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Abstract

Rain removal is important for improving the robust-
ness of outdoor vision based systems. Current rain re-
moval methods show limitations either for complex dynamic
scenes shot from fast moving cameras, or under torrential
rain fall with opaque occlusions. We propose a novel derain
algorithm, which applies superpixel (SP) segmentation to
decompose the scene into depth consistent units. Alignment
of scene contents are done at the SP level, which proves to
be robust towards rain occlusion and fast camera motion.
Two alignment output tensors, i.e., optimal temporal match
tensor and sorted spatial-temporal match tensor, provide in-
formative clues for rain streak location and occluded back-
ground contents to generate an intermediate derain output.
These tensors will be subsequently prepared as input fea-
tures for a convolutional neural network to restore high
frequency details to the intermediate output for compen-
sation of mis-alignment blur. Extensive evaluations show
that up to 5dB reconstruction PSNR advantage is achieved
over state-of-the-art methods. Visual inspection shows that
much cleaner rain removal is achieved especially for highly
dynamic scenes with heavy and opaque rainfall from a fast
moving camera.

1. Introduction

Modern intelligent systems rely more and more on vi-
sual information as input. However, in an outdoors setting,
visual input quality and in turn, system performance, could
be seriously degraded by atmospheric turbulences [11, 23].
One such turbulence, rain streaks, degrade image contrast
and visibility, obscure scene features, and could be miscon-
strued as scene motion by computer vision algorithms. Rain
removal is therefore vital to ensure the robustness of out-
door vision-based systems.

There are two categories of methods for rain removal –
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Figure 1: Comparison of derain outputs by different algo-
rithms for a challenging video sequence with fast camera
motion and heavy rain fall. Image-based derain methods,
i.e., discriminative sparse coding (DSC) [22] and deep de-
tail network (DDN) [8] fail to remove large and/or opaque
rain streaks. A video-based method via matrix decompo-
sition (VMD) [24] creates serious blur due to fast camera
motion. Our proposed SPAC-CNN can cleanly remove the
rain streaks and preserve scene contents truthfully.

image-based methods, which rely solely on the information
of the processed frame, and video-based methods, which
also utilize temporal clues from neighboring frames. Due
to the lack of temporal information, image-based methods
face difficulties in recovering from torrential rain with large
and opaque occlusions.

To properly utilize temporal information, video-based
methods require scene content to be aligned throughout
consecutive frames. However, this requirement is challeng-
ing due to two factors – motion of the camera and dy-
namic scene content, i.e., presence of moving object. Pre-
vious works tackle these two issues separately. Camera
motion-induced scene content shifts can be reversed using
global frame alignment [29, 27]. However, the granularity
of global alignment is too large when scene depth range is
large; parts of scene content will be poorly aligned. Scene
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Figure 2: System diagram for the proposed SPAC-CNN rain removal algorithm.

content shifts due to scene object motions could cause the
scene to be misclassified as rain. One solution is to identify
and exclude these pixels. This approach, however, is unable
to remove rain that overlaps moving objects.

In this paper, we propose a novel and elegant frame-
work that simultaneously solves both issues for the video-
based approach – rain removal based on robust SuperPixel
(SP) Alignment between video frames followed by detail
Compensation in a CNN framework (SPAC-CNN). First,
the target video frame is segmented into SPs and each SP
is aligned with its temporal neighbors. This step simultane-
ously aligns both the scene background and moving objects
without prior assumptions about moving objects. Scene
content is also much better aligned at a SP level granularity.
An intermediate derain output can be obtained by averaging
the aligned SPs, which unavoidably introduces blurring. We
restore the rain free details to the intermediate output by ex-
tracting the information from the aligned SPs using a con-
volutional neural network (CNN).

Extensive experiments show that our proposed algorithm
achieves up to 5dB reconstruction advantage over state-
of-the-art rain removal methods. Visual inspection shows
that rain is much better removed, especially for heavy and
opaque rainfall regions over highly dynamic scene content.
Fig. 1 illustrates the advantage of our proposed algorithm
over existing methods in a challenging video sequence. The
contribution of this work can be generalized as follows:

1. We propose a novel spatial-temporal content alignment
algorithm at SP level, which can handle fast camera
motion and dynamic scene contents in one framework.
This mechanism greatly outperforms existing scene
motion analysis methods that models background and
foreground motion separately.

