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Abstract

Geodesic distance matrices can reveal shape properties
that are largely invariant to non-rigid deformations, and
thus are often used to analyze and represent 3-D shapes.
However, these matrices grow quadratically with the num-
ber of points. Thus for large point sets it is common to
use a low-rank approximation to the distance matrix, which
fits in memory and can be efficiently analyzed using meth-
ods such as multidimensional scaling (MDS). In this paper
we present a novel sparse method for efficiently represent-
ing geodesic distance matrices using biharmonic interpola-
tion. This method exploits knowledge of the data manifold
to learn a sparse interpolation operator that approximates
distances using a subset of points. We show that our method
is 2x faster and uses 20x less memory than current leading
methods for solving MDS on large point sets, with similar
quality. This enables analyses of large point sets that were
previously infeasible.

1. Introduction
Distance matrices have many important roles in machine

learning, graphics, and computer vision. Yet with grow-
ing data, it is becoming impossible to store or process full
distance matrices. For n points, O

(
n2
)

space is required
to store the distance matrix, and, depending on the type of
data and distance metric, as much as O

(
n2 log n

)
time can

be required to compute it. Many algorithms that operate on
distance matrices execute in O

(
n3
)

time. With growing n
these requirements quickly become intractable.

One solution is to work with a low-rank approximation
of the distance matrix. While the best rank k approximation
is given by the Singular Value Decomposition (SVD), its
O
(
n3
)

computation is impractical for large matrices. An
alternative is the Nyström method [17], which computes a
low-rank approximation by subsampling l columns from the
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Figure 1. Sparse Biharmonic Multidimensional Scaling (sBMDS)
was used to obtain the canonical form for a mesh with 1.8M ver-
tices. MDS is impossible on the full distance matrix (1.8M x 1.8M,
26 TB), but easy using a sparse approximation (50,000 landmarks,
20.9 GB). Here the 3-D canonical coordinates found by MDS are
are mapped into RGB colors on the original mesh.

distance matrix. Nyström has been studied theoretically [7,
12] and empirically [4, 13, 22], but it is a generic method
that does not take advantage of any knowledge about the
geometry of the point set.

For the specific problem of approximating geodesic dis-
tance matrices computed from 3-D meshes, methods such
as spectral MDS (SMDS) [1] and fast MDS (FMDS) [21]
have been proposed. These methods were designed to com-
press large geodesic distance matrices so that they can be
analyzed using multidimensional scaling (MDS). The key
insight offered by SMDS and FMDS that is not exploited
by methods such as Nyström is that the geometry of the
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distance matrix closely mirrors the geometry of the under-
lying point set. If the point set lies along some manifold,
then rows of the distance matrix will lie along a higher-
dimensional projection of that same manifold. Intuitively
this follows from the fact that nearby points on a manifold
will have similar distances to other points in the manifold.

Here we explore a novel method, biharmonic matrix ap-
proximation (BHA), and its sparse form sBHA. Like SMDS
and FMDS, our method uses biharmonic interpolation to
approximate the full distance matrix from a few samples.
However, we improve upon those methods by noting that
most of the values in the biharmonic interpolation operator
are very close to zero, and thus the operator can be repre-
sented sparsely with little to no effect on accuracy of the ap-
proximation. Sparsification also increases the efficiency of
algorithms that use the approximate distance matrix, such
as MDS. Our method thus makes it possible to approxi-
mate and operate on extremely large point sets where exist-
ing methods would suffer poor performance due to memory
constraints (Figure 1).

2. Background
Given a set of n points from a manifold M embedded

in Rd, X = {xi}ni=1 with xi ∈ M, we define the geodesic
distance matrix K ∈ Rn×n as

Ki,j = dM (xi,xj) , (1)

where Ki,j represents the element in row i and column j
of the matrix K, and dM(·, ·) is the geodesic distance, or
the length of the shortest path between two points along the
surface ofM. Assume that dM(·, ·) is symmetric for a pair
of points, i.e., dM(xi,xj) = dM(xj,xi).

