digital Imaging and Mod-
eling, 2001. 2

[33] N. Z. Shor. Minimization methods for non-differentiable
functions, volume 3. Springer-Verlag Berlin Heidelberg,
1985. 5

[34] Y. Tsin and T. Kanade. A correlation-based approach to ro-
bust point set registration. In ECCV, 2004. 2, 3

[35] O. Tuzel, F. Porikli, and P. Meer. Learning on lie groups for
invariant detection and tracking. In CVPR, 2008. 2

[36] S. Umeyama. Least-squares estimation of transformation
parameters between two point patterns. IEEE TPAMI,
13(4):376–380, 1991. 2

[37] J. Vongkulbhisal, F. De la Torre, and J. P. Costeira. Discrim-
inative optimization: Theory and applications to computer
vision problems. arXiv preprint arXiv:1707.04318, 2017. 2,
3, 4, 5

[38] J. Vongkulbhisal, F. De la Torre, and J. P. Costeira. Discrim-
inative optimization: Theory and applications to point cloud
registration. In CVPR, 2017. 1, 2, 6, 7

[39] X. Xiong and F. De la Torre. Supervised descent method and
its application to face alignment. In CVPR, 2013. 2

[40] J. Yang, H. Li, D. Campbell, and Y. Jia. Go-ICP: a glob-
ally optimal solution to 3D ICP point-set registration. IEEE
TPAMI, 38(11):2241–2254, 2016. 2

[41] Q.-Y. Zhou, J. Park, and V. Koltun. Fast global registration.
In ECCV, 2016. 2