2. The strong local properties of SPs can robustly counter
heavy rain interferences, and facilitate much more ac-
curate alignment. Owing to such robust alignment, ac-
curate temporal correspondence could be established
for rain occlusions such that heavily occluded back-

grounds could be truthfully restored. This greatly out-
performs image-based derain methods in which recov-
ery of large and opaque rain occlusions remain the
biggest challenge.

3. We propose a set of very efficient spatial-temporal fea-
tures for the compensation of high frequency details
lost during the deraining process. An efficient CNN
network is designed, and a synthetic rain video dataset
is created for training the CNN.

2. Related Work
Rain removal based on a single image is intrinsically a

challenging one, since it only relies on visual features and
priors to distinguish rain from the background. Local pho-
tometric, geometric, and statistical properties of rain have
been studied in [11, 10, 36, 15]. Li et al. [20] models back-
ground and rain streaks as layers to be separated. Under
the sparse coding framework, rain and backgrounds can be
efficiently separated either with classified dictionary atoms
[13, 6], or via discriminative sparse coding [22]. Convo-
lutional Neural Networks have been very effective in both
high-level vision tasks [19] and low-level vision applica-
tions for capturing signal characteristics [14, 34]. Hence,
different network structures and features were explored for
rain removal, such as the deep detail network [8], and the
joint rain detection and removal model [32]. Due to the lack
of temporal information, heavy and opaque rain is difficult
to be distinguished from scene structures. Full recovery of
a seriously occluded scene is almost impossible.

The temporal information from a video sequence pro-
vides huge advantage for rain removal [9, 3, 25, 26, 33].
True rain pixels are separated from moving object pixels
based on statistics of intensity values [29] or chromatic val-
ues [35], on geometric properties of connected candidate
pixels [5], or on segmented motion regions [7]. Kim’s work
[16] compensates for scene content motion by using optical
flow for content alignment. Ren et al. [24] decomposes a
video into background, rain, and moving objects using ma-
trix decomposition. Moving objects are derained by tempo-



rally aligning them using patch matching, while the mov-
ing camera effect is modeled using a frame transform vari-
able. Temporal derain methods can handle occlusions much
better than image-based methods; however, these methods
perform poorly for complex dynamic scenes shot from fast
moving cameras.

3. Proposed Model
Throughout the paper, scalars are denoted by italic

lower-case letters, 2D matrices by upper-case letters, 3D
tensors, functions, and operators by script letters.

Given a target derain video frame I0, we look at its im-
mediate past and future neighbor frames to create a sliding
buffer window of length nt: {Ii|i = [−nt−1

2 , nt−1
2 ]}. Here,

negative and positive i indicate past and future frames, re-
spectively. We only derain the Y luminance channel. The
derain output is used to update the history buffer (Fig. 2).
Such history update mechanism ensures cleaner derain for
heavy rainfall scenarios.

The system diagram for the proposed SPAC-CNN rain
removal algorithm is shown in Fig. 2. The algorithm can
be divided into two parts: first, video content alignment
is carried out at SP level, which consists two SP template
matching operations that produce two output tensors: the
optimal temporal match tensor T0, and the sorted spatial-
temporal match tensor T1. An intermediate derain output
Xavg is calculated by averaging the slices1 of the tensor T1.
Second, these two tensors will be prepared as input features
to a CNN to compensate the high frequency details lost in
Xavg caused by mis-alignment blur. The detail of each com-
ponent will be explained in this section.

3.1. Robust Content Alignment via Superpixel
Spatial-Temporal Matching

One of the most important procedure for video-based de-
rain algorithms is the estimation of content correspondence
between video frames. With accurate content alignment,
rain occlusions could be easily detected and removed with
information from the temporal axis.

3.1.1 Content Alignment: Global vs. Superpixel

The popular solution to compensate camera motion be-
tween two frames is via a homography transform matrix
estimated based on global consensus of a group of matched
feature points [4, 28]. Due to the reasons analyzed in Sec. 1,
perfect content alignment can never be achieved for all pix-
els with a global transform at whole frame level, especially
for dynamic scenes with large depth range.

