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Abstract

Gaussian mixture models (GMM) are powerful paramet-
ric tools with many applications in machine learning and
computer vision. Expectation maximization (EM) is the
most popular algorithm for estimating the GMM parameters.
However, EM guarantees only convergence to a stationary
point of the log-likelihood function, which could be arbi-
trarily worse than the optimal solution. Inspired by the
relationship between the negative log-likelihood function
and the Kullback-Leibler (KL) divergence, we propose an
alternative formulation for estimating the GMM parameters
using the sliced Wasserstein distance, which gives rise to
a new algorithm. Specifically, we propose minimizing the
sliced-Wasserstein distance between the mixture model and
the data distribution with respect to the GMM parameters.
In contrast to the KL-divergence, the energy landscape for
the sliced-Wasserstein distance is more well-behaved and
therefore more suitable for a stochastic gradient descent
scheme to obtain the optimal GMM parameters. We show
that our formulation results in parameter estimates that are
more robust to random initializations and demonstrate that
it can estimate high-dimensional data distributions more
faithfully than the EM algorithm.

1. Introduction
Finite Gaussian Mixture Models (GMMs), also called

Mixture of Gaussians (MoG), are powerful, parametric, and
probabilistic tools that are widely used as flexible models for
multivariate density estimation in various applications con-
cerning machine learning, computer vision, and signal/image
analysis. GMMs have been utilized for: image representa-
tion [5, 16] to generate feature signatures, point set reg-
istration [23], adaptive contrast enhancement [9], inverse
problems including super-resolution and deblurring [18, 54],
time series classification [8], texture segmentation [42], and
robotic visuomotor transformations [22] among many others.

As a special case of general latent variable models, fi-
nite GMM parameters could serve as a concise embedding
[39], which provide a compressed representation of the data.

Moreover, GMMs could be used to approximate any density
defined on Rd with a large enough number of mixture com-
ponents. To fit a finite GMM to the observed data, one is
required to answer the following questions: 1) how to esti-
mate the number of mixture components needed to represent
the data, and 2) how to estimate the parameters of the mix-
ture components. Several techniques have been introduced
to provide an answer for the first question [36]. The focus of
this paper in on the latter question.

The existing methods to estimate the GMM parameters
are based on minimizing the negative log-likelihood (NLL)
of the data with respect to the parameters [50]. The Expec-
tation Maximization (EM) algorithm [14] is the prominent
way of minimizing the NLL (though, see, e.g., as an alterna-
tive [37, 21]). While EM remains the most popular method
for estimating GMMs, it only guarantees convergence to
a stationary point of the likelihood function. On the other
hand, various studies have shown that the likelihood func-
tion has bad local maxima that can have arbitrarily worse
log-likelihood values compared to any of the global maxima
[21, 24, 2]. More importantly, Jin et al. [23] proved that with
random initialization, the EM algorithm will converge to a
bad critical point with high probability. This issue makes the
EM algorithm sensitive to the choice of initial parameters.

In the limit (i.e. having infinite i.i.d samples), minimizing
the NLL function is equivalent to minimizing the Kullback-
Leibler divergence between the data distribution and the
GMM, with respect to the GMM parameters. Here, we pro-
pose, alternatively, to minimize the p-Wasserstein distance,
and more specifically the sliced p-Wasserstein distance [27],
between the data distribution and the GMM. The Wasserstein
distance and its variations have attracted a lot of attention
from the Machine Learning (ML) and signal processing com-
munities lately [27, 3, 15]. It has been shown that optimizing
with respect to the Wasserstein loss has various practical ben-
efits over the KL-divergence loss [43, 15, 38, 3, 19]. Impor-
tantly, unlike the KL-divergence and its related dissimilarity
measures (e.g. Jensen-Shannon divergence), the Wasser-
stein distance can provide a meaningful notion of closeness
(i.e. distance) for distributions supported on non-overlapping
low dimensional manifolds. This motivates our proposed

1



formulation for estimating GMMs.
To overcome the computational burden of the Wasser-

stein minimization for high-dimensional distributions, we
propose to use the sliced Wasserstein distance [6, 29, 27].
Our method slices the high-dimensional data distribution via
random projections and minimizes the Wasserstein distance
between the projected one-dimensional distributions with
respect to the GMM parameters. We note that the idea of
characterizing a high-dimensional distribution via its random
projections has been studied in various work before [51, 25].
The work in [25], for instance, minimizes the L1 norm be-
tween the slices of the data distribution and the GMM with
respect to the parameters. This method, however, suffers
from the same shortcomings as the KL-divergence based
methods.

The p-Wasserstein distances and more generally the opti-
mal mass transportation problem have recently gained plenty
of attention from the computer vision and machine learning
communities [27, 48, 41, 28, 53, 46, 3]. We note that the
p-Wasserstein distances have also been used in regard to
GMMs, however, as a distance metric to compare various
GMM models [11, 33, 44]. Our proposed method, on the
other hand, is an alternative framework for fitting a GMM to
data via sliced p-Wasserstein distances.

