
Embodied Question Answering:
Supplementary Document

Abhishek Das1‹ , Samyak Datta1, Georgia Gkioxari2, Stefan Lee1, Devi Parikh2,1, Dhruv Batra2,1
1Georgia Institute of Technology, 2Facebook AI Research

1{abhshkdz, samyak, steflee}@gatech.edu 2{gkioxari, parikh, dbatra}@fb.com

embodiedqa.org

Abstract

This supplementary document is organized as follows:

• Sec. 1 presents the question-answer generation engine
in detail, including functional programs associated with
questions, and checks and balances in place to avoid am-
biguities, biases, and redundancies.

• Sec. 2 describes the CNN models that serve as the vi-
sion module for our EmbodiedQA model. We describe the
model architecture, along with the training details, quan-
titative as well as qualitative results.

• Sec. 3 describes the answering module in our agent.

• Sec. 4 reports machine question answering performance
conditioned on human navigation paths (collected via hu-
man studies on Amazon Mechanical Turk).

• Finally, embodiedqa.org shows example navigation and
answer predictions by our agent.

1. Question-Answer Generation Engine

Recall that each question in EQA is represented as a func-
tional program that can be executed on the environment
yielding an answer. In this section, we describe this pro-
cess in detail. In the descriptions that follow, an ‘entity’ can
refer to either a queryable room or a queryable object from
the House3D [1] environment.

Functional Forms of Questions. The functional programs
are composed of elementary operations described below:

1. select(entity): Fetches a list of entities from the en-
vironment. This operation is similar to the ‘select’ query
in relational databases.

‹Work partially done during an internship at Facebook AI Research.

2. singleton(entity): Performs filtering to retain
entities that occur exactly once. For example,
calling singleton(rooms) on the set of rooms
r‘living_room’, ‘bedroom’, ‘bedroom’s for a given house
will return r‘living_room’s.

3. blacklist(template): This function operates on
a list of object entities and filters out a pre-defined
list of objects that are blacklisted for the given tem-
plate. We do not ask questions of a given tem-
plate type corresponding to any of the blacklisted ob-
jects. For example, if the blacklist contains the ob-
jects t‘column’, ‘range_hood’, ‘toy’u and the objects list
that the function receives is t‘piano’, ‘bed’, ‘column’u,
then the output of the blacklist(¨) function is:
t‘piano’, ‘bed’u

4. query(template): This is used to generate the ques-
tions strings for the given template on the basis of the en-
tities that it receives. For example, if query(location)
receives the following set of object entities as input:
r‘piano’, ‘bed’, ‘television’s, it produces 3 question strings
of the form: what room is the <OBJ> located in? where
<OBJ> “ t‘piano’, ‘bed’, ‘television’u.

5. relate(): This elementary operation is used in the func-
tional form for preposition questions. Given a list of ob-
ject entities, it returns a subset of the pairs of objects
that have a t‘on’, ‘above’, ‘under’, ‘below’, ‘next to’u spa-
tial relationship between them.

6. distance(): This elementary operation is used in the
functional form for distance comparison questions. Given
a list of object entities, it returns triplets of objects such
that the first object is closer/farther to the anchor object
than the second object.

Having described the elementary operations that make up
our functional forms, the explanations of the functional
forms for each question template is given below. We cat-
egorize the question types into 3 categories based on the
objects and the rooms that they refer to.

https://embodiedqa.org
https://embodiedqa.org


Template Functional Form
location select(objects)Ñ singleton(objects)Ñ blacklist(location)Ñ query(location)

color select(objects)Ñ singleton(objects)Ñ blacklist(color)Ñ query(color)

color_room select(rooms)Ñ singleton(rooms)Ñ select(objects)Ñ singleton(objects)Ñ blacklist(color)Ñ query(color_room)

preposition select(rooms)Ñ singleton(rooms)Ñ select(objects)Ñ singleton(objects)Ñ blacklist(preposition)Ñ relate()Ñ query(preposition)

exist select(rooms)Ñ singleton(rooms)Ñ select(objects)Ñ blacklist(exist)Ñ query(exist)

logical select(rooms)Ñ singleton(rooms)Ñ select(objects)Ñ blacklist(exist)Ñ query(logical)

count select(rooms)Ñ singleton(rooms)Ñ select(objects)Ñ blacklist(count)Ñ query(count)

room_count select(rooms)Ñ query(room_count)

distance select(rooms)Ñ singleton(rooms)Ñ select(objects)Ñ singleton(objects)Ñ blacklist(distance)Ñ distance()Ñ query(distance)

Table 1: Functional forms of all question types in the EQA dataset

1. Unambiguous Object: There are certain question types
that inquire about an object that must be unique and
unambiguous throughout the environment. Examples of
such question types are location and color. For
example, we should ask ‘what room is the piano located
in?’ if there is only a single instance of a ‘piano’ in the
environment. Hence, the functional forms for location
and color have the following structure:

select(objects)Ñ singleton(objects)Ñ
query(location/color).

select(objects) gets the list of all objects in the
house and then singleton(objects) only retains ob-
jects that occur once, thereby ensuring unambiguity. The
query(template) function prepares the question string
by filling in the slots in the template string.