The solution naturally turns to pixel-level alignment,
which faces no fewer challenges: first, feature points are

1A slice is a two-dimensional section of a higher dimensional tensor,
defined by fixing all but two indices [18].
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Figure 3: Rectangular and SP segmentation units.

sparse, and feature-less regions are difficult to align; more
importantly, rain streak occlusions will cause serious inter-
ferences to feature matching at single pixel level. Informa-
tion from larger areas are required to overcome rain inter-
ferences. This lead us to our final solution: to decompose
images into smaller depth consistent units.

The concept of SuperPixel (SP) is to group pixels into
perceptually meaningful atomic regions [2, 30, 21]. Bound-
aries of SP usually coincide with those of the scene con-
tents. Comparing Fig. 3(a) and (b), the SPs are very adap-
tive in shape, and are more likely to segment uniform depth
regions compared with rectangular units. We adopt SP as
the basic unit for content alignment.

3.1.2 Optimal Temporal Matching for Rain Detection

Let Pk denote the set of pixels that belong to the k-th SP
on I0. Let Xk ∈ Rnx×nx be the bounding box that covers
all pixels in Pk (Pk ⊂ Xk). Let Bk ∈ Rns×ns×nt denote
a spatial-temporal buffer centered on Pk. As illustrated in
Fig. 2, Bk spans the entire sliding buffer window, and its
spatial range ns × ns is set to cover the possible motion
range of Pk in its neighboring frames.

Pixels within the same SP are very likely to belong to the
same object and possess identical motion between adjacent
frames. Therefore, we can approximate the SP appearance
in their adjacent frames based on its appearance in the cur-
rent frame via linear translations.

Searching for the reference SP is done by template
matching of the target SP at all candidate locations in Bk.
A match location is found at frame It′ according to:

(û, v̂) = arg min
u,v

∑
(x,y)∈Xk

|Bk(x+ u, y + v, t′) (1)

−Xk(x, y)|2 �MSP(x, y).

As shown in Fig. 4(d), MSP indicates SP pixels Pk in the
bounding box Xk. � denotes element-wise multiplication.
Each match at a different frame becomes a temporal slice
for the optimal temporal match tensor T0 ∈ Rnx×nx×nt :

T0(·, ·, t′) = Bk(x+ û, y + v̂, t′), (x, y) ∈ Xk. (2)

Based on the temporal clues provided by T0, a rain mask
can be estimated. Since rain increases the intensity of its
covered pixels [9], rain pixels in Xk are expected to have
higher intensity than their collocated temporal neighbors in
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Figure 4: Illustration of various masks and matching tem-
plates used in the proposed algorithm.

T0. We first compute a binary tensorM0 ∈ Rnx×nx×nt to
detect positive temporal fluctuations:

M0 =

{
1 R(Xk, nt)− T0 ≥ εrain

0 otherwise
, (3)

where operator R(Φ, ψ) is defined as replicating the 2D
slices Φ ∈ Rn1×n2 ψ times and stacking along the thrid
dimension into a tensor of Rn1×n2×ψ . To robustly handle
re-occurring rain streaks, we classify pixels as rain when at
least 3 positive fluctuations are detected inM0. An initial
rain mask M̂rain ∈ Rnx×nx can be calculated as:

M̂rain(x, y) = [
∑
t

M0(x, y, t)] ≥ 3. (4)

Due to possible mis-alignment, edges of background
could be misclassified as rain. Since rain steaks don’t af-
fect values in the chroma channels (Cb and Cr), a rain-free
edge map Me could be calculated by thresholding the sum
of gradients of these two channels with εe. The final rain
mask Mrain ∈ Rns×ns is calculated as:

Mrain = M̂rain � (1−Me). (5)

A visual demonstration of M̂rain, Me, and Mrain is shown in
Fig. 4(a), (b), and (c), respectively. In our implementation,
εrain is set to 0.012 while εedge is set to 0.2.

3.1.3 Sorted Spatial-Temporal Template Matching for
Rain Occlusion Suppression

The second round of template matching will be carried out
based on the following cost function:

E(u, v, t) =
∑

(x,y)∈Xk

|Bk(x+ u, y + v, t) (6)

−Xk(x, y)|2 �MRSP(x, y).