In what follows, we first formulate the p-Wasserstein dis-
tance, the Radon transform, and the Sliced p-Wasserstein
distance in Section 2. In Section 3, we reiterate the con-
nection between the K-means problem and the Wasserstein
means problem [20], extend it to GMMs, and formulate the
Sliced Wasserstein means problem. Our numerical experi-
ments are presented in Section 4. Finally, we conclude our
paper in Section 5.

2. Preliminary
2.1. p-Wasserstein distance:

In this section we review the preliminary concepts and
formulations needed to develop our framework. Let Pp(Ω)
be the set of Borel probability measures with finite p’th
moment defined on a given metric space (Ω, d), and let ρ ∈
Pp(X) and ν ∈ Pp(Y ) be probability measures defined on
X,Y ⊆ Ω with corresponding probability density functions
Ix and Iy, dρ(x) = Ix(x)dx and dν(y) = Iy(y)dy. The
p-Wasserstein distance for p ∈ [1,∞) between ρ and ν is
defined as the optimal mass transportation (OMT) problem
[52] with cost function c(x, y) = dp(x, y), such that:

Wp(ρ, ν) =

(
inf

γ∈Γ(ρ,ν)

∫
X×Y

dp(x, y)dγ(x, y)

) 1
p

, (1)

where Γ(ρ, ν) is the set of all transportation plans, γ ∈
Γ(ρ, ν), and satisfy the following:

γ(A× Y ) = ρ(A) for any Borel subset A ⊆ X
γ(X ×B) = ν(B) for any Borel subset B ⊆ Y .

Due to Brenier’s theorem [7], for absolutely continuous
probability measures ρ and ν (with respect to Lebesgue mea-
sure) the p-Wasserstein distance can be equivalently obtained
from,

Wp(ρ, ν) = (inff∈MP (ρ,ν)

∫
X

dp(f(x), x)dρ(x))
1
p (2)

where, MP (ρ, ν) = {f : X → Y | f#ρ = ν} and f#ρ
represents the pushforward of measure ρ,∫

f−1(A)

dρ(x) =

∫
A

dν(y) for any Borel subset A ⊆ Y.

When a transport map exists, the transport plan and the
transport map are related via, γ = (Id× f)#ρ. Note that in
most engineering and computer science applications Ω is a
compact subset of Rd and d(x, y) = |x− y| is the Euclidean
distance. By abuse of notation we will use Wp(ρ, ν) and
Wp(Ix, Iy) interchangeably throughout the manuscript. For
a more detailed explanation of the Wasserstein distances
and the optimal mass transport problem, we refer the reader
to the recent review article by Kolouri et al. [27] and the
references there in.

One-dimensional distributions: The case of one-
dimensional continuous probability measures is specifically
interesting as the p-Wasserstein distance has a closed form
solution. More precisely, for one-dimensional probability
measures there exists a unique monotonically increasing
transport map that pushes one measure into another. Let
Jx(x) = ρ((−∞, x]) =

∫ x
−∞ Ix(τ)dτ be the cumulative

distribution function (CDF) for Ix and define Jy to be the
CDF of Iy. The transport map is then uniquely defined as,
f(x) = J−1

y (Jx(x)) and consequently the p-Wasserstein
distance is calculated as:

Wp(ρ, ν) =

(∫
X

dp(J−1
y (Jx(x)), x)dρ(x)

) 1
p

=

(∫ 1

0

dp(J−1
y (z), J−1

x (z))dz

) 1
p

(3)

where in the second line we used the change of variable
Jx(x) = z. The closed form solution of the p-Wasserstein is
an attractive property that gives rise to the Sliced-Wasserstein
(SW) distances. Next we review the Radon transform, which
enables the definition the Sliced p-Wasserstein distance.

2.2. Radon transform

The d-dimensional Radon transform, R, maps a func-
tion I ∈ L1(Rd) where L1(Rd) := {I : Rd →
R|
∫
Rd |I(x)|dx ≤ ∞} to the set of its integrals over the

hyperplanes of Rd and is defined as,

RI(t, θ) :=

∫
Rd
I(x)δ(t− x · θ)dx (4)



For all θ ∈ Sd−1 where Sd−1 is the unit sphere in Rd. Note
that R : L1(Rd) → L1(R × Sd−1). For the sake of com-
pleteness, we note that the Radon transform is an invertible,
linear transform and we denote its inverse asR−1, which is
also known as the filtered back projection algorithm and is
defined as:

I(x) = R−1(RI(t, θ))

=

∫
Sd−1

(RI(., θ) ∗ h(.)) ◦ (x · θ)dθ (5)

where h(.) is a one-dimensional filter with corresponding
Fourier transform Fh(ω) = c|ω|d−1 (it appears due to the
Fourier slice theorem, see [40] for more details) and ‘∗’ de-
notes convolution. Radon transform and its inverse are exten-
sively used in Computerized Axial Tomography (CAT) scans
in the field of medical imaging, where X-ray measurements
integrate the tissue-absorption levels along 2D hyper-planes
to provide a tomographic image of the internal organs. Note
that in practice acquiring infinite number of projections is
not feasible therefore the integration in Equation (5) is re-
placed with a finite summation over projection angles. A
formal measure theoretic definition of Radon transform for
probability measures could be found in [6].