2.1. Biharmonic interpolation

Let g be a real-valued function defined on a smooth man-
ifold M embedded in Rd. The manifold has an associ-
ated Laplace-Beltrami Operator (LBO), ∆, that depends
on the Riemannian metric of the manifold [20] such that
∆g = div (grad g).

Now suppose that we are given g(bi) for a set of l points,
{bi}li=1 ∈ M, and wish to interpolate g(ui) at a differ-
ent set of m points, {ui}mi=1 ∈ M. One solution is bi-
harmonic interpolation, which finds a smooth function (i.e.
one with continuous second derivative) that passes exactly
through g(bi) for all i. Biharmonic interpolation is ac-
complished by finding a solution to the biharmonic equa-
tion ∆2g(u) = 0, subject to Dirichlet boundary conditions
given by g(b). Note that this is equivalent to exactly min-
imizing the smoothness-preserving energy function defined
in [1] and [21].

In the discrete case the biharmonic operator ∆2 is spec-
ified as a sparse matrix M. We assume that the manifold

consists exclusively of the data points b and u, and thus
that M is an (l+m)× (l+m) = n×n matrix. We can or-
ganize M so that the first l rows and columns correspond to
b, our known data points, and the last m rows and columns
correspond to u, the points at which we wish to interpolate
g. Thus M can be split into four submatrices,

M =

[
Mbb Mbu

Mub Muu

]
. (2)

To find the interpolated values we then solve for ĝ(u) in the
modified biharmonic equation[

Mbb Mbu

Mub Muu

] [
g(b)
ĝ(u)

]
= 0,

Mubg(b) + Muuĝ(u) = 0,

yielding the solution

ĝ(u) = −M−1
uuMubg(b), (3)

which is a fully specified, sparse linear system of equations
that can be solved using standard methods. Note that ĝ(u)
is related to g(b) through a linear transformation that is in-
dependent of the values in g(b). We can think of this linear
transformation, −M−1

uuMub, as an interpolation operator:
a transformation that will interpolate any function known
on the points b onto the points u.

2.2. Obtaining the discrete biharmonic operator

The discrete biharmonic operator M is given as [14]

M = (V −A)>D−1(V −A),

where D is a diagonal matrix containing the “lumped mass”
at each point, A is a weighted adjacency matrix, and V
is a diagonal matrix containing the sum of the adjacency
weights for each datapoint Vi,i =

∑
j Ai,j [20].

In some cases there are closed-form solutions for the
lumped mass and weighted adjacency matrices. If the point
set X is a triangular mesh embedded in 3-D space, the
lumped mass Di,i is 1/3 of the total area of the triangles
incident on point i, and the adjacency weight

Ai,j =
cot(αi,j) + cot(βi,j)

2
,

whereαi,j and βi,j are the angles opposite the edge between
points i and j [20, 5]. Similar solutions for D and A exist
for point clouds [16] and quad meshes [6] in 3-D space. If
X is a generic graph, we set D = I, and set A equal to the
graph adjacency matrix, where Ai,j = 1 if nodes i and j
share an edge, and 0 otherwise.

If no graph is given, D and A can be estimated. Here
it is common to again set D = I and then estimate A us-
ing some weighted nearest neighbor algorithm. We will not
address this further here, but note that the weights given by
Stochastic Neighbor Embedding (SNE) [10] perform par-
ticularly well at this problem.



2.3. Multidimensional Scaling

Given a matrix K with distances between all pairs of
n points, Multidimensional Scaling (MDS) methods com-
pute a low-dimensional embedding of these n points. The
embedded coordinates {zi}ni=1 ∈ Rm are found by mini-
mizing, for all pairs of points, the difference between their
Euclidean distances in the embedding ‖zi − zj‖2 and their
squared distance K2

i,j in the original space:

arg min
Z
‖ZZT +

1

2
JEJ‖F , (4)

where Z = [z1, . . . , zn]
T ∈ Rn×m contains the embedded

coordinates, Ei,j = K2
i,j are the squared distances, and J =

I − 1/n11T is a centering matrix with 1 being a column
vector of ones.

