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A. Overview

This document provides additional technical details, ex-
tra analysis experiments, more quantitative results and qual-
itative test results to the main paper.

In Sec.B we provide more details on network architec-
tures of PointNets and training parameters while Sec. C ex-
plains more about our 2D detector. Sec. D shows how our
framework can be extended to bird’s eye view (BV) propos-
als and how combining BV and RGB proposals can further
improve detection performance. Then Sec. E presents re-
sults from more analysis experiments. At last, Sec. F shows
more visualization results for 3D detection on SUN-RGBD
dataset.

B. Details on Frustum PointNets (Sec 4.2, 4.3)

B.1. Network Architectures

We adopt similar network architectures as in the origi-
nal works of PointNet [10] and PointNet++ [11] for our v1
and v2 models respectively. What is different is that we
add an extra link for class one-hot vector such that instance
segmentation and bounding box estimation can leverage se-
mantics predicted from RGB images. The detailed network
architectures are shown in Fig. 1.

For v1 model our architecture involves point embed-
ding layers (as shared MLP on each point independently), a
max pooling layer and per-point classification multi-layer
perceptron (MLP) based on aggregated information from
global feature and each point as well as an one-hot class
vector. Note that we do not use the transformer networks
as in [10] because frustum points are viewpoint based (not
complete point cloud as in [10]) and are already normalized
by frustum rotation. In addition to XYZ , we also leverage
LiDAR intensity as a fourth channel.

For v2 model we use set abstraction layers for hierarchi-
cal feature learning in point clouds. In addition, because Li-
DAR point cloud gets increasingly sparse as it gets farther,
feature learning has to be robust to those density variations.
Therefore we used a robust type of set abstraction layers
– multi-scale grouping (MSG) layers as introduced in [11]

for the segmentation network. With hierarchical features
and learned robustness to varying densities, our v2 model
shows superior performance than v1 model in both segmen-
tation and box estimation.

B.2. Data Augmentation and Training

Data augmentation Data augmentation plays an impor-
tant role in preventing model overfitting. Our augmentation
involves two branches: one is 2D box augmentation and the
other is frustum point cloud augmentation.

We use ground truth 2D boxes to generate frustum point
clouds for Frustum PointNets training and augment the 2D
boxes by random translation and scaling. Specifically, we
firstly compute the 2D box height (h) and width (w) and
translate the 2D box center by random distances sampled
from Uniform[−0.1w, 0.1w] and Uniform[−0.1h, 0.1h] in
u,v directions respectively. The height and width are also
augmented by two random scaling factor sampled from
Uniform[0.9, 1.1].

We augment each frustum point cloud by three ways.
First, we randomly sample a subset of points from the frus-
tum point cloud on the fly (1,024 for KITTI and 2,048 for
SUN-RGBD). For object points segmented from our pre-
dicted 3D mask, we randomly sample 512 points from it (if
there are less than 512 points we will randomly resample
to make up for the number). Second, we randomly flip the
frustum point cloud (after rotating the frustum to the center)
along the YZ plane in camera coordinate (Z is forward, Y
is pointing down). Thirdly, we perturb the points by shift-
ing the entire frustum point cloud in Z-axis direction such
that the depth of points is augmented. Together with all
data augmentation, we modify the ground truth labels for
3D mask and headings correspondingly.

KITTI Training The object detection benchmark in
KITTI provides synchronized RGB images and LiDAR
point clouds with ground truth amodal 2D and 3D box an-
notations for vehicles, pedestrians and cyclists. The training
set contains 7,481 frames and an undisclosed test set con-
tains 7,581 frames. In our own experiments (except those
for test sets), we follow [2, 3] to split the official train-
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Figure 1. Network architectures for Frustum PointNets. v1 models are based on PointNet [10]. v2 models are based on PointNet++ [11]
set abstraction (SA) and feature propagation (FP) layers. The architecture for residual center estimation T-Net is shared for Ours (v1) and
Ours (v2). The colors (blue for segmentaiton nets, red for T-Net and green for box estimation nets) of the network background indicate the
coordinate system of the input point cloud. Segmentation nets operate in frustum coordinate, T-Net processes points in mask coordinate
while box estimation nets take points in object coordinate. The small yellow square (or bar) concatenated with global features is class
one-hot vector that tells the predicted category of the underlying object.

ing set to a train set of 3,717 frames and a val set of 3769
frames such that frames in train/val sets belong to different
video clips. For models evaluated on the test set we train
our model on our own train/val split where around 80% of
the training data is used such that the model can achieve
better generalization by seeing more examples.