Radon transform of empirical PDFs: The Radon trans-
form of Ix simply follows Equation (4). However, in most
machine learning applications we do not have access to the
distribution Ix but to its samples, xn. Kernel density estima-
tion could be used in such scenarios to approximate Ix from
its samples,

Ix(x) ≈ 1

Nρ

Nρ∑
n=1

φ(x− xn)

where φ : Rd → R+ is a density kernel where
∫
Rd φ(x)dx =

1 (e.g. Gaussian kernel). The Radon transform of Ix can
then be approximated from its samples via:

RIx(t, θ) ≈ 1

Nρ

Nρ∑
n=1

Rφ(t− xn · θ, θ) (6)

Note that certain density kernels have analytic Radon
transformation. For instance when φ(x) = δ(x) the Radon
transformRφ(t, θ) = δ(t).

Radon transform of multivariate Gaussians: Let
φ(x) = Nd(µ,Σ) be a d-dimensional multivariate Gaussian
distribution with mean µ ∈ Rd and covariance Σ ∈ Rd×d.
A slice/projection of the Radon transform of φ is then a one-
dimensional normal distributionRφ(·, θ) = N1(θ·x, θTΣθ).
Given the linearity of the Radon transform, this indicates
that a slice of a d-dimensional GMM is a one-dimensional
GMM with component means θ · µi and variance θTΣiθ.

2.3. Sliced p-Wasserstein Distance

The idea behind the sliced p-Wasserstein distance is to
first obtain a family of marginal distributions (i.e. one-
dimensional distributions) for a higher-dimensional prob-
ability distribution through linear projections (via Radon
transform), and then calculate the distance between two input
distributions as a functional on the p-Wasserstein distance of
their marginal distributions. In this sense, the distance is ob-
tained by solving several one-dimensional optimal transport
problems, which have closed-form solutions. More precisely,
the Sliced Wasserstein distance between Ix and Iy is defined
as,

SWp(Ix, Iy) = (

∫
Sd−1

W p
p (RIx(., θ),RIy(., θ))dθ)

1
p (7)

The Sliced p-Wasserstein distance as defined above is sym-
metric, and it satisfies sub-additivity and coincidence axioms,
and hence it is a true metric [29].

The sliced p-Wasserstein distance is especially useful
when one only has access to samples of a high-dimensional
PDFs and kernel density estimation is required to estimate
I . One dimensional kernel density estimation of PDF slices
is a much simpler task compared to direct estimation of I
from its samples. The catch, however, is that as the dimen-
sionality grows one requires larger number of projections to
estimate I from RI(., θ). In short, if a reasonably smooth
two-dimensional distribution can be approximated by its L
projections (up to an acceptable reconstruction error, ε), then
one would require O(Ld−1) number of projections to ap-
proximate a similarly smooth d-dimensional distribution (for
d ≥ 2). In later sections we show that the projections could
be randomized in a stochastic Gradient descent fashion for
learning Gaussian mixture models.

3. Sliced Wasserstein Means and Gaussian
Mixture Models

Here we first reiterate the connection between the K-
means clustering algorithm and the Wasserstein means prob-
lem, and then extend this connection to GMMs and state the
need for the sliced Wasserstein distance. Let yn ∈ Rd for
n = 1, ..., N be N samples and Y = [y1, ..., yN ] ∈ Rd×N .
The K-means clustering algorithm seeks the best K points,
xk ∈ Rd for k = 1, ...,K and X = [x1, ..., xK ] ∈ Rd×K ,
that represent Y . Formally,

infC,X
1

N
‖Y −XCT ‖2

s.t. C1K = 1N , ci,j ∈ {0, 1} (8)

where C ∈ RN×K contains the one-hot labels of Y .
Let Iy = 1

N

∑N
n=1 φ(y−yn) be the empirical distribution

of Y , where φ is a kernel density estimator (e.g. radial



basis function kernel or the Dirac delta function in its limit).
Then, the K-means problem can be alternatively solved by
minimizing a statistical distance/divergence between Iy and
Ix = 1

K

∑K
k=1 φ(x − xk). A common choice for such

distance/divergence is the Kullback-Leibler divergence (KL-
divergence) [4, 10]. Alternatively, the p-Wasserstein distance
could be used to estimate the parameters of Ix,

infIxW
p
p (Ix, Iy) (9)

We discuss the benefits of the p-Wasserstein distance
over the KL-divergence in the next sub-section. Above
minimization is known as the Wasserstein means problem
and is closely related to the Wasserstein Barycenter prob-
lem [1, 45, 13, 20]. The main difference being in that in
these works the goal is to find a measure ν∗ such that
ν∗ = arg infν