In classical MDS the optimal solution to Problem (4) is
obtained by first computing the eigenvalue decomposition
VΛVT of the matrix −1/2JEJ, and then truncating its de-
composition to the biggest m eigenvalues, Λm, and their
respective eigenvectors Vm. The embedded points are then
computed as Z = VmΛ

1/2
m .

Solving Problem (4) requires storing the matrix E in
memory, which is prohibitive for more than a few tens of
thousands of points. To overcome this limitation, alterna-
tive methods use a low-rank approximation of E. This is
achieved by subsampling the points and interpolating their
distances. Methods such as Landmark MDS (LMDS) [23],
SMDS [1], and FMDS [21] propose different solutions to
this approximation problem. In what follows, we present an
alternative method to approximate E with a low-rank and
sparse approximation, simultaneously enabling a smaller
memory footprint and faster MDS algorithm for very large
numbers of points.

3. Biharmonic matrix approximation (BHA)
In the proposed method we use biharmonic interpola-

tion to approximate a manifold-structured distance matrix
K. We exploit the fact that the manifold structure of K is
similar to that of the underlying point set X = {xi}ni=1. We
assume thatX lives in a manifoldMwhose biharmonic op-
erator M can either be computed directly or approximated
as described in Section 2.2.

The first step is to select b, a set of l landmark points
from X . Landmarks are selected using an iterative farthest
point procedure [11]: the first landmark b1 is selected at
random from X , and the geodesic distance from that point
to all the other points, Kb1,· is computed. Each subsequent
landmark is then chosen as the point with the largest mini-
mum distance to any of the current landmarks,

bj = argmax
xi

(
min j−1

t=1Kbt,xi

)
(5)
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Figure 2. Sparsity of P as a function of number of landmarks. The
number of large elements per row of P peaks at landmark fractions
l/n < 20% for all point sets.

until l landmarks have been selected.
The second step in BHA is to create an interpolation op-

erator P that interpolates values from the landmarks b to
the entire manifold by solving Equation 3,

P =

[
Il

−M−1
uuMub

]
=

[
Il
Pu

]
, (6)

where {ui} = X\{bi} is the set of all non-landmark points,
and Muu and Mub are defined as in Equation (2).

The third step in BHA is to form W ∈ Rl×l, the diago-
nal block from K that contains geodesic distances between
landmark points: Wi,j = dM(bi,bj) for 1 ≤ i, j ≤ l.
Note that these values were already computed during the
landmark selection procedure, and can be re-used here.

The Biharmonic Matrix Approximation (BHA) is then
obtained as

K̃BHA = PWP>. (7)

BHA can be thought of as performing two interpolation op-
erations. First, the product PW interpolates geodesic dis-
tances from the landmarks to all the points, approximating
the n × l submatrix formed by the columns of K corre-
sponding to the landmarks. Right-multiplying by P> then
interpolates each row of PW across the entire manifold,
giving the full n× n approximation K̃BHA.

3.1. From dense to sparse

Analyzing the interpolation operator P reveals some
useful numerical properties. The coefficients in P define
weights that are used to interpolate values in W onto the
non-landmark points ui. Intuitively, as the number of land-
marks grows, the number of data points influenced by each
landmark will shrink. In the limit of the number of land-
marks approaching the total number of data points, P→ I ,
and each data point is only influenced by a single landmark.
Thus, even though biharmonic interpolation operators are



not theoretically guaranteed to be sparse (i.e. they do not
have compact support), empirically most entries in P tend
to be near zero (Figure 2).

