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Abstract

Finding the relative pose between two calibrated views
ranks among the most fundamental geometric vision prob-
lems. It therefore appears as somewhat a surprise that a
globally optimal solver that minimizes a properly defined
energy over non-minimal correspondence sets and in the
original space of relative transformations has yet to be dis-
covered. This, notably, is the contribution of the present
paper. We formulate the problem as a Quadratically Con-
strained Quadratic Program (QCQP), which can be con-
verted into a Semidefinite Program (SDP) using Shor’s con-
vex relaxation. While a theoretical proof for the tightness of
this relaxation remains open, we prove through exhaustive
validation on both simulated and real experiments that our
approach always finds and certifies (a-posteriori) the global
optimum of the cost function.

1. Introduction

Relative pose estimation from corresponding point pairs
between two calibrated views constitutes a fundamental
geometric building block in most sparse structure-from-
motion and visual SLAM algorithms. In structure from mo-
tion, it helps to initialize both topology and initial values of
the view-graph, which will then be used in transformation
averaging schemes [15] as well as bundle adjustment [42]
to obtain the joint solution over all poses and points. More
specifically, using an image matching technique [29], we es-
tablish a hypothetical covisibility graph between neighbour-
ing pairs of views, which are then verified geometrically us-
ing robust relative pose computation. In visual SLAM [26],
the algorithm is used to bootstrap the computation and thus
solve the chicken-and-egg problem behind the mutually de-
pending tracking and mapping modules.

The relative pose problem is constrained by the epipo-
lar geometry [17]. The correspondence condition between
two views can notably be translated into a linear constraint

by employing the well-known essential matrix. Due to scale
invariance, the essential matrix has only five degrees of free-
dom. Five point correspondences are hence enough to con-
strain the relative pose [23]. The solution to the linear prob-
lem given by stacking five correspondence conditions first
results in a four-dimensional nullspace. The true solution
can then be recovered by applying the additional non-linear
constraints that exist on the coefficients of a proper essen-
tial matrix. It can be solved using polynomial elimination
techniques [28], or—more generally—the Groebner basis
method [38].

The above solution is the so-called minimal solution to
the problem as—ignoring special cases like degenerate 3D
point configurations or zero parallax—it always leads to an
exact solution for the considered correspondences (up to
numerical inaccuracies). The minimal solver can be used
within Ransac in order to gain robustness against outlier
correspondences. An important observation in this regard
is that—depending on the noise inside the data—using only
five points for each hypothesis instantiation may not nec-
essarily lead to a minimum number of Ransac iterations,
as those hypotheses may be hard to bring in agreement with
other points. For moderate effective outlier ratios, increased
noise in the data means that sampling more points will lead
to noise-cancellation effects and thus quicker convergence
and better identified inlier ratios [21]. In short, a complete
theory of epipolar geometry requires a non-minimal solver
to the relative pose problem.

What comes as a surprise is that, despite the maturity of
the field and the age of the problem, a good non-minimal
solver for the calibrated relative pose problem has never
been discovered. This stands in harsh contrast with the
absolute pose problem, where recent solvers even achieve
global and geometric optimality in closed form for an arbi-
trary number of 2D-to-3D correspondences [20]. The expert
reader may ask why we can not use the 7 or 8-point algo-
rithm [24, 13] to solve this problem. The reason is again
explained by the noise in the data. Noise notably causes
the rank-defficiency of our essential matrix constraints to



vanish. The solution is henceforth found in a smaller-
dimensional nullspace. However, what we are in fact do-
ing here is hoping that the additional non-linear constraints
on our essential matrix are implicitly enforced by the noisy
data. To give a more concrete example, when solving the
calibrated relative pose problem with the 8-point algorithm,
we are in fact solving for a fundamental matrix. We just
hope that our data is strong enough to implicitly enforce the
solution to also be a proper essential matrix. This, of course,
is only true in the noise-free case.

It is much better to find the solution to the non-minimal
problem by directly minimizing an energy defined in the
5-dimensional space of scale invariant relative poses. This
is an inherently difficult problem, and an elegant globally
optimal solution remains an open problem. The present pa-
per draws inspiration from [21] who presented a cost func-
tion for the relative pose problem that is parametrized in the
space of relative rotations, and can be constructed for an
arbitrary number of correspondences. However, while [21]
failed to solve this problem with optimality guarantees, the
present paper leverages convex optimization theory to—for
the first time—come up with a fast1 probably globally opti-
mal solution to this problem, whose optimality gets certified
a-posteriori.