To get ground truth for 3D instance segmentation we
simply consider all points that fall into the ground truth 3D
bounding box as object points. Although there are some-
times false labels from ground points or points from other
closeby objects (e.g. a person standing by), the auto-labeled
segmentation ground truth is in general acceptable.

For both of our v1 and v2 models, we use Adam opti-
mizer with starting learning rate 0.001, with step-wise de-
cay (by half) in every 60k iterations. For all trainable lay-

ers except the last classification or regression ones, we use
batch normalization with a start decay rate of 0.5 and gradu-
ally decay the decay rate to 0.99 (step-wise decay with rate
0.5 in every 20k iterations). We use batch size 32 for v1
models and batch size 24 for v2 models. All three Point-
Nets are trained end-to-end.

Trained on a single GTX 1080 GPU, it takes around one
day to train a v1 model (all three nets) for 200 epochs while
it takes around three days for a v2 model. We picked the
early stopped (200 epochs) snapshot models for evaluation.

SUN-RGBD Training The data set consists of 10,355
RGB-D images captured from various depth sensors for in-
door scenes (bedrooms, dining rooms etc.). We follow the
same train/val splits as [16, 14] for experiments. The data



Method
Cars Pedestrians Cyclists

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard
SWC 90.82 90.05 80.59 87.06 78.65 73.92 86.02 77.58 68.44
RRC [12] 90.61 90.22 87.44 84.14 75.33 70.39 84.96 76.47 65.46
Ours 90.78 90.00 80.80 87.81 77.25 74.46 84.90 72.25 65.14

Table 1. 2D object detection AP on KITTI test set. Evaluation IoU threshold is 0.7. SWC is the first place winner on KITTI leader board
for pedestrians and cyclists at the time of submission. Our 2D results are based on a CNN model on monocular RGB images.

Subset Easy Moderate Hard
AP (2D) for cars 96.48 90.31 87.63

Table 2. Our 2D object detection AP on KITTI val set.

augmentation and optimization parameters are the same as
that in KITTI.

As to auto-labeling of instance segmentation mask, how-
ever, data quality is much lower than that in KITTI because
of strong occlusions and tight arrangement of objects in in-
door scenes (see Fig. 4 for some examples). Nonetheless
we still consider all points within the ground truth boxes as
object points for our training. For 3D segmentation we get
only a 82.7% accuracy compared to around 90% in KITTI.
Due to the heavy noise in segmentation mask label, we
choose to only train and evaluate on v1 models that has
more strength in global feature learning than v2 ones. For
future works, we think higher quality in 3D mask labels can
greatly help the instance segmentation network training.

C. Details on RGB Detector (Sec 4.1)

For 2D RGB image detector, we use the encoder-decoder
structure (e.g. DSSD [4], FPN [7]) to generate region pro-
posals from multiple feature maps using focal loss [8] and
use Fast R-CNN [5] to predict final 2D detection bounding
boxes from the region proposals.

To make the detector faster, we take the reduced
VGG [15] base network architecture from SSD [9], sample
half of the channels per layer and change all max pooling
layers to convolution layers with 3×3 kernel size and stride
of 2. Then we fine-tune it on ImageNet CLS-LOC dataset
for 400k iterations with batch size of 260 on 10 GPUs. The
resulting base network architecture has about 66.7% top-1
classification accuracy on the CLS-LOC validation dataset
and only needs about 1.2ms to process a 224 × 224 image
on a NVIDIA GTX 1080.

We then add the feature pyramid layers [7] from
conv3 3, conv4 3, conv5 3, and fc7, which are used to pre-
dict region proposals with scales of 16, 32, 64, 128 respec-
tively. We also add an extra convolutional layer (conv8)
which halves the fc7 feature map size, and use it to predict
proposals with scale of 256. We use 5 different aspect ra-
tios { 13 , 1

2 , 1, 2, 3} for all layers except that we ignore { 13 ,
3} for conv3 3. Following SSD, we also use normalization
layer on conv3 3, conv4 3, and conv5 3 and initialize the

norm 40. For Fast R-CNN part, we extract features from
conv3 3, conv5 3, and conv8 for each region proposal and
concatenate all the features to predict class scores and fur-
ther adjust the proposals. We train this detector from COCO
dataset with 384× 384 input image and have achieved 35.5
mAP on the COCO minival dataset, with only 10ms pro-
cessing time for a 384× 384 image on a single GPU.