Therefore, instead of computing the interpolation opera-
tor P given in Equation (6), we propose to compute a sparse
interpolation operator. We note that Equation (6) describes
the solution to a system of linear equations to obtain P. We
replace the matrix inversion by a sparse coding problem of
the form

P̃u = arg min
Pu

‖MuuPu + Mub‖2F

s.t. ‖P(i)
u ‖0 ≤ p ∀i, (8)

where the ‖x‖0 is the `0-quasinorm that measures the num-
ber of non-zeros in a vector x, Pu is the submatrix of P
corresponding to the non-landmark points {ui}, P

(i)
u is the

ith column of Pu, and p is a scalar value. Problem (8) con-
strains the solution to be a sparse matrix P̃u with at most
p non-zeros per column. The sparse interpolation opera-
tor Psparse is obtained by plugging the solution P̃u into
Equation (6). The Sparse Biharmonic Matrix Approxima-
tion (sBHA) is then obtained as

K̃sBHA = PsparseWP>sparse . (9)

Sparse coding is a combinatorial problem, so its solution
is typically approximated using greedy methods or convex
relaxations such as OMP [19] or LASSO [24]. However, in
cases such as this where most entries in P are already very
close to zero, we can use the much cheaper Thresholding
method [8] to approximate Problem (8). Noting that the ma-
trix Muu is square and invertible, this method chooses the
p biggest elements in magnitude from the dense solution for
each column of P. Each column of Psparse is solved sep-
arately, requiring O (n) memory to store one dense column
of P at a time, and O (n) runtime complexity to find the
biggest p elements. Typically, we are interested in prow , the
average number of non-zeros per row. The relation between
p and a prow parameter is given as p = (n−l)prow/l.

How big must prow be in order for Psparse to be a good
approximation of P? If a large prow is required, then there
are no memory or runtime benefits of using Psparse . How-
ever, since most elements in P are close to zero, it seems
likely that prow does not need to be very large. Although
we provide no theoretical proof, our empirical evaluation
in Section 4 suggests that prow can be considered a small
constant number. prow ≤ 50 seems to work well for any
acceptable number of landmarks for large point sets.

3.2. Runtime and space complexity

To analyze the runtime and space complexity of BHA we
divide the method into two steps: a preprocessing step that
computes the biharmonic operator M, and a step that com-
putes the interpolation operator P and the diagonal block
matrix W for the landmarks.

In the preprocessing step, we compute the lumped mass
matrix D, the adjacency matrix A and the sum of adjacency
weights V in order to obtain the biharmonic operator M.
Matrices D and V are diagonal and can be computed with
one pass over the adjacency matrix A, which is also sparse.
When the manifold M is given as a mesh with at most t
neighbors for each point, the adjacency matrix is given and
there is no need for more computation or space than is re-
quired by these matrices, yielding a total runtime complex-
ity O

(
nt2
)

and space O
(
nt2
)

to compute and store M.
Practically, t has a small value up to tens of neighbors per
data point, such that still t2 � n.

In the low-rank approximation step we draw a set of
landmark points and then compute the interpolation oper-
ator P and the matrix W. Finding landmarks using the
farthest point procedure requires O (lf) time, where f is
the complexity of evaluating one row of the distance ma-
trix K. Computing P requires solving the system of linear
equations described in (3). There are l right hand side vec-
tors and the system has n − l equations. As M is a sparse
matrix with O (n) non-zeros (assuming t � n), Equation
(3) can be solved with sparse linear solvers in O (TPnl),
where TP is the number of iterations needed to converge
to an specific accuracy. Alternatively, we can compute the
sparse Cholesky decomposition of Muu and then solve for
the l right hand side vectors, having a runtime complexity
O
(
n1.5 + nl

)
. In the dense case, computing P requires

O (nl) space. In the sparse case, using prow non-zeros per
row with prow < l and practically constant, the space is re-
duced to O (nprow ) non-zeros. Computing sparse columns
adds no cost. Computing the submatrix W of K requires
O
(
l2
)

space and O (lf) time, but W can re-use the dis-
tances computed while selecting landmarks. Thus sBHA
has runtime complexity of O

(
nt2 + TPnl + lf

)
and space

complexity of O
(
max{nprow + l2, nt2}

)
.