The rain-free matching template MRSP is calculated as:

MRSP = MSP � (1−Mrain). (7)

As shown in Fig. 4(e), only the rain-free background SP
pixels will be used for matching. Each candidate locations
in Bk (except current frame Bk(·, ·, 0)) are sorted in as-
cending order based on their cost E defined in Eq. (6).
The top nst candidates with smallest E will be stacked
as slices to form the sorted spatial-temporal match tensor
T1 ∈ Rns×ns×nst .

The slices of T1(·, ·, t) are expected to be well-aligned
to the current target SP Pk, and is robust to interferences
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Figure 5: Illustration of feature preparation for the detail
recovery CNN.

from the rain. Since rain pixels are temporally randomly
and sparsely distributed within T1, when nst is sufficiently
large, we can get a good estimation of the rain free image
through tensor slice averaging, which functions to suppress
rain induced intensity fluctuations, and bring out the oc-
cluded background pixels:

Xavg =

∑
t T1(·, ·, t)
nst

. (8)

Fig. 5 gives a visual example of Xavg and its calculation
flow. We can see that all rain streaks have been suppressed
in Xavg after the averaging.

3.2. Detail Compensation for Mis-Alignment Blur

The averaging of T1 slices provides a good estimation
of rain free image; however, it creates noticeable blur due
to un-avoidable mis-alignment, especially when the cam-
era motion is fast. To compensate the lost high frequency
content details without reintroducing the rain streaks, we
propose to use a CNN model for the task.

3.2.1 Occluded Background Feature

Xavg from Eq. (8) can be used as one important clue to
recover rain occluded pixels. Rain streak pixels indicated by
the rain mask Mrain are replaced with corresponding pixels
from Xavg to form the first feature F1 ∈ Rnx×nx×1:

F1 = Xk � (1−Mrain) +Xavg �Mrain. (9)

Note that the feature F1 itself is already a reasonable de-
rain output. However its quality is greatly limited by the
correctness of the rain mask Mrain. For false positive2 rain

2False positive rain pixels refer to background pixels falsely classified
as rain; false negative rain pixels refer to rain pixels falsely classified as
background.
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Figure 6: CNN architecture for compensation of mis-
alignment blur. Each convolutional layer is followed by a
rectified linear unit (ReLU).

pixels,Xavg will introduce content detail loss; for false neg-
ative pixels, rain streaks will be added back from Xk. This
calls for more informative features.

3.2.2 Temporal Consistency Feature

The temporal consistency feature is designed to handle false
negative rain pixels in Mrain, which falsely add rain streaks
back to F1. For a correctly classified and recovered pixel
(a.k.a. true positive) in Eq. (9), intensity consistency
should hold such that for the collocated pixels in the neigh-
boring frames, there are only positive intensity fluctuations
caused by rain in those frames. Any obvious negative inten-
sity drop along the temporal axis is a strong indication that
such pixel is a false negative pixel.

The temporal slices in T0 establishes optimal temporal
correspondence at each frame, which embeds enough in-
formation for the CNN to deduce the above analyzed false
negative logic, therefore they shall serve as the second fea-
ture F2 ∈ Rnx×nx×(nt−1):

F2 = {T0(·, ·, t)| t = [−nt − 1

2
,
nt − 1

2
], t 6= 0}. (10)

3.2.3 High Frequency Detail Feature

The matched slices in T1 are sorted according to their rain-
free resemblance to Xk, which provide good reference to
the content details with supposedly small mis-alignment.
We directly use the tensor T1 as the last group of features
F3 = T1 ∈ Rnx×nx×nst . This feature will compensate the
detail loss introduced by the operations in Eq. (9) for false
positive rain pixels.

In order to facilitate the network training, we limit the
mapping range between the input features and regression
output by removing the low frequency component (Xavg)
from these input features. Pixels in Xk but outside of the
SP Pk is masked out with MSP:

F̂1 = (F1 −Xavg)�MSP, (11)

F̂2 = (F2 −R(Xavg, nt − 1))�R(MSP, nt − 1),

F̂3 = (F3 −R(Xavg, nst))�R(MSP, nst).