Finally, we fine-tune the detector on car, people, and bi-
cycle from COCO dataset, and have achieved 48.5, 44.1,
and 40.1 for these three classes on COCO. We take this
model and further fine-tune it on car, pedestrian, and cy-
clist from KITTI dataset. The final model takes about 30ms
to process a 384× 1280 image. To increase the recall of the
detector, we also do detection from the center crop of the
image besides the full image, and then merge the detections
using non-maximum suppression.

Tab. 1 shows our detector’s AP (2D) on KITTI test set.
Our detector has achieved competitive or better results than
current leading players on KITTI leader board. We’ve also
reported our AP (2D) on val set in Tab. 2 for reference.

D. Bird’s Eye View PointNets (Sec 5.3)

In this section, we show that our 3D detection frame-
work can also be extended to using bird’s eye view pro-
posals, which adds another orthogonal proposal source to
achieve better overall 3D detection performance. We evalu-
ate the results of car detection using LiDAR bird’s eye view
only proposals + point net (Ours(BV)), and combine frus-
tum point net and bird’s eye view point net using 3D non-
maximum suppression (NMS) (Ours(Frustum + BV)). The
results are shown in Table 3.

Bird’s Eye View Proposal Similar to MV3D [3] we use
point features such as height, intensity and density, and
train the bird’s eye view 2D proposal net using the standard
Faster-RCNN [13] structure. The net outputs axis-aligned
2D bounding boxes in the bird’s eye view. In detail, we
discretize the projected point clouds into 2D grids with res-
olution of 0.1 meter and with the depth and width range
0 60 meters, which gives us the 600 × 600 input size. For
each cell, we take the intensity and the density of the high-
est point and divide the heights into 7 bins with the height
of the highest point in each bin, which gives us 9 channels
in total. In Faster R-CNN, we use the VGG-16 [15] with 3



anchor scales (16, 32, 48) and 3 aspect ratios ( 12 , 1, 2). We
train RPN and Fast R-CNN together using the approximate
joint training.

To combine 3D detection boxes from frustum PointNets
and the bird’s eye view PointNets, we use 3D NMS with
IoU threshold 0.8. We also apply a weight (0.5) to 3D boxes
from BV PointNets since it is a weaker detector compared
with our frustum one.

Bird’s Eye View (BV) PointNets Similar to Frustum
PointNets that take point cloud in frustum, segment point
cloud and estimate amodal bounding box, we can apply
PointNets to points in bird’s eye view regions. Since bird’s
eye view is based on orthogonal projection, the 3D space
specified by a BV 2D box is a 3D cuboid (cut by minimum
and maximum height) instead of a frustum.

Results Tab. 3 (Ours BV) shows the APs we get by using
bird’s eye view proposals only (without and RGB informa-
tion). We compare with two previous LiDAR only methods
(VeloFCN [6] and MV3D (BV+FV) [3]) and show that our
BV proposal based detector greatly outperforms VeloFCN
on all cases and outperforms MV3D (BV+FV) on moderate
and hard cases by a significant margin.

More importantly, we show in the last row of Tab. 3 that
bird’s eye view and RGB view proposals can be combined
to achieve an even better performance (3.8% AP improve-
ment on hard cases). Fig. 2 gives an intuitive explanation
of why bird’s eye view proposals could help. In the sample
frame shown: while our 2D detector misses some highly oc-
cluded cars (Fig. 2: left RGB image), bird’s eye view based
RPN successfully detects them (Fig. 2: blue arrows in right
LiDAR image).

Method Easy Moderate Hard
VeloFCN [6] 15.20 13.66 15.98
MV3D [3] (BV+FV) 71.19 56.60 55.30
Ours (BV) 69.50 62.30 59.73
Ours (Frustum) 83.76 70.92 63.65
Ours (Frustum + BV) 83.76 70.91 67.47

Table 3. 3D object detection AP on KITTI val set. By using both
proposals from RGB view (frustum) and bird’s eye view (BV), we
see a significant improvement in 3D AP (3.82%) on hard cases
compared with our frustum only method. Ours (Frustum) here is
the Ours (v2) in the main paper using PointNet++ architectures.