3.3. Classical Scaling with BHA

After computing the low-rank approximation Ẽ of the
matrix E of squared distances, one can solve Classi-
cal Scaling by extracting the eigenvalues of −1/2JẼJ =
−1/2JPWPTJ. We remind the reader that our aim is to
compute the m biggest eigenvalues and respective eigen-
vectors without computing a prohibitive n × n matrix.
When using BHA, we follow the method proposed by [21].
We dub this implementation Biharmonic Multidimensional
Scaling (BMDS). First we compute the QR decomposition
QR = JP, where R ∈ Rl×l. Then, we compute the
eigen-decomposition of the matrix −1/2RWRT given by
ṼΛṼT . The embedding is computed as Z = QṼmΛ

1/2
m .

Overall runtime complexity for this method isO
(
nl2 + l3

)
.

The above solution computes a QR decomposition that
requires O (nl) memory to store matrix Q. This solu-
tion works, but its memory usage can be prohibitive when



n is very large. Alternatively, we propose sparse BMDS
(sBMDS), which uses the Lanczos method [18] to com-
pute only the needed m eigenvalues and eigenvectors. The
Lanczos method requires only matrix-vector multiplica-
tions, avoiding the storage of big matrices [18]. This mul-
tiplication is very fast as the interpolation matrix Psparse

is sparse, the matrix J is a sum of identity and a rank-
one matrix, and W is small compared to n. Overall,
computing the m eigenvalues and eigenvectors with such
matrix-vector multiplications has a runtime complexity of
O
(
mn+mnprow +ml2 +m2

)
with a small additional

space for a vector of length O (n).

3.4. Relationships to other approximation methods

3.4.1 Nyström

The Nyström method [17] is a symmetric matrix approxi-
mation that has been successfully applied to machine learn-
ing problems on many datasets. The method requires one
to sample a subset of l landmark points from the point set
and compute the submatrix C ∈ Rn×l, which consists of
the corresponding l columns of K. The low-rank approxi-
mation is then obtained as

K̃Nys = CW†C>, (10)

where W ∈ Rl×l is the symmetric diagonal block corre-
sponding to the columns and rows of K for the landmarks,
and W† is its Moore-Penrose pseudoinverse. While BHA
may appear structurally similar to Nyström, a critical dif-
ference is that BHA does not compute the pseudoinverse
W†. This renders BHA more stable than Nyström in sit-
uations where W is (near-)singular. The largest difference
between BHA and Nyström is that Nyström does not use
any information about the structure of the manifold from
which the data is drawn. This hurts Nyström in situations
where the manifold is known (e.g. a 3-D mesh), since the
manifold can be exploited efficiently. When the manifold is
unknown, the steps taken to recover it can mean that BHA
and other manifold-based methods take longer to set up.

The Nyström approximation requires O
(
nl + l2

)
space

for storing the matrices C and W†. The runtime is O (lf)
for the computation of C, where f is the complexity of eval-
uating one row of the distance matrix K, and O

(
l3
)

for
computing the pseudoinverse of W.

3.4.2 FMDS

In fast multidimensional scaling (FMDS) [21] the distance
matrix is approximated as the symmetrized product of an
interpolation matrix, H ∈ Rn×l, and a matrix C ∈ Rl×n

formed by l rows from K (similar to Nyström),

K̃FMDS =
1

2
(HC + C>H>). (11)

The interpolation operator H is similar but not identical to
the BHA interpolation operator P. The difference lies in the
fact that P does exact interpolation, meaning that the values
at known points (the landmarks b) must be exactly equal to
known values. In contrast, H allows some small error at the
known points, where the amount of error is controlled by a
scalar coefficient µ [21]. It is possible to linearly transform
P into H: H = P(Mbb + µIl + MbuPu)−1µ, where Pu

is defined as in Equation 6.
It is important to note that FMDS stores much more of

the distance matrix in memory than sBHA. Since it uses
such a similar method for interpolation, it is expected that
FMDS will yield better performance with the same number
of landmarks, albeit using much more memory. Also, the
symmetrization step required by FMDS can be expensive
for large meshes, whereas SMDS and sBHA are fundamen-
tally symmetric.