The final input feature set is {F̂1, F̂2, F̂3}. The feature
preparation process is summarized in Fig. 5.

a1 a2 a3 a4

b1 b2 b3

a1

b1 b2 b3 b4

a2 a3 a4

Figure 7: 8 testing rainy scenes synthesized with Adobe Af-
ter Effects [1]. First row (Group a) are shot with a pan-
ning unstable camera. Second row (Group b) are from a
fast moving camera (speed range between 20 to 30 km/h)

3.2.4 CNN Structure and Training Details

The CNN architecture is designed as shown in Fig. 6. The
network consists of four convolutional layers with decreas-
ing kernel sizes of 11, 5, 3, and 1. All layers are fol-
lowed by a rectified linear unit (ReLU). Our experiments
show this fully convolutional network is capable of ex-
tracting useful information from the input features and ef-
ficiently providing reliable predictions of the content detail
Xdetail ∈ Rnx×nx×1. The final rain removal output will be:

Xderain = Xavg +Xdetail. (12)

For the CNN training, we minimize the L2 distance be-
tween the derain output and the ground truth scene:

E = [X̂ −Xavg −Xdetail]
2, (13)

here X̂ denotes the ground truth clean image. We use
stochastic gradient descent (SGD) to minimize the objective
function. Mini-batch size is set as 50 for better trade-off be-
tween speed and convergence. The Xavier approach [12]
is used for network initialization, and the ADAM solver
[17] is adpatoed for system training, with parameter settings
β1 = 0.9, β2 = 0.999, and learning rate α = 0.0001.

To create the training rain dataset, we first took a set
of 8 rain-free VGA resolution video clips of various city
and natural scenes. The camera was of diverse motion for
each clip, e.g., panning slowly with unstable movements, or
mounted on a fast moving vehicle with speed up to 30 km/h.
Next, rain was synthesized over these video clips with the
commercial editing software Adobe After Effects [1], which
can create realistic synthetic rain effect for videos with ad-
justable parameters such as raindrop size, opacity, scene
depth, wind direction, and camera shutter speed. This pro-
vides us a diverse rain visual appearances for the network
training.

We synthesized 3 to 4 different rain appearances with
different synthetic parameters over each video clip, which
provides us 25 rainy scenes. For each scene, 21 frames
were randomly extracted (together with their immediate
buffer window for calculating features). Each scene was
segmented into approximately 300 SPs, therefore finally we
have around 157,500 patches in the training dataset.
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Table 1: Rain removal performance comparison between different methods in terms of scene reconstruction PSNR/SSIM,
and F-measure for rain streak edge PR curves.

Camera
Motion

Clip
No.

Rain DSC-ICCV15 [22] DDN-CVPR17 [8] VMD-CVPR17 [24] SPAC-Avg SPAC-CNN
PSNR SSIM F PSNR SSIM F PSNR SSIM F PSNR SSIM F PSNR SSIM F PSNR SSIM

panning
unstable
camera

a1 28.46 0.94 0.38 25.61 0.93 0.47 28.02 0.95 0.47 26.96 0.92 0.39 24.78 0.87 0.51 29.78 0.97
a2 28.09 0.95 0.33 27.11 0.95 0.44 27.38 0.95 0.51 24.80 0.93 0.40 26.34 0.89 0.51 30.09 0.96
a3 27.84 0.93 0.43 25.08 0.92 0.45 27.41 0.94 0.42 26.45 0.90 0.40 24.72 0.85 0.54 29.75 0.96
a4 31.48 0.95 0.34 28.82 0.95 0.53 32.47 0.97 0.55 29.55 0.94 0.48 29.90 0.93 0.54 34.82 0.98

avg. a 28.97 0.94 0.37 26.66 0.94 0.47 28.82 0.95 0.49 26.94 0.92 0.42 26.44 0.89 0.53 31.11 0.97

camera
speed
20-30
km/h

b1 28.72 0.92 0.42 28.78 0.92 0.53 29.48 0.96 0.35 24.09 0.84 0.47 26.35 0.89 0.55 31.19 0.96
b2 29.49 0.90 0.43 29.58 0.92 0.50 30.23 0.95 0.43 25.81 0.89 0.50 28.83 0.93 0.57 34.05 0.98
b3 31.04 0.95 0.33 29.55 0.95 0.53 31.39 0.97 0.43 26.12 0.90 0.48 29.55 0.94 0.53 33.73 0.98
b4 27.99 0.92 0.50 29.10 0.93 0.51 29.83 0.96 0.48 25.90 0.88 0.53 28.85 0.92 0.58 33.79 0.97

avg. b 29.31 0.92 0.42 29.25 0.93 0.52 30.23 0.96 0.42 25.48 0.88 0.50 28.40 0.92 0.56 33.19 0.97