∑
kW

p
p (νk, ν), where νk are sets of given

low dimensional distributions (2 or 3D images or point
clouds). The strategy in [1, 45, 13] could also be extended
into a clustering problem, though the two formulations are
still significantly different given the inputs into the wasser-
stein distance being very different. Note also that K-means
is equivalent to a variational EM approximation of a GMM
with isotropic Gaussians [35], therefore, a natural extension
of the Wasserstein means problem could be formulated to fit
a general GMM to Iy . To do so, we let distribution Ix to be
the parametric GMM as follows:

Ix(x) =
∑
k

αk

(2π)
d
2

√
det(Σk)

exp(−1

2
(x−µk)TΣ−1

k (x−µk))

where
∑
k αk = 1 and Equation (9) is solved to find µks,

Σks, and αks. Next we describe the benefits of using the
Wasserstein distance in Equation (9) to fit a general GMM to
the observed data compared to the common log-likelihood
maximization schemes.

3.1. Wasserstein Means vs. Maximum Log-
Likelihood

General GMMs are often fitted to the observed data points,
yns, via maximizing the log-likelihood of samples with re-
spect to Ix. Formally, this is written as:

max
µk,Σk,αk

1

N

N∑
n=1

log(Ix(yn)) (10)

It is straightforward to show that in the limit and as the
number of samples grows to infinity,N →∞, the maximum
log-likelihood becomes equivalent to minimizing the KL-
divergence between Ix and Iy (See supplementary material
for a proof):

lim
N→∞

max
µk,Σk,αk

1

N

N∑
n=1

log(Ix(yn)) = min
µk,Σk,αk

KL(Ix, Iy)

Figure 1. The corresponding energy landscapes for the negative
log-likelihood and the Wasserstein Means problem for scenario 1
(a) and scenario 2 (b). The energy landscapes are scaled and shifted
for visualization purposes.

The p-Wasserstein distance has been shown to have cer-
tain benefits over the commonly used KL-divergence and its
related distances/divergences (i.e., other examples of Breg-
man divergences including the Jensen-Shannon (JS) distance
and Itakura-Saito distance) [3]. For a general GMM, the
model Ix is continuous and smooth (i.e. infinitely differen-
tiable) in its parameters and is locally Lipschitz; therefore,
Wp(Ix, Iy) is continuous and differentiable everywhere,
while this is not true for the KL-divergence. In addition,
in scenarios where the distributions are supported by low
dimensional manifolds, KL-divergence and other Bregman
divergences may be difficult cost functions to optimize given
their limited capture range. This limitation is due to their

‘Eulerian’ nature, in the sense that the distributions are com-
pared at fixed spatial coordinates (i.e., bin-to-bin comparison
in discrete measures) as opposed to the p-Wasserstein dis-
tance, which is ‘Lagrangian’, and morphs one distribution
to match another by finding correspondences in the domain
of these distributions (i.e., Wasserstein distances perform
cross-bin comparisons).

To get a practical sense of the benefits of the Wasserstein
means problem over the maximum log-likelihood estima-
tion, we study two simple scenarios. In the first scenario, we
generate N one-dimensional samples, yn, from a normal dis-



Figure 2. Illustration of the high-level approach for the Sliced-
Wasserstein Means of GMMs.

tribution N (0, σ) where we assume known σ and visualize
the negative log-likelihood (NLL) and the Wasserstein means
(WM) problem as a function of µ. Figure 1 (a) shows the first
scenario and the corresponding energy landscapes for the
negative log-likelihood and the Wasserstein means problem.
It can be seen that while the global optimum is the same for
both problems, the Wasserstein means landscape is less sen-
sitive to the initial point, hence a gradient descent approach
would easily converge to the optimal point regardless of the
starting point. In the second scenario, we generated N sam-
ples, yn, from a mixture of two one-dimensional Gaussian
distributions. Next, we assumed that the mixture coefficients
αks and the standard deviations σks, for k ∈ {0, 1}, are
known and visualized the corresponding energy landscapes
for NLL and WM as a function of µks (See Figure 1 (b)). It
can be clearly seen that although the global optimum of both
problems is the same, but the energy landscape of the Wasser-
stein means problem does not suffer from local minima and
is much smoother.

The Wasserstein means problem, however, suffers from
the fact that the W 2

2 (., .) is computationally expensive to
calculate for high-dimensional Ix and Iy. This is true even
using very efficient OMT solvers, including the ones intro-
duced by Cuturi [12], Solomon et al. [47], and Levy [31].