We warn the reader, this paper does not deal with outlier
observations. However, we observe that even without out-
liers this problem is challenging enough to make traditional
solvers fail in certain scenarios.

2. Further related work on global optimization
In general, finding a guaranteed globally optimal solu-

tion for non-convex optimization problems is a hard task,
most often computationally intensive [14].

One natural approach consists of characterizing the glob-
ally optimal solution as one of the stationary points in the
energy functional. This can be cast as a polynomial problem
and solved with similar techniques than minimal problems.
However, for general non-minimal problems, the number
of stationary points and the size of the polynomial elimi-
nation template may explode as the order of the equations
increases, often rendering the application of this procedure
infeasible.

Another powerful and generic tool for NP-hard opti-
mization problems is Branch and Bound (BnB). This pro-
ceeds by cleverly exploring (branching) the whole opti-
mization space while exploiting some relaxations on the
problem to skip certain regions (bounding). Whereas this
approach has been successfully used in various geometric
computer vision problems [31, 18, 21, 46], its exploratory
nature often leads to slow performance (exponential time in
worst-case scenario).

1At least faster than other globally optimal alternatives with guarantees
such as Branch-and-Bound for the non-convex problem.

For the rest of this document we will focus instead on re-
laxation techniques that consider approximate, simpler ver-
sions of the optimization problem whose global optimum is
easier to reach. This general idea does not necessarily lead
us to the original, optimal solution. In fact, an inferior relax-
ation may not provide any useful information at all. On the
opposite side, a tight relaxation is one that features the same
optimal objective as the original optimization problem. A
tight relaxation may provide us with the necessary informa-
tion to recover the optimal solution to the original problem.
If a relaxation that is tight is also convex by construction,
this provides us with an appealing way to solve the original
hard problem globally, as solving a convex problem glob-
ally is a much more tractable problem (typically of polyno-
mial complexity).

Finding a good relaxation for a certain problem is not
an exact science. Even though various recurrent tools ex-
ist, such as relaxing non-convex constraints to its convex
hull [36, 34, 19] or applying Lagrangian duality [5], there
remains much engineering involved in the combination of
these tools to come up with a good relaxation.

In this work we leverage two fundamental ideas as guid-
ing design principles: Firstly, many polynomial optimiza-
tion problem can be reformulated as a Quadratically Con-
strained Quadratic Program (QCQP), which in turn may
be relaxed onto a Semidefinite Program (SDP) via Shor’s
relaxation [5, 11]. This observation alone has allowed
for great progress in global optimization for some prob-
lems whose SDP relaxation turns out to be tight, e.g.
Rotation Synchronization [4, 3] or Pose Synchronization
[10, 9, 6, 33, 8]. Secondly, relaxations can be strength-
ened (improved) by introducing redundant constraints [27,
Chap. 13]. This trick has found applicability in the op-
timization literature [32, 35], e.g. in QCQP problems in-
volving orthonormal constraints [1]. Briales and Gonzalez-
Jimenez show in [7] that properly applying this trick is
highly beneficial when working with rotation constraints in
the context of the Absolute Pose problem.

3. Preliminaries
In this work we will follow similar notation and assump-

tions to those used by Kneip and Lynen in [21]. Specifically,
we consider the central calibrated relative pose case, where
each image feature can be translated into a unique unit bear-
ing vector. Pair-wise correspondences thus consist of pairs
of bearing vectors (f i,f

′
i) pointing to the same 3D world

point pi from the first and second camera centers.
The variables of interest in the problem are the transla-

tion t and relative orientation R of the second camera frame
w.r.t. that of the first camera. All the variables involved
are illustrated in Fig. 1. The normalized direction t will
be identified with points in the 2-sphere S2. The 3D rota-
tion will be featured as 3 × 3 orthogonal matrix with posi-



Figure 1. The relative pose problem. The measurements are given
by correspondence pairs of unit bearing vectors {fi, f ′i}, and the
unknown variables are given by the relative orientation R and the
direction of the relative translation t.

tive determinant belonging to the Special Orthogonal group
SO(3). Symmetric n × n matrices are denoted by Symn,
the subindex + standing for positive semidefiniteness.

Lastly, for convenience we will often refer to the list of
elements in a matrix as a vector (lowercase) stacking the
columns into a vector, e.g. r = vec(R) or x = vec(X).