3.4.3 SMDS

In spectral multidimensional scaling (SMDS) [1] the dis-
tance matrix is also approximated using interpolation, but
the dimensionality of the problem is reduced by working in
the spectral domain formed by the eigenspace of the LBO.
First, sparse eigenvalue decomposition is used to extract the
first m eigenvectors Φ ∈ Rn×m and eigenvalues Λ of the
LBO. Then l landmarks are selected and a smooth interpo-
lation operator H ∈ Rm×l is computed. Finally distances
are computed among the landmarks and stored in the sym-
metric matrix W ∈ Rl×l as in BHA. The approximation is
then given as:

K̃SMDS = ΦHWH>Φ>. (12)

SMDS has several advantages: the resulting matrix is al-
ways symmetric, and working in the eigenspace of the LBO
reduces dimensionality significantly. However, computing
the eigenvectors is extremely costly in runtime, rendering
this method generally less useful than FMDS.

3.4.4 Other methods

Other related methods include the constant time geodesic
(CTG) approximation [25] and SpectroMeter (SM) method
[15]. CTG uses a geometric approach to “unfold” landmark
distances to the entire surface, and thus requires only 3 di-
mensions but also involves a nonlinear operation (taking the
minimum across possible paths). SM uses a spectral decom-
position of the Laplace-Beltrami operator (LBO) to rapidly
approximate operations used in the heat method for com-
puting geodesics [5], and to interpolate distances, similarly
to SMDS.
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Figure 3. Geodesic distance approximation error for BHA and sBHA with prow = 10 . . . 100 (our methods) vs. FMDS, SMDS, and
Nyström on Brain with numbers of landmarks l ranging from 1% to 25% of the total number of points n = 7, 502. Each experiment was
repeated 10x. (Left) Error vs. Landmark fraction l/n. FMDS has the lowest error for each number of landmarks, while Nyström suffers
from numerical instability. There is little difference between BHA and sparse sBHA with prow = 100 or prow = 50, but sparser solutions
suffer. (Right) Error vs. size of the approximation in memory (bytes). sBHA strongly outperforms FMDS, using 3-4x less memory to
achieve the same error rate.

4. Experimental results
We empirically evaluate BHA and sBHA, and compare

to Nyström [17], FMDS [21], SMDS [1], and LMDS [23] in
terms of matrix approximation accuracy, MDS stress, mem-
ory usage and runtime. We used four point sets: Brain
is a 3-D mesh reconstruction of one human cortical hemi-
sphere with n = 7, 502 vertices. Bunny is a 3-D mesh
with n = 14, 290 (Stanford Computer Graphics Labora-
tory). Dragon is a 3-D mesh with n = 1, 804, 693 (Stanford
Computer Graphics Laboratory). Using quadric decimation
in meshlab [3] we created 8 downsampled Dragon meshes
with n = 5, 000 . . . 750, 000. TOSCA [2] is a set of 148 3-D
meshes from 12 categories. Within each category the same
mesh appears in different poses.