3.2. Sliced Wasserstein Means
We propose to use an approximation of the p-Wasserstein

distance between Ix and Iy using the SW distance. Sub-
stituting the Wasserstein distance in Equation (9) with the
SW distance leads to the Sliced p-Wasserstein Means (SWM)
problem,

inf
µk,Σk,αk

SW p
p (Ix, Iy) =

∫
Sd−1

W p
p (RIx(., θ),RIy(., θ))dθ,

which can be written as:

inf
µk,Σk,αk

∫
Sd−1

inff(.,θ)

∫
R
|f(t, θ)− t|pRIx(t, θ)dtdθ

(11)

where for a fixed θ, f(., θ) is the optimal transport
map between RIx(., θ) and RIy(., θ), and satisfies

∂f(t,θ)
∂t RIy(f(t, θ), θ) = RIx(t, θ). Note that, since Ix is

an absolutely continuous PDF, an optimal transport map will
exist even when Iy is not an absolutely continuous PDF (e.g.
when φ(y) = δ(y)) . Moreover, since the slices/projections
are one-dimensional the transport map, f(., θ), is uniquely
defined and the minimization on f has a closed form solution
and is calculated from Equation (3). The Radon transforma-
tions in Equation (11) are:

RIy(t, θ) ≈ 1
N

∑N
n=1Rφ(t− yn · θ, θ)

RIx(t, θ) =
∑
k

αk√
2πθTΣkθ

exp(− (t−µk·θ)2
2θTΣkθ

)
(12)

The new formulation avoids the optimization for cal-
culating the Wasserstein distance and enables an efficient
implementation for clustering high-dimensional data. Fig-
ure 2 demonstrates the high-level idea behind slicing
high-dimensional PDFs Ix and Iy and minimizing the p-
Wasserstein distance between these slices over GMM com-
ponents. Moreover, given the high-dimensional nature of the
problem estimating density Iy in Rd requires large number
of samples, however, the projections of Iy, RIy(., θ), are
one dimensional and therefore it may not be critical to have
large number of samples to estimate these one-dimensional
densities.

Optimization scheme: To obtain a numerical optimiza-
tion scheme, which minimizes the problem in Equation (11)
we first discretize the set of directions/projections. This
corresponds to the use of a finite set Θ ∈ Sd−1, and a mini-
mization of the following energy function,

inf
µk,Σk,αk

1

|Θ|

|Θ|∑
l=1

∫
R
|f(t, θl)− t|pRIx(t, θl)dt (13)

A fine sampling of Sd−1 is required for Equation (13) to
be a good approximation of (11). Such sampling, however,
becomes prohibitively expensive for high-dimensional data.
Alternatively, following the approach presented in [6] we
utilize random samples of Sd−1 at each minimization step
to approximate the Equation (11). This leads to a stochastic
gradient descent scheme where instead of random sampling
of the input data, we random sample the projection angles.
Finally, the GMM parameters are updated through an EM-
like approach where for fixed GMM parameters we calculate
the optimal transport map f between random slices of Ix
and Iy, followed by updating Ix for fixed transport maps
f(., θ)s. Below we describe these steps:

1. Generate L random samples from S(d−1), {θ1, ..., θL}.

2. Fix the GMM, Ix, and calculate the optimal transport
map between slicesRIx(·, θl) andRIy(·, θl) via:

f(t, θl) = RJ−1
y (RJx(t, θl), θl) (14)

whereRJx(y)(·, θl) is the CDF ofRIx(y)(·, θl).



Figure 3. Results of 100 runs of EM-GMM and SW-GMM fitting a model with 10 modes to the ring-line-square dataset, showing four
samples of random initializations (Top) and histograms across all 100 runs for the negative log-likelihood of the fitted model and the
sliced-Wasserstein distance between the fitted model and the data distribution (Bottom).

3. For fixed transportmaps, f(·, θl)s, update the GMM
parameters by differentiating Equation (11):

∂SWp
p

∂αk
=

L∑
l=1

∫
R

|f(t, θl)− t|p√
2πθTl Σkθl

exp(−
(t− µk · θl)2

2θTl Σkθl
)dt

∂SWp
p

∂µk
=

L∑
l=1

∫
R

αk|f(t, θl)− t|p√
2πθTl Σkθl

exp(−
(t− µk · θl)2

2θTl Σkθl
)

(t− µk · θl)
θTl Σkθl

dt

)
θl

∂SWp
p

∂Σk
=

L∑
l=1

∫
R

αk|f(t, θl)− t|p√
8π(θTl Σkθl)3

[
(t− µk · θl)2

θTl Σkθl
− 1]

exp(−
(t− µk · θl)2

2θTl Σkθl
)dt

)
(θlθ

T
l )

where the summation is over L random projections
θl ∈ Sd−1. We use the RMSProp optimizer [49], which
provides an adaptive learning rate, to update the param-
eters of the GMM according to the gradients

4. Project the updated Σks onto the positive semidefinite
cone, and renormalize αks to satisfy

∑
k αk = 1.

Notice that the derivative with respect to the k’th compo-
nent of the mixture model in Equation (15) is independent
of other components. In addition, the transport map for each
projection, f(·, θ), in Equation (14) is calculated indepen-
dent of the other projections. Therefore the optimization can

be heavily parallelized in each iteration. We note that, we
have also experimented with the Adam optimizer [26] but
did not see any improvements over RMSProp. The detailed
update equations are included in the Supplementary materi-
als. In what follows we show the SWM solver for estimating
GMM parameters in action.