4. Performance Evaluation

We set the sliding video buffer window size nt = 5.
Each VGA resolution frame was segmented into around 300
SPs using the SLIC method [2]. The bounding box size was
nx = 80, and the spatial-temporal buffer Bk dimension was
ns × ns × nt = 30×30×5. MatConvNet [31] was adopted
for model training, which took approximately 54 hours to
converge over the training dataset introduced in Sec. 3.2.4.
The training and all subsequent experiments were carried
out on a desktop with Intel E5-2650 CPU, 56GB RAM, and
NVIDIA GeForce GTX 1070 GPU.

4.1. Quantitative Evaluation

To quantitatively evaluate our proposed algorithm, we
took a set of 8 videos (different from the training set), and
synthesized rain over these videos with varying parameters.
Each video is around 200 to 300 frames. All subsequent
results shown for each video are the average of all frames.

To test the algorithm performance in handling cameras
with different motion, we divided the 8 testing scenes into
two groups: Group a consists of scenes shot from a panning
and unstable camera; Group b from a fast moving camera
(with speed range between 20 to 30 km/h). Thumbnails and
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Figure 9: Visual comparison for different rain removal methods on real world rain data.
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Figure 10: Rain edge pixel detection precision-recall curves
for different rain removal methods.

the labeling of each testing scene are shown in Fig. 7.
Four state-of-the-art methods were chosen for compar-

ison: two image-based derain methods, i.e., discrimina-
tive sparse coding (DSC) [22], and the deep detail network
(DDN) [8]; one video-based method via matrix decompo-
sition (VMD) [24]. The intermediate derain output XAvg is
also used as a baseline (abbr. as SPAC-Avg).

4.1.1 Rain Streak Edge Precision Recall Rates

Rain fall introduces edges and textures over the background.
To evaluate how much of the modifications from the derain
algorithm contributes positively to only removing the rain
pixels, we calculated the rain streak edge precision-recall
(PR) curves. Absolute difference values were calculated

between the derain output against the scene ground truth.
Different threshold values were applied to retrieve a set of
binary maps, which were next compared against the ground
truth rain pixel map to calculate the precision recall rates.

Average PR curves for the two groups of testing scenes
by different algorithms are shown in Fig. 10. As can be
seen, for both Group a and b, SPAC-CNN shows consis-
tent advantages over SPAC-Avg, which proves that the CNN
model can efficiently compensate scene content details and
suppress influences from rain streak edges.

Video-based derain methods (i.e., VMD and SPAC-CNN)
perform better than image-based methods (i.e., DSC and
DDN) for scenes in Group a. With slow camera mo-
tion, temporal correspondence can be accurately estab-
lished, which brings great advantage to video-based meth-
ods. However, with fast camera motion, the performance of
VMD deteriorates seriously for Group b data: rain removal
is now at the cost of background distortion. Image-based
methods show its relative efficiency in this scenario. How-
ever, SPAC-CNN still holds advantage over image-based
methods at all recall rates for Group b data, which shows
its robustness for fast moving camera.

4.1.2 Scene Reconstruction PSNR/SSIM

We calculated the reconstruction PSNR/SSIM between dif-
ferent state-of-the-art methods against the ground truth, and
the results are shown in Table 1. The F-measure for rain



Table 2: Derain PSNR (dB) with different features absent.

Clip
No.

F̂2+F̂3

(w/o F̂1)
F̂1+F̂3

(w/o F̂2)
F̂1+F̂2

(w/o F̂3) F̂1+F̂2+F̂3

a1 25.28 28.87 27.63 29.78
b4 28.62 31.97 32.99 33.79

streak edge PR curves are also listed for each data.
As can be seen, SPAC-CNN is consistently 5 dB higher

than SPAC-Avg for both Groups a and b. SSIM is also at
least 0.06 higher. This further validates the efficiency of the
CNN detail compensation network.