All experiments were run on a system with two Intel
Xeon E5-2699v4 processors (44 cores in total) with 128 GB
of physical memory and running Linux. Code1 was imple-
mented in Python with optimized and parallelized NumPy
and SciPy modules. BHA, sBHA, FMDS, and SMDS were
implemented with sparse Cholesky decomposition from
Scikit-Sparse. The FMDS smoothing parameter was set to
µ = 50 as recommended in [21]. For SMDS m = 200
eigenvectors were used, as recommended in [1]. Geodesic
distances were computed using the approximate geodesics
in heat method [5] implemented in pycortex [9]. All re-
ported memory usage is the final memory consumption of

1http://github.com/alexhuth/BHA
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Figure 4. Geodesic distance approximation error for BHA and
sBHA with prow = 50 (our methods) vs. FMDS on Dragon320k,
a large mesh with n = 320, 003 vertices, using landmark fractions
l/n = 0.0008 . . . 0.031. Error is plotted vs. size of the approxi-
mation in memory (bytes). sBHA performs extremely well, using
about 20x less memory than FMDS to achieve an error of 1 in
100,000.

the distance matrix approximation, not counting memory
used for intermediate steps.

4.1. Distance matrix approximation

Here we evaluate the approximation performance and
memory usage of BHA and sBHA versus other methods.
We compute low-rank approximations of the geodesic dis-
tance matrix for Brain using BHA, sBHA with the num-
ber of non-zeros per row prow from 10 to 100, FMDS,

http://github.com/alexhuth/BHA


SMDS, and Nyström and then compare to the actual dis-
tance matrix. Relative approximation error was measured
as ε(K̃) = ‖K̃−K‖

2
F/‖K‖2F . With each method we varied the

number of landmarks l between roughly 1% (l = 50) and
25% (l = 2, 000) of the total number of points n.

Comparing performance as a function of the number of
landmarks (Figure 3, left) shows that FMDS has the low-
est error for each value of l. BHA performs identically to
sBHA with prow = 100 and is only slightly better than
sBHA with prow = 50. Sparser solutions perform worse.
Nyström performs very badly due to numerical instability
of the pseudoinverse W†.

However, plotting performance as a function of the size
of the approximation in memory (Figure 3, right) shows that
sBHA uses 3-4x less memory to achieve the same level of
performance as FMDS.

The same experiment was performed on Bunny (Supple-
mental Figures) with similar results for BHA, sBHA, and
Nyström. However, FMDS and SMDS with default param-
eter settings performed much worse on Bunny, both failing
to beat BHA for any given number of landmarks. This sug-
gests that FMDS and SMDS may be more sensitive to hy-
perparameters than (s)BHA.

To test on a larger problem we also ran BHA, sBHA, and
FMDS on Dragon320k, a mesh with n = 320, 003. The full
distance matrix was too large to fit in memory, so error was
estimated using a random subset of 3000 rows. Figure 4
shows that sBHA strongly outperforms FMDS on this large
mesh. To achieve an error of one part in 100,000, sBHA
uses roughly 20x less memory than FMDS (200 MB vs. 4
GB). This factor is much larger than for Brain, suggesting
that the efficiency gains of sBHA over FMDS grow with the
size of the problem.

4.2. Obtaining canonical forms using MDS

FMDS, SMDS, and LMDS were designed specifically
for applying MDS to large problems. Using MDS to em-
bed a geodesic distance matrix into 3 dimensions gives the
canonical form Z ∈ Rn×3, a representation of the dataset
that is largely invariant to nonrigid deformations (Figure 5).
Comparing canonical forms can reveal whether two meshes
are different poses of the same model, and, if so, which parts
match one other.

The quality of an MDS solution can be evaluated by
computing stress (Equation 4), which measures how dif-
ferent the global geometries of the original and embedded
datasets are. We compare MDS results from BMDS and
sBMDS with prow = 50 to FMDS, SMDS, LMDS, and
normal MDS.

We first compare stress after applying MDS to Brain
(Figure 6). As in the matrix approximation experiment,
FMDS outperforms all other methods when using the same
number of landmarks l, but sBMDS is much more efficient,

sBMDS FMDS MDS

0.00063

0.00096

0.00015

0.00019

0.0

0.0

Figure 5. (Top) Canonical forms obtained using sBMDS (our
method; using l = 100 landmarks and prow = 50), FMDS (us-
ing l = 100 landmarks), and MDS on david-1 and david-2 from
TOSCA and then aligned using ICP. (Middle) Canonical coordi-
nates are mapped to RGB colors on the original meshes. Parts
have the same coordinates (and color) despite pose differences.
sBMDS yields nearly identical solutions while using much less
memory and time than the other methods. (Bottom) Final stress
of each approximate MDS solution − stress of the exact solution.

achieving the same stress while using much less memory.
LMDS performs the worst for most landmark fractions.
Comparisons on Bunny were similar to the matrix approxi-
mation results (Supplemental Figures).