4. Numerical Experiments
We ran various experiments on three datasets to test our

proposed method for learning GMM parameters. The first
dataset is a two-dimensional data-point distribution consist-
ing a ring, a square, and a connecting line (See Figure 3). To
show the applicability of our method on higher-dimensional
datasets we also used the MNIST dataset [30] and the Celeb-
Faces Attributes Dataset (CelebA) [34].

4.1. Robustness to initialization

We started by running a simple experiment to demonstrate
the robustness of our proposed formulation to different ini-
tializations. In this test, we used a two-dimensional dataset
consisting of a ring, a square, and a line connecting them.
For a fixed number of modes, K = 10 in our experiment,
we randomly initialized the GMM. Next, for each initial-
ization, we optimized the GMM parameters using the EM
algorithm as well as our proposed method. We repeated this
experiment 100 times.



Figure 4. Qualitative performance comparison on the MNIST dataset between our method, SW-GMM, and EM-GMM, showing decoded
samples for each mode (Right). Modes with bad samples are shown in red. The GMM was applied to a 128-dimensional embedding space
(Left).

Figure 3 shows sample results of the fitted GMM models
for both algorithms (Top Row). Moreover, we calculated the
histograms of the negative log-likelihood of the fitted GMM
and the sliced-Wasserstein distance between the fitted GMM
and the empirical data distribution (bottom). It can be seen
that our proposed formulation provides a consistent model
regardless of the initialization. In 100% of initializations,
our method achieved the optimal negative log-likelihood,
compared to only 29% for EM-GMM. In addition, both the
negative log-likelihood and the sliced-Wasserstein distance
for our method are smaller than those of the EM algorithm,
indicating that our solution is closer to the global optimum
(up to permutations of the modes).

4.2. High-dimensional datasets

We analyzed the performance of our proposed method
in modeling high-dimensional data distributions, here, us-
ing the MNIST dataset [30] and the CelebA dataset [34].
To capture the nonlinearity of the image data and boost
the applicability of GMMs, we trained an adversarial deep
convolutional autoencoder (Figure 4, Left) on the image
data. Next, we modeled the distribution of the data in the
embedded space via a GMM. The GMM was then used to
generate samples in the embedding space, which were con-
sequently decoded to generate synthetic (i.e. ’fake’) images.
In learning the GMM, we compared the EM algorithm with
our proposed method, SW-GMM. We note that the entire
pipeline is in an unsupervised learning setting. Figure 4
demonstrates the steps of our experiment (Left) and provides

a qualitative measure of the generated samples (Right) for
the MNIST dataset. It can be seen that the SW-GMM model
leads to more visually appealing samples compared to the
EM-GMM. In addition, we trained a CNN classifier on the
MNIST training data. We then generated 10,000 samples
from each GMM component and classified these samples
to measure the fidelity/pureness of each component. Ide-
ally, each component should only be assigned to a single
digit. We found out that for EM-GMM the components were
in average 80.48% pure, compared to 86.98% pureness of
SW-GMM components.

Similarly, a deep convolutional autoencoder was learned
for the CelebA face dataset, and a GMM was trained in
the embedding space. Figure 5 shows samples generated
from GMM components learned by EM and by our proposed
method (The samples generated from all components is at-
tached in the Supplementary materials). We note that, Fig-
ures 4 and 5 only provide qualitative measures of how well
the GMM is fitting the dataset. Next we provide quantitative
measures for the fitness of the GMMs for both methods.

We used adversarial training of neural networks [17, 32]
to provide a goodness of fitness of the GMM to the data
distribution. In short, we use success in fooling an adver-
sary network as an evaluation metric for goodness of fit of a
GMM. A deep discriminator/classifier was trained to distin-
guish whether a data point was sampled from the actual data
distribution or from the GMM. The fooling rate (i.e. error
rate) of such a discriminator is a good measure of fitness for
the GMM, as a higher error rate translates to a better fit to



Figure 5. Qualitative performance comparison between our method,
SW-GMM (Bottom), and EM-GMM (Top), showing decoded sam-
ples for several GMM components. The images are contrast en-
hanced for visualization purposes.

the distribution of the data. Figure 6 shows the idea behind
this experiment, and reports the fooling rates for all three
datasets used in our experiments. Note that the SW-GMM
consistently provides a higher fooling rate, indicating a bet-
ter fit to the datasets. The details of the architectures used in
our experiments are included in the supplementary material.

Fooling rate EM-GMM SW-GMM

Ring-Square-Line 46.83%± 1.14% 47.56%± 0.86%

MNIST 24.87%± 8.39% 41.91%± 2.35%

CelebA 10.37%± 3.22% 31.83%± 1.24%

Figure 6. A deep discriminator is learned to classify whether an
input is sampled from the true distribution of the data or via the
GMM. The fooling rate of such a discriminator corresponds to the
fitness score of the GMM.