Video based methods (VMD and SPAC-CNN) show great
advantages over image-based methods for Group a data
(around 2dB and 5dB higher respectively than DSC). For
Group b, image-based methods excel VMD, however SPAC-
CNN still hold a 3dB advantage over DDN, 4dB over DSC.

4.1.3 Feature Evaluation

We evaluated the roles different input features play in the
final derain PSNR over two testing data a1 and b4. Three
baseline CNNs with different combinations of features as
input were independently trained for this evaluation. As
can be seen from the results in Table. 2, combination of the
three features F̂1 + F̂2 + F̂3 provides the highest PSNR. F1

proves to be the most important feature. Visual inspection
on the derain output show both F̂2+F̂3 and F̂1+F̂3 leaves
significant amount of un-removed rain. Comparing the last
two columns, it can be seen that F̂3 works more efficiently
with a1 than b4, which makes sense since the high fre-
quency features are better aligned for slow cameras, which
led to more accurate detail compensation.

4.2. Visual Comparison

We carried out visual comparison to examine the derain
performance of different algorithms. Fig. 8 shows the de-
rain output for the testing data a.3, b.1, and b.4. Two con-
secutive frames are shown for b.1 and b.4 to demonstrate
the camera motion. As can be seen, image-based derain
methods can only handle well light and transparent rain oc-
clusions. For those opaque rain streaks that cover a large
area, they fail unavoidably. Temporal information proves to
be critical in truthfully restoring the occluded details.

It is observed that rain can be much better removed by
video-based methods. However the VMD method creates
serious blur when the camera motion is fast. The derain
effect for SPAC-CNN is the most impressive for all meth-
ods. The red dotted rectangles showcase the restored high
frequency details between SPAC-CNN and SPAC-Avg.

Although the network has been trained over synthetic
rain data, experiments show that it generalizes well to real
world rain. Fig. 9 shows the derain results. As can be seen,
the advantage of SPAC-CNN is very obvious under heavy
rain, and robust to fast camera motion.

Table 3: Execution time (in sec) comparison for different
methods on deraining a single VGA resolution frame.

DSC [22] DDN [8] VMD [24]
SPAC-CNN

SPAC-Avg CNN

Matlab Matlab Matlab C++ Matlab
236.3 0.9 119.0 0.2 3.1

4.3. Execution Efficiency

We compared the average runtime between different
methods for deraining a VGA resolution frame. Results are
shown in Table 3. As can be seen SPAC-Avg is much faster
than all other methods. SPAC-CNN is much faster than
video-based method, and it’s comparable to that of DDN.

5. Discussion

For SPAC-CNN, the choice of SP as the basic operation
unit is key to its performance. When other decomposition
units are used instead (e.g., rectangular), matching accuracy
deteriorates, and very obvious averaging blur will be intro-
duced especially at object boundaries.

Although the SP template matching can only handle
translational motion, alignment errors caused by other types
of motion such as rotation, scaling, and non-ridge trans-
forms can be mitigated with global frame alignment before
they are buffered (as shown in Fig. 2) [27]. Furthermore,
these errors can be efficiently compensated by the CNN.

When camera moves even faster, SP search range ns
needs to be enlarged accordingly, which increases compu-
tation loads. We have tested scenarios with camera speed
going up to 50 km/h, the PSNR becomes lower due to
larger mis-alignment blur, alignment error is also possible
as showcased in blue rectangles in Fig. 9. We believe a
re-trained CNN with training data from such fast moving
camera will help improve the performance.

6. Conclusion

We have proposed a video-based rain removal algorithm
that can handle torrential rain fall with opaque streak oc-
clusions from a fast moving camera. SP have been utilized
as the basic processing unit for content alignment and oc-
clusion removal. A CNN has been designed and trained
to efficiently compensate the mis-alignment blur introduced
by deraining operations. The whole system shows its effi-
ciency and robustness over a series of experiments which
outperforms state-of-the-art methods significantly.
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