4. An eigenvalue based formulation
Given the bearing vectors f i and f ′i corresponding to

each feature i in the two (calibrated) camera projections,
Kneip and Lynen proposed in [21] to address the relative
pose problem by enforcing the coplanarity of the moment
vectors mi = f i × Rf ′i for all the epipolar planes. This
would lead to a decoupled formulation where the optimal
rotation is recovered from

R? = arg min
R∈SO(3)

λmin(M(R)), (1)

with M(R) =
∑N

i=1 mim
>
i standing for the covariance

matrix of all (in general non-unitary) epipolar plane nor-
mals. The translation direction is recovered as the eigenvec-
tor corresponding to the smallest eigenvalue of M(R?):

t? = arg min
t∈S2

t>(M(R?))t. (2)

Whereas this decoupled approach may be compact and ap-
pealing, dealing with the non-linearity and non-convexity of
the rotation suproblem (1) is far from trivial.

In this work, we take a different approach and consider
instead the equivalent joint optimization problem

f? = min
R,t

t>M(R)t, s.t. R ∈ SO(3), t ∈ S2. (3)

The elements of the covariance matrix of normals M(R) =[
mij(R)

]3
i,j=1

are quadratic on the elements of the rotation
matrix r = vec(R) [21]. This allows us to rewrite each
component of M(R) as a quadratic function mij(R) =
r>Cijr

> with Cij ∈ Sym9,+ a data matrix that depends

only on the problem data (see supplementary material for
details). Using this characterization, the objective to opti-
mize in (3) may be written as

f(R, t) = t>M(R)t =

n∑
i,j=1

ti(r
>Cijr)tj , (4)

which is a quartic function of the unknowns (R, t).
A fundamental step towards our solution is the reformu-

lation of this quartic objective into a quadratic one by intro-
ducing the convenient auxiliary variable

X = rt> =
[
t1r | t2r | t3r

]
=
[
ritj
]
i=1,..,9
j=1,2,3

(5)

and its vectorized form

x = vec(X) = vec(rt>). (6)

With this definition of X in mind, the optimization objec-
tive (4) may be equivalently written in terms of x, and be-
comes

f(R, t) =

n∑
i,j=1

(tir)>Cij(tjr) = x>Cx, (7)

where the data matrix C ∈ Sym27 gathers all the data (ma-
trices Cij) in the problem (3). Interested readers are in-
vited to check the supplementary material for further de-
tails. With this reformulation in mind, the joint optimization
problem (3) can be rewritten as

f? = min
R∈SO(3)

t∈S2,X

x>Cx, s.t. X = rv>, (8)

where we assume the already presented notations for vec-
torized counterparts.

So far we have just rewritten the original problem in dif-
ferent forms, all of which are equivalent and inherently hard
to solve. In particular, the last proposed formulation (8) can
be seen as a Quadratically Constrained Quadratic Program
(QCQP): The objective f(X) is quadratic; the unitary con-
straint on the translation direction, Ct ≡ {t>t = 1}, is also
quadratic; a rotation matrix R can be fully defined solely
by a set of quadratic constraints CR [22, 43, 7]; and, lastly,
the auxiliary constraint CX on X (5) is also quadratic. The
corresponding QCQP may be represented then as

min
X,R,t

x>Cx, s.t. {CR, Ct, CX}(X,R, t). (9)

Having formulated the problem as a QCQP does not
make it any easier to solve. In fact, a QCQP is a very gen-
eral kind of problem that comprises many NP-hard prob-
lems. However, the interest in reaching this particular for-
mulation lies in the existence of a well-known Semidefinite
Program (SDP) relaxation for QCQPs.



Next section will provide a thorough overview of a SDP
relaxation for problem (8) that, as far as we empirically ob-
served, is always tight and allows us to recover and certify
the globally optimal solution (R?, t?). An overview of the
complete algorithmic approach is given in Alg. 1.

5. Global resolution through SDP relaxation
Any Quadratically Constrained Quadratic Programming

(QCQP) problem instance, and in particular the introduced
relative pose problem (9), may be written in the following
generic form2.

Problem QCQP (General).

min
z̃

= z̃>Q̃0z̃, z̃ =
[
z>, 1

]>
, (10)

s.t. z̃>Q̃iz̃ = 0, i = 1, . . . ,m, (11)

where z is a vector stacking all unknowns involved in the
problem and z̃ its homogeneization.