5. Discussion

In this paper, we proposed a novel algorithm for esti-
mating the parameters of a GMM via minimization of the
sliced p-Wasserstein distance. In each iteration, our method
projects the high-dimensional data distribution into a small
set of one-dimensional distributions utilizing random pro-
jections/slices of the Radon transform and estimates the
GMM parameters from these one-dimensional projections.
While we did not provide a theoretical guarantee that the
new method is convex, or that it has fewer local minima,
the empirical results suggest that our method is more ro-
bust compared to KL-divergence-based methods, includ-
ing the EM algorithm, for maximizing the log-likelihood
function. Consistent with this finding, we showed that the
p-Wasserstein metrics result in more well-behaved energy
landscapes. We demonstrated the robustness of our method
on three datasets: a two-dimensional ring-square-line distri-
bution and the high-dimensional MNIST and CelebA face
datasets. Finally, while we used deep convolutional encoders
to provide embeddings for two of the datasets and learned
GMMs in these embeddings, we emphasize that our method
could be applied to other embeddings including the original
data space.
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References
[1] M. Agueh and G. Carlier. Barycenters in the Wasserstein

space. SIAM Journal on Mathematical Analysis, 43(2):904–
924, 2011. 4

[2] C. Améndola, M. Drton, and B. Sturmfels. Maximum likeli-
hood estimates for gaussian mixtures are transcendental. In
International Conference on Mathematical Aspects of Com-
puter and Information Sciences, pages 579–590. Springer,
2015. 1

[3] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gener-
ative adversarial networks. In International Conference on
Machine Learning, pages 214–223, 2017. 1, 2, 4

[4] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh. Cluster-
ing with bregman divergences. Journal of machine learning
research, 6(Oct):1705–1749, 2005. 4

[5] C. Beecks, A. M. Ivanescu, S. Kirchhoff, and T. Seidl. Mod-
eling image similarity by gaussian mixture models and the
signature quadratic form distance. In Computer Vision (ICCV),
2011 IEEE International Conference On, pages 1754–1761.
IEEE, 2011. 1

[6] N. Bonneel, J. Rabin, G. Peyré, and H. Pfister. Sliced and
Radon Wasserstein barycenters of measures. Journal of Math-
ematical Imaging and Vision, 51(1):22–45, 2015. 2, 3, 5

[7] Y. Brenier. Polar factorization and monotone rearrangement
of vector-valued functions. Communications on pure and
applied mathematics, 44(4):375–417, 1991. 2

[8] W. M. Campbell, D. E. Sturim, and D. A. Reynolds. Support
vector machines using gmm supervectors for speaker verifi-
cation. IEEE signal processing letters, 13(5):308–311, 2006.
1

[9] T. Celik and T. Tjahjadi. Automatic image equalization and
contrast enhancement using gaussian mixture modeling. IEEE
Transactions on Image Processing, 21(1):145–156, 2012. 1

[10] K. Chaudhuri and A. McGregor. Finding metric structure in
information theoretic clustering. In COLT, volume 8, page 10,
2008. 4

[11] Y. Chen, T. T. Georgiou, and A. Tannenbaum. Optimal
transport for gaussian mixture models. arXiv preprint
arXiv:1710.07876, 2017. 2

[12] M. Cuturi. Sinkhorn distances: Lightspeed computation of
optimal transport. In Advances in Neural Information Pro-
cessing Systems, pages 2292–2300, 2013. 5

[13] M. Cuturi and A. Doucet. Fast computation of wasserstein
barycenters. In International Conference on Machine Learn-
ing, pages 685–693, 2014. 4

[14] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum
likelihood from incomplete data via the em algorithm. Journal
of the royal statistical society. Series B (methodological),
pages 1–38, 1977. 1

[15] C. Frogner, C. Zhang, H. Mobahi, M. Araya, and T. A. Poggio.
Learning with a wasserstein loss. In Advances in Neural
Information Processing Systems, pages 2053–2061, 2015. 1

[16] J. Goldberger, S. Gordon, and H. Greenspan. An efficient
image similarity measure based on approximations of kl-
divergence between two gaussian mixtures. In null, page
487. IEEE, 2003. 1

[17] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio. Generative
adversarial nets. In Advances in neural information process-
ing systems, pages 2672–2680, 2014. 7

[18] J. A. Guerrero-Colón, L. Mancera, and J. Portilla. Image
restoration using space-variant gaussian scale mixtures in
overcomplete pyramids. IEEE Transactions on Image Pro-
cessing, 17(1):27–41, 2008. 1

[19] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and
A. Courville. Improved training of wasserstein gans. arXiv
preprint arXiv:1704.00028, 2017. 1

[20] N. Ho, X. Nguyen, M. Yurochkin, H. H. Bui, V. Huynh, and
D. Phung. Multilevel clustering via wasserstein means. arXiv
preprint arXiv:1706.03883, 2017. 2, 4