We next compared scalability of the six methods in
terms of runtime and memory usage by testing on Dragon
meshes having 5,000 to 320,000 vertices. All tests used
l = 1, 000 landmarks. Runtime (Figure 7, left) was
best for LMDS, followed closely by sBMDS, BMDS, and
FMDS. SMDS was much slower, taking twice as long to
embed Dragon160k as sBMDS took to embed the larger
Dragon320k. All approximate methods were much faster
than normal MDS, which could only be run on meshes up
to 40,000 vertices due to memory constraints. Memory us-
age (Figure 7, right) scales linearly with mesh size for all
methods, but the total memory used varies wildly. sBMDS
used by far the least memory, followed by SMDS. FMDS
used the most memory.

Finally we studied the quality of the canonical forms ob-
tained using each MDS method. Following [21] we com-
pared 61 meshes coming from 5 different categories (cat,
david, horse, lioness, centaur) in TOSCA [2]. We first ob-
tained a canonical form for each mesh using each method.
Examples are shown in Figure 5. Iterated closest point
(ICP) was then used to find the distance between each pair
of canonical forms, and these distances were submitted to a
second stage MDS. The resulting embeddings (Supplemen-
tal Figures) clearly cluster according to category for each
approximation method.
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Figure 6. MDS stress for BMDS and sBMDS with prow = 50 (our methods) versus FMDS, SMDS, LMDS, and normal MDS after
embedding the geodesic distance matrix for Brain into 3-D. Numbers of landmarks l ranged from 1% to 25% of the total number of points
n = 7, 502. Each experiment was repeated 10x. (Left) Stress vs. Landmark fraction l/n. FMDS has the lowest stress for each number of
landmarks. (Right) Stress vs. size of the approximation in memory. sBHA outperforms other methods, using less memory to attain the
same stress.
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as normal MDS. Each algorithm was used to embed geodesic distance matrices for Dragon meshes with n = 5000 . . . 320, 000 vertices
into 3 dimensions. (Left) Runtime versus mesh size. (Right) Memory usage versus mesh size.

4.3. Extremely large mesh

To demonstrate that our sparse methods, sBHA and sB-
MDS, can be applied to extremely large problems we used
sBMDS to obtain the canonical form for Dragon1800k, a
mesh with 1.8 million vertices. Using l = 50, 000 land-
marks the approximate geodesic distance matrix is only
20.9 GB, three orders of magnitude smaller than the full
26 TB matrix. The canonical form clearly distinguishes the
extremities of the mesh (Figure 1), suggesting that sBMDS
was successful at recovering the canonical form.

5. Conclusions

The sBHA method described here offers a sparse alter-
native to approximation methods like FMDS, SMDS, and
Nyström. Sparsity allows sBHA to be extremely efficient in
both memory and evaluation time. Results show that sBHA

can be used for the same applications and can yield equally
accurate approximations using 20x less memory than other
methods. The greatest value of sBHA is for scaling to very
large problems where the accuracy of current methods is
limited by memory.

One key improvement to (s)BHA would be a way to au-
tomatically select the number of landmarks that gives an
efficient but accurate approximation. Another way forward
could be to split the difference between FMDS and sBHA
by saving more of the precomputed distances than sBHA
does but fewer than FMDS. Ultimately it will also be im-
portant to study the theoretical properties of this method and
provide bounds on approximation error. Nevertheless, these
results show that sBHA can be extremely beneficial in some
settings, and is immediately applicable.
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