Note we homogeneize the variables and data matrices,
which is a common trick to get more compact quadratic ex-
pressions [43, 7]. In our problem, z stacks the elements
of our unknowns (R, t,X). For further details on homo-
geneization as well as the matrices Q̃i corresponding to the
QCQP formulation of the relative pose problem we refer the
interested reader to the supplementary material.

As previously stated, the problem (QCQP) is in general
an NP-hard problem. However, it is well-known that this
kind of problems can be relaxed to a convex Semidefinite
Program (SDP), also known as Shor’s relaxation [37, 11]. It
is tightly connected to Lagrangian duality [44, 5]. The pri-
mal version of the SDP relaxation for the problem (QCQP)
reads:

Problem SDP (Primal SDP).

d? = f?SDP = min
Z̃

tr(Q̃0Z̃) (12)

s.t. tr(Q̃iZ̃) = 0, i = 1, . . . ,K, (13)

Z̃yy = 1, Z̃ < 0, (14)

where Z̃ is the lifted unknown matrix and the y-subindex
refers to the homogeneous component in the matrix.

As a relaxation, the problem above fulfills3

d? = f?SDP ≤ f?. (15)

Our interest in this relaxation resides in the well-known fact
[44] that if the relaxation (SDP) is tight (d? = f?SDP = f?)

2Note that QCQPs can in general also feature inequality constraints.
3We borrow the notation d? for the optimal relaxation objective, more

common for the dual of (SDP). In our context the SDP problem fulfills
Slater’s condition so we can safely state d? = f?

SDP.

and the original problem (QCQP) features a unique global
minimum, we can easily obtain the guaranteed optimal so-
lution z̃? to the original problem from the optimal solution
Z̃

?
to the SDP relaxation. Thus, if we are able to ensure

(either theoretically or empirically) that the SDP relaxation
for a given QCQP problem is tight in some scenario, this
provides a highly appealing way to approach the global res-
olution of the original hard QCQP problem.

Unfortunately, the SDP relaxation arising from the
QCQP problem corresponding to the proposed formulation
(8) for the relative pose problem is in general not tight, so
we may not benefit of the corresponding SDP relaxation as
it is. Thus, our next goal will be to explore how we may at-
tain this desired tight behavior in the context of the relative
pose problem at hand.

5.1. Making SDP tight: Redundant constraints

In this section we are going to investigate the application
of a well-known trick to our problem to improve the quality
of the relaxation: The introduction of additional redundant
constraints.

There are some interesting examples in the literature
[45, 7] on how introducing additional redundant constraints
into a QCQP problem may significantly improve the sub-
sequent SDP relaxation (in terms of tightness). In partic-
ular, Briales and Gonzalez-Jimenez show in [7] that for a
QCQP problem affected solely by a (non-convex) 3D ro-
tation constraint, it is possible to produce an SDP relax-
ation that remains (empirically) tight at all times by clev-
erly exploiting complementary descriptions of the rotation
constraints. Since our problem also features a 3D rotation
constraint R ∈ SO(3), it makes sense to apply this trick
here as well.

5.1.1 Redundant rotation constraints

Briales and Gonzalez-Jimenez argue in [7] that the full fam-
ily of independent rotation constraints for R ∈ SO(3) that
may be written as quadratic expressions is given by

CR ≡


R>R = I3, RR> = I3,

(Rei)× (Rej) = (Rek),

∀(i, j, k)={(1, 2, 3), (2, 3, 1), (3, 1, 2)}.
(16)

The set CR amounts to 20 independent quadratic con-
straints, which may be written in the form r̃>Q̃ir̃ = 0.

Unfortunately, whereas in the case explored in [7] the
simple introduction of these additional constraints into the
problem (QCQP) would suffice to turn the corresponding
relaxation (SDP) tight in practice, we found out that this is
not yet enough in the present problem.



5.1.2 More redundant quadratic constraints

A convenient trick to obtain additional redundant con-
straints in the context of our relative pose problem (8) is
to produce higher order versions of the existing constraints
(R ∈ SO(3),t ∈ S2) that may be still rewritten as quadratic
exploiting the available auxiliary variable X (5).

Lifted sphere constraints: Ĉt We saw the translation fea-
tures a single quadratic constraint t>t = 1. We may build
redundant constraints by multiplying this constraint by ri
for i = 1, . . . , 9. Even though this new constraint is im-
plicitly cubic, we may refactor products of the form ritj via
the auxiliary variable X =

[
ritj
]
i=1,...,9
j=1,2,3

, which features

all second-order combinations of this kind. As a result we
obtain 9 new constraints which are implicitly cubic but ex-
pressed as quadratic constraints again.