[21] H. Hoffmann. Unsupervised Learning of Visuomotor Associ-
ations, volume 11 of MPI Series in Biological Cybernetics.
Logos Verlag Berlin, 2005. 1

[22] H. Hoffmann, W. Schenck, and R. Möller. Learning visuomo-
tor transformations for gaze-control and grasping. Biological
Cybernetics, 93:119–130, 2005. 1

[23] B. Jian and B. C. Vemuri. Robust point set registration using
gaussian mixture models. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 33(8):1633–1645, 2011.
1

[24] C. Jin, Y. Zhang, S. Balakrishnan, M. J. Wainwright, and M. I.
Jordan. Local maxima in the likelihood of gaussian mixture
models: Structural results and algorithmic consequences. In
Advances in Neural Information Processing Systems, pages
4116–4124, 2016. 1

[25] A. T. Kalai, A. Moitra, and G. Valiant. Disentangling gaus-
sians. Communications of the ACM, 55(2):113–120, 2012.
2

[26] D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014. 6

[27] S. Kolouri, S. R. Park, M. Thorpe, D. Slepcev, and G. K. Ro-
hde. Optimal mass transport: Signal processing and machine-
learning applications. IEEE Signal Processing Magazine,
34(4):43–59, 2017. 1, 2

[28] S. Kolouri and G. K. Rohde. Transport-based single frame
super resolution of very low resolution face images. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4876–4884, 2015. 2

[29] S. Kolouri, Y. Zou, and G. K. Rohde. Sliced-Wasserstein
kernels for probability distributions. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 4876–4884, 2016. 2, 3

[30] Y. LeCun. The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/. 6, 7

[31] B. Lévy. A numerical algorithm for L2 semi-discrete op-
timal transport in 3D. ESAIM Math. Model. Numer. Anal.,
49(6):1693–1715, 2015. 5

[32] J. Li, W. Monroe, T. Shi, A. Ritter, and D. Jurafsky. Adver-
sarial learning for neural dialogue generation. arXiv preprint
arXiv:1701.06547, 2017. 7

[33] P. Li, Q. Wang, and L. Zhang. A novel earth mover’s distance
methodology for image matching with gaussian mixture mod-
els. In Proceedings of the IEEE International Conference on
Computer Vision, pages 1689–1696, 2013. 2



[34] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face
attributes in the wild. In Proceedings of International Confer-
ence on Computer Vision (ICCV), 2015. 6, 7

[35] J. Lücke and D. Forster. k-means is a variational em ap-
proximation of gaussian mixture models. arXiv preprint
arXiv:1704.04812, 2017. 4

[36] G. J. McLachlan and S. Rathnayake. On the number of com-
ponents in a gaussian mixture model. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 4(5):341–
355, 2014. 1

[37] R. Möller and H. Hoffmann. An extension of neural gas to
local PCA. Neurocomputing, 62:305–326, 2004. 1

[38] G. Montavon, K.-R. Müller, and M. Cuturi. Wasserstein
training of restricted boltzmann machines. In Advances in
Neural Information Processing Systems, pages 3718–3726,
2016. 1

[39] K. P. Murphy. Machine learning: a probabilistic perspective.
MIT press, 2012. 1

[40] F. Natterer. The mathematics of computerized tomography,
volume 32. Siam, 1986. 3

[41] S. R. Park, S. Kolouri, S. Kundu, and G. K. Rohde. The cumu-
lative distribution transform and linear pattern classification.
Applied and Computational Harmonic Analysis, 2017. 2

[42] H. Permuter, J. Francos, and I. Jermyn. A study of gaussian
mixture models of color and texture features for image classifi-
cation and segmentation. Pattern Recognition, 39(4):695–706,
2006. 1

[43] G. Peyré, J. Fadili, and J. Rabin. Wasserstein active contours.
In Image Processing (ICIP), 2012 19th IEEE International
Conference on, pages 2541–2544. IEEE, 2012. 1

[44] Y. Qian, E. Vazquez, and B. Sengupta. Deep geometric re-
trieval. arXiv preprint arXiv:1702.06383, 2017. 2

[45] J. Rabin, G. Peyré, J. Delon, and M. Bernot. Wasserstein
barycenter and its application to texture mixing. In Scale
Space and Variational Methods in Computer Vision, pages
435–446. Springer, 2012. 4

[46] A. Rolet, M. Cuturi, and G. Peyré. Fast dictionary learning
with a smoothed wasserstein loss. In Artificial Intelligence
and Statistics, pages 630–638, 2016. 2

[47] J. Solomon, F. de Goes, P. A. Studios, G. Peyré, M. Cuturi,
A. Butscher, A. Nguyen, T. Du, and L. Guibas. Convolutional
Wasserstein distances: Efficient optimal transportation on
geometric domains. ACM Transactions on Graphics (Proc.
SIGGRAPH 2015), to appear, 2015. 5

[48] M. Thorpe, S. Park, S. Kolouri, G. K. Rohde, and D. Slepčev.
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