E. More Experiments (Sec 5.2)
E.1. Effects of PointNet Architectures

Table 4 compares PointNet [10] (v1) and Point-
Net++ [11] (v2) architectures for instance segmentation and
amodal box estimation. The v2 model outperforms v1

Figure 2. Comparing Frustum PointNets and BV PointNets.
This is a scene with lots of parallel parking cars (sample 5595
from val set). Left column shows 2D boxes from our 2D detec-
tor in image and 3D boxes from our Frustum PointNets in point
cloud. Right column shows 3D boxes from BV PointNets in point
cloud and the 2D boxes (projected from the 3D detection boxes)
in image. Note that 2D detection boxes from Ours (Frustum) that
have box height less than 25 pixels or contain no LiDAR points in
the frustum are not shown in the image.

model on both tasks because 1) v2 model learns hierarchical
features that are richer and more generalizable; 2) v2 model
uses multi-scale feature learning that adapts to varying point
densities. Note that the ours (v1) model corresponds to first
row of Table 4 while the ours (v2) links to the last row.

seg net box net seg acc. box acc.
v1 v1 90.6 74.3
v2 v1 91.0 74.7
v1 v2 90.6 76.0
v2 v2 91.0 77.1

Table 4. Effects of PointNet architectures. Metric is 3D box es-
timation accuracy with IoU=0.7.

E.2. Effects of Training Data Size

Recently [17] observed linear improvement in perfor-
mance of deep learning models with exponential growth of
data set size. In our Frustum PointNets we observe similar
trend (Fig. 3). This trend indicates a promising performance
potential of our methods with larger datasets.

We train three separate group of Frustum PointNets on
three sets of training data and then evaluate the model on a
fixed validation set (1929 samples). The three data points in
Fig. 3 represent training set sizes of 1388, 2776, 5552 sam-
ples (0.185x, 0.371x, 0.742x of the entire trainval set) re-
spectively. We augment the training data such that the total
amount of samples are the same for each of the three cases
(20x, 10x and 5x augmentation respectively). The training
set and validation set are chosen such that they don’t share
frames from the same video clips.
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Figure 3. Effects of training data size. Evaluation metric is 3D
box estimation accuracy (IoU threshold 0.7). We see a clear trend
of linear improvement in accuracy with exponential growth of
training data size.

E.3. Runtime and Model Size

In Table 5, we show decomposed runtime cost (inference
time) for our frustum PointNets (v1 and v2). The evaluation
is based on TensorFlow [1] with a NVIDIA GTX 1080 and
a single CPU core. While for v1 model frustum proposal
(with CNN and backprojection) takes the majority time, for
v2 model since a PointNet++ [11] model with multi-scale
grouping is used, computation bottleneck shifts to instance
segmentation. Note that we merge batch normalization and
FC/convolution layers for faster inference (since they are
both linear operation with multiply and sum), which results
in close to 50% speedup for inference.

CNN model has size 28 MB. v1 PointNets have size
19MB. v2 PointNets have size 22MB. The total size is
therefore 47MB for v1 model and 50MB for v2 model.

Model Frustum Proposal 3D Seg Box Est. Total
v1 60 ms 18 ms 10 ms 88 ms
v2 60 ms 88 ms 19 ms 167 ms

Table 5. 3D detector runtime. Thirty-two region proposals used
for frustum-based PointNets. 1,024 points are used for instance
segmentation and 512 points are used for box estimation.

F. Visualizations for SUN-RGBD (Sec 5.1)
In Fig. 4 we visualize some representative detection re-

sults on SUN-RGBD data. We can see that compared with
KITTI LiDAR data, depth images can be popped up to
much more dense point clouds. However even with such
dense point cloud, strong occlusions of indoor objects as
well as the tight arrangement present new challenges for
detection in indoor scenes.

In Fig. 5 we report the 3D AP curves of our Frustum
PointNets on SUN-RGBD val set. 2D detection APs of our
RGB detector are also provided in Tab. 2 for reference.
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Figure 4. Visualization of Frustum PointNets results on SUN-RGBD val set. First row: RGB image with 2D detection boxes. Second
row: point cloud popped up from depth map and predicted amodal 3D bounding boxes (the numbers beside boxes correspond to 2D boxes
on images). Green boxes are true positive. Red boxes are false positives. False negatives are not visualized. Third row: point cloud popped
up from depth map and ground truth amodal 3D bounding boxes.
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Table 6. 2D and 3D object detection AP on SUN-RGBD val set. 2D IoU threshold is 0.5. Note that on some categories we get higher 3D
AP (displayed in the table as well, the same results as in main paper) than 2D AP because our network is able to recover 3D geometry from
very partial scan and is also due to a more loose 3D IoU threshold (0.25) in SUN-RGBD 3D AP evaluation.

Figure 5. Precision recall (PR) curves for 3D object detection on SUN-RGBD val set.
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