From here on, most new constraints are built in a similar
way. We multiply the quadratic constraint t>t = 1 by the
quadratic factor rirj for i, j = 1, . . . , 9. This time, it re-
sults in an implicitly quartic constraint that may be rewrit-
ten though via the auxiliary mapping Xij = ritj into a
quadratic constraint again. In this case, due to symmetry,
we introduce

(
9
2

)
= 45 additional redundant constraints.

Lifted rotation constraints: ĈR The case for rotation
constraints is pretty much analogue to that of the sphere
constraint. For any of the quadratic constraints previously
considered for the rotation set, we may multiply this con-
straint by ti for i = 1, 2, 3, and again rewrite pairs of the
form ritj as Xij to obtain a quadratic expression that is
implicitly cubic. Similarly, if we multiply in the quadratic
term titj for i, j = 1, 2, 3 and rewrite in terms ofXij where
possible, we will be featuring quartic constraints written in
quadratic form.

If there are 20 independent constraints in the rotation
constraint set, the cubic lift produces 3 new constraints for
each one, while the quartic lift results in

(
3
2

)
= 6 additional

redundant constraints per rotation constraint. Overall, this
results in 20 · 9 = 180 additional quadratic constraints.

Additional constraints on auxiliary variable: ĈX For
the auxiliary variable X it is also possible to feature addi-
tional independent constraints. In this case, it is not through
a lifting procedure but simply by observing that, through its
definition in (5), rank(X) = 1. While the rank constraint is
a complex one that we do not want to directly employ here,
it features though a wide set of quadratic constraints as any
2×2 minor inside the matrix X needs to be zero (otherwise
rank(X) > 1, which contradicts its definition).

These constraints are of the form

XabXij −XibXaj = 0, (17)
a = 1, . . . , 9; b = 1, 2, 3; (18)
a < i ≤ 9; b < j ≤ 3, (19)

which finally results in 108 additional linearly independent
constraints that depend solely on X .

Surprisingly, after including this whole redundant set of
underlying quadratic constraints, the SDP relaxation for the
corresponding enriched QCQP problem turns out to be em-
pirically tight in all tested circumstances, and we are ready
to proceed further in our way towards the global resolution
of the original problem.

5.2. Solving from the tight SDP solution: Recovery

Now that we have featured a QCQP formulation for the
relative pose problem (8) whose convex SDP relaxation is
empirically tight, we should be ready to proceed and solve
the problem (QCQP) with global optimality guarantees.

However, we still encounter another difficulty: It is a
classical result related to Shor’s relaxation that if there is
a unique global solution in the problem (QCQP), the tight
SDP solution Z̃

?
fulfills rank(Z̃

?
) = 1 and we may re-

cover z̃? from the low-rank decomposition Z̃
?

= z̃?(z̃?)>

[44, 25]. As we show next, the condition that the original
problem has a unique global minimum is not fulfilled here
though. Nevertheless, we will show how we can adapt the
classical low-rank decomposition trick [25] and still obtain
the solution to the original problem (8) from a solution Z̃

?

to the relaxation (SDP).

5.2.1 The relative pose problem has 4 solutions

An important characteristic of original formulation (3) of
the relative pose problem is that there exist symmetries in
the objective. In particular,

f(R,−t) = f(R, t), f(P tR, t) = f(R, t), (20)

where P t = 2tt>−I3 is the reflection matrix w.r.t. the axis
of direction t. These symmetries are illustrated and proven
in the supplementary material.

The symmetries are also consistent with the well-known
fact that the estimation of the relative pose from the essen-
tial matrix also leads to 4 different solutions [24]. Indeed,
our algebraic error is exactly equivalent to that minimized
by classical solvers, e.g. the 8-point algorithm by Longuet-
Higgins [24, 16].

As a consequence of the equivalences above, even in the
well constrained, non-minimal situation, there exist 4 glob-
ally optimal solutions to the formulated problem (3):

{(R?, t?), (R?,−t?), (P t?R
?, t?), (P t?R

?,−t?)}.
(21)



Of these solutions, only one is physically realizable as the
rest lead to geometries where the reconstructed 3D points
lie behind the cameras rather than in front of them [24].

5.2.2 The tight primal SDP solution has rank-4

Still under the assumption that the SDP relaxation is tight,
a feasible (and optimal) rank-1 solution Z̃

?

k for the problem
(SDP) can be built from any of the 4 solutions (21) to our
original problem (8):

(R?
k, t

?
k)→ z̃?

k = stack(x?, r?, t?, 1) (22)

→ Z̃
?

k = z̃?
k(z̃?

k)>. (23)

All of these lifted solutions are globally optimal as they ful-
fill tr(Q̃0Z̃

?

k) = f? = d? (with our tightness assumption).
By linearity of the SDP objective (12), it is easy to prove

(see supplementary material) that any convex combination

Z̃
?

=

4∑
k=1

akZ̃
?

k =

4∑
k=1

akz̃
?
k(z̃?

k)> (24)

of the rank-1 solutions Z̃
?

k, with ak ≥ 0 and
∑4

k=1 ak = 1,
is also an optimal solution to the problem (SDP). The non-
negativity of ak is required to fulfill the Positive Semidefi-
nite constraint (14) on Z̃. These coefficients a may be re-
garded as barycentric coordinates that parameterize the set
of all possible optimal solutions for problem (SDP).

In conclusion, the existence of 4 globally optimal solu-
tions in the original problem results in the existence of in-
finitely many rank-4 solutions to the SDP relaxation (SDP).
These solutions coincide with the convex hull of the rank-1
lifted versions of the solutions to the problem (QCQP).

5.2.3 Practical recovery of original solution

At this point, we have fully characterized the optimal so-
lutions of the original problem (3) as well as their connec-
tion to the infinitely many solutions of the relaxation (SDP)
when this is tight. In practice, we will solve the relaxation
(SDP) with some off-the-shelf Primal-Dual Interior Point
Method (IPM) solver (e.g. SeDuMi [40] or SDPT3 [41]).
But these IPM approaches return one optimal solution Z̃

?

0

of the infinitely many available ones in the convex set Z̃
?
.

Now, the question of main practical interest is: Given a par-
ticular optimal solution Z̃

?

0 to the SDP problem (SDP), are
we able to recover the optimal solution (R?, t?) (and cor-
responding symmetries) to the original problem (3)? The
answer to this question is yes.

In practice, a fundamental observation is that the solution
provided by an IPM solver always fulfilled rank(Z̃

?

0) = 4,
with an eigenvalue decomposition of the form

Z̃
?

0 = λ1U1U
>
1 + λ2U2U

>
2 , U>k Uk = I2, (25)

that is, there exist two numerically distinct eigenvalues
λ1, λ2 with multiplicity 2. From (24) we know both U1

and U2 together must span the same range space as all the
global solutions to the (QCQP). In fact, another important
(still empirical) observation is that each pair of eigenvec-
tors Uk span the same range as the solutions with common
rotation value:

span(U1) = span(
[
z̃?
1, z̃

?
2

]
)← {(R?, t?), (R?,−t?)},

span(U2) = span(
[
z̃?
3, z̃

?
4

]
)← {(P t?R

?, t?), (P t?R
?,−t?)}.

This relation allows us to recover the optimal solutions from
the range space of the appropriate sub-blocks in the com-
puted eigenvectors: Considering the case of U1, since4

z̃?
1(r, :) = z̃?

2(r, :) = r? and z̃?
1(t, :) = z̃?

2(t, :) = t?,

span(U1(r, :)) = span(r?), span(U1(t, :)) = span(t?).

As a result, if V r ∈ R9 and V t ∈ R3 are basis vectors for
the rank-1 subspaces span(U1(r, :)) and span(U1(t, :))
respectively, the optimal solutions within the range of U1

can be obtained by simple normalization:

vec(R?) =
√

3
V r

‖V r‖
, t? =

V t

‖V t‖
. (26)

Similar relations hold for the solutions contained in U2.
Further discussions on these empirical observations can

be found in Section 8 of the supplementary material.

5.2.4 A-posteriori global optimality guarantees

Throughout the previous subsections we have extensively
built upon the assumption that the relaxation (SDP) is tight.
This, however, is not known a-priori for a given problem.
Thus, the way we proceed in practice is as follows: First,
we proceed with the described approach as if the relaxation
(SDP) was indeed tight, obtaining a set of (symmetric) can-
didate solutions (R̂k, t̂k). Then, we check the primal fea-
sibility (R̂k ∈ SO(3), t̂k ∈ S2) of these candidates. If
the relaxation was tight, these candidates should be indeed
feasible. Just for numerical stability, we may project these
candidates into their closest point in their manifold (by clas-
sical means), and check that d? = f(R̂k, t̂k) as a certificate
of optimality. If this property is fulfilled, this proves our
tightness assumption and these feasible candidate points are
indeed the global solutions of the original problem (3).

The complete algorithm is characterized in Alg. 1.

6. Experiments
The main goal of this section will be to empirically prove

the surprising and desirable fact that the proposed SDP re-
laxation always turns out to be tight in practice, providing a
(a-posteriori) guaranteed optimal solution.

4We use (r, :) and (t, :) as Matlab-like notation to refer to the set of
indexes corresponding to r and t within z by convention (see Sec. 5).



Algorithm 1: Solving relative pose via SDP relaxation

Input: List of correspondences {(f i,f
′
i)}Ni=1

Output: Probably certifiable global solution (R?, t?)
/* build (QCQP) constr. mat. (full set) */

1 {Q̃i}Ki=1 ← {ĈR, Ĉt, ĈX}(X,R, t);
/* build (QCQP) objective data matrix */

2 Q̃0 ← C ← {Cij}i,j=1,2,3 ← {(f i,f
′
i)}Ni=1

/* solve relaxation (SDP) */

3 (Z̃
?

0, d
?)← SDP(Q̃0, {Q̃i}Ki=1) ; // IPM [41, 40]

/* compute low-rank eig-decomposition */

4
∑

k λkuku
>
k ← Z̃

?

0, λk ≥ λk+1 ∀k;
5 ASSERT( (λ1 =λ2) ∧ (λ3 =λ4) ∧ (λk =0, ∀k > 4) );
/* recover candidate sol. (Sec. 5.2.3) */

6 (R̂k, t̂k)k=1,2 ← {u1,u2}
7 (R̂k, t̂k)k=3,4 ← {u3,u4}
/* project candidates to feasible set */

8 R̂k ← projSO(3)(R̂k), t̂k ← projS2(t̂k), ∀k = 1, .., 4;
/* check optim. gap, certify optimality */

9 ∆k = f(R̂k, t̂k)− d?;
10 ASSERT( ∆k < tol, ∀k = 1, .., 4 ), tol ∼ 10−9;

/* disambiguate realizable solution [24] */

11 return (R?, t?)← {(R̂k, t̂k)}

For this purpose, we evaluated the proposed approach,
SDP, in an extensive batch of experiments that span a wide
set of problem configurations, both on synthetic and real
data. The problem (SDP) was modeled with CVX [12] and
the IPM solver used in practice was SDPT3 [41], which
takes around 1 second to solve on a common consumer-
grade computer. We compared our performance to that of
the state-of-the-art (local) eigensolver proposed by Kneip
and Lynen [21], which we initialized using the classical
8-point algorithm by Longuet-Higgins [24]. The linear
closed-form estimator is referred to as 8pt, and its refined
version through the eigensolver as 8pt+eig. Note that all
of these methods feature exactly the same equivalent opti-
mization objective, so it is fair to compare all of them in
terms of the attained objective value.

In the subsequent evaluation, we will rely on two differ-
ent metrics. First, since the SDP relaxation (SDP) provides
a lower bound d? on the optimal objective f?, we define
the optimality gap for a candidate solution ∆ = f̂ − d?.
If this optimality gap is numerically zero, we can assert the
candidate is globally optimal (check Section 5). Despite its
theoretical soundness, the optimality gap measure may be
little intuitive. Thus, we also provide the more intuitive ori-
entation error measure of a given candidate w.r.t. a known-
optimal solution5. For space’s sake, we skip here the er-

5Since the duality gap always vanishes numerically for the solution of
SDP, this will be our optimal reference.

ror measure on the translation direction component, which
leads to similar conclusions to those from orientation error.

6.1. Synthetic data

We generate random problems by the following proce-
dure: We fix the first camera at the origin (orientation is
identity). Then, we generate a set of 3D world points ran-
domly distributed within a bounded region of the space that
lies fully inside the Field of View (FOV) of the first cam-
era, and at least one meter away from the camera. Next, we
generate a random pose for the second camera with bounded
translation parallax and constrained so that the world points
also lie within its FOV. This way we obtain random relative
poses that are consistent with the physical constraints that
would exist in practical situations. From this point, we pro-
ceed as in Kneip and Lynen [21]: bearing vectors for each
3D point are computed and corrupted with some pixel noise
assuming a focal length of 800 pixels for the camera.

The synthetic world allows us to tune at will several rel-
evant parameters of the problem: The noise level in the
image features (σ, in pix), the number of observed fea-
tures (N ), the FOV of the camera (θ, in deg), and the par-
allax magnitude (‖t‖, in m). For the evaluation, we as-
sumed a reference set of parameters σ = 0.5pix, N = 10,
θ = 100 deg, and ‖t‖ ≤ 2m, and then proceed to analyze
the behavior of the evaluated methods by modifying one
single parameter. The results of the synthetic evaluation
are collected in Fig. 2. We display the evaluation met-
rics both with a boxplot and a superimposed histogram of
concrete values. A shallow boxplot collapsed in 0 points
to a frequent global convergence, whereas outliers (when
existent) clearly reveal failure cases with wrong converge.
In the evaluation, we generated 200 different instances for
each problem configuration.

In these results we see the proposed approach SDP al-
ways attained a zero optimality gap (∆SDP ∼ o(10−10) in
practice), whereas the optimality gap for the other methods
rose up to ∆8pt,∆8pt+eig ∼ o(10−3) in some cases. In-
terestingly, even though these optimality gaps do not seem
too large, the analysis of the corresponding rotation error
reveals this gap is actually important, as it incurs in large
errors in the estimated orientation parameter. This is con-
sistent with the fact that the squared error terms minimized
in the objective are bounded by 1, and in general, even if
erroneous, are not too high. This seems to result in sub-
optimal local minima having objective values dangerously
close to those of the global solution [21], which may lead to
missing the true global solution.

A close analysis on how often the alternative solver
8pt+eig fails to converge provides valuable feedback
about the inherent difficulty of the problem. The obtained
results suggest that difficulty increases with high level of
noise in observations and low numbers of observations,
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Figure 2. Optimality gap and rotation error vs. all tunable parameters. Default values: σ=0.5pix,N=10, FOV=100 deg, and ‖t‖≤2m.
Note that despite choosing σ≤ 2pix for visualization, experiments were performed with virtually unbounded noise (σ ∼ 103pix), still
leading to tight relaxations in all cases, thus supporting the generality of tightness for this relaxation.

which is an expectable behavior [30, 7]. Also, an increas-
ing FOV makes the problem easier, as this results in a better
constraining of the optimization objective [21]. A larger
parallax hindered the performance of 8pt and 8pt+eig.

We also evaluated our approach in the pure rotation sce-
nario. Interestingly, whereas the relaxation in this case also
remains tight, some additional challenges appear when re-
covering the optimal solutions from the SDP solution, spe-
cially in the noiseless case where the number of solutions
doubles. This is an interesting case that we keep however
for further analysis in future work, due to its extension.

6.2. Real data

For the evaluation on real data, we took pairs of over-
lapping images from the TUM benchmark sequence [39],
which provides both accurate ground-truth camera poses as
well as the intrinsic camera calibration. We extract and
match SURF features in the images, filtering outliers by
thresholding on the reprojection error of triangulated cor-
respondences. Finally, we run the same algorithms as in the
previous section. The results, which are displayed in the
supplementary material due to space limitations, are con-
sistent with the conclusions reached in the synthetic case.
In particular, our proposed approach continued to find and
certify the globally optimal solution.

The general conclusion in view of our experimental re-
sults is that the concrete configuration of a relative pose
problem may have a great impact in the hardness of con-
verging to the global solution by traditional means. Yet,

our proposed SDP relaxation-based approach always suc-
ceeded, providing the optimal solution together with a cer-
tificate of optimality based on duality theory.

7. Conclusions
This work solves a previously unsatisfyingly solved ge-

ometric problem of fundamental interest: Direct and op-
timal computation of the relative pose between two cali-
brated images over an arbitrary number of correspondences.
Previous solvers either solve only for sub-optimal lineariza-
tions, or proceed by computationally less attractive exhaus-
tive search strategies such as branch-and-bound. We have
proposed a tailored (non-trivial) formulation of the prob-
lem as a Quadratically Constrained Quadratic Program for
which Shor’s relaxation is tight in 100% of the experimen-
tally evaluated problems, allowing us to recover and certify
the globally optimal solution.

We find these results very exciting, and we think there
is still significant space for improvement, both in solving
the underlying SDP relaxation with specialized solvers that
exploit the low-rank structure of the problem as well as in
leveraging these results in different scenarios, such as the
development of computationally attractive Probably Certi-
fiably Correct algorithms [2] for the problem at hand.
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