2. Unambiguous Room + Unambiguous Object: In
continuation of the above, there is another set of question
types that talk about objects in rooms where in addition
to the objects being unique, the rooms should also be
unambiguous. Examples of such question types include
color_room, preposition, and distance. The
additional unambiguity constraint on the room is because
the question ‘what is next to the bathtub in the bathroom?’
would become ambiguous if there are two or more
bathrooms in the house. The functional forms for such
types are given by the following structure:

select(rooms)Ñ singleton(rooms)Ñ
select(objects)Ñ singleton(objects)Ñ

query(template).

The first two operations in the sequence result in a list
of unambiguous rooms whereas the next two result in a
list of unambiguous objects in those rooms. Note that
when select(¨) appears as the first operation in the se-
quence (i.e., select operates on an empty list), it is used
to fetch the set of rooms or objects across the entire
house. However, in this case, select(objects) oper-
ates on a set of rooms (the output of select(rooms)Ñ
singleton(rooms) Ñ), so it returns the set of objects
found in those specific rooms (as opposed to fetching ob-
jects across all rooms in the house).

3. Unambiguous Room: The final set of question types are
the ones where the rooms need to be unambiguous, but
the objects in those rooms that are being referred to do
not. Examples of such question types are: existence,
logical, and count. It is evident that for asking about
the existence of objects or while counting them, we do
not require the object to have only a single instance. ‘Is
there a television in the living room?’ is a perfectly valid
question, even if there are multiple televisions in the
living room (provided that there is a single living room in
the house). The template structure for this is a simplified
version of (2):

select(rooms)Ñ singleton(rooms)Ñ
select(objects)Ñ query(template).

Note that we have dropped singleton(objects) from
the sequence as we no longer require that condition to hold
true.

See Table 1 for a complete list of question functional forms.

Checks and balances. Since one of our goals is to bench-
mark performance of our agents with human performance,
we want to avoid questions that are cumbersome for a hu-
man to navigate for or to answer. Additionally, we would
also like to have a balanced distribution of answers so that
the agent is not able to simply exploit dataset biases and an-
swer questions effectively without exploration. This section
describes in detail the various checks that we have in place
to ensure these properties.

1. Entropy+Frequency-based Filtering: It is important to
ensure that the distribution of answers for a question is not
too ‘peaky’, otherwise the mode guess from this distribu-
tion will do unreasonably well as a baseline. Thus, we
compute the normalized entropy of the distribution of an-
swers for a question. We drop questions where the normal-
ized entropy is below 0.5. Further, we also drop questions
that occur in less than 4 environments because the entropy
counts for low-frequency questions are not reliable.

2. Non-existence questions: We add existence ques-
tions with ‘no’ as the answer for objects that are absent
in a given room in the current environment, but which are



Pixel Accuracy Mean Pixel Accuracy Mean IOU
single 0.780 0.246 0.163
hybrid 0.755 0.254 0.166

(a) Segmentation

Smooth-`1
single 0.003
hybrid 0.005

(b) Depth

Smooth-`1
single 0.003
hybrid 0.003

(c) Autoencoder

Table 2: Quantitative results for the autoencoder, depth estimation, and semantic segmentation heads of our multi-task perception network.
All metrics are reported on a held out validation set.

present in the same room in other environments. For ex-
ample, if the living room in the current environment does
not contain a piano, but pianos are present in living rooms
of other environments across the dataset, we add the ques-
tion ‘is there a piano in the living room?’ for the current
environment with a ground truth answer ‘no’. The same is
also done for logical questions.

3. Object Instance Count Threshold: We do not ask count-
ing questions (room_count and count) when the an-
swer is greater than 5, as they are tedious for humans.

4. Object Distance Threshold: We consider triplets of ob-
jects within a room consisting of an anchor object, such
that the difference of distances between two object-anchor
pairs is at least 2 metres. This is to avoid ambiguity in
‘closer’/‘farther’ object distance comparison questions.

5. Collapsing Object Labels: Object types that are visually
very similar (e.g. ‘teapot’ and ‘coffee_kettle’) or semanti-
cally hierarchical in relation (e.g. ‘bread’ and ‘food’) in-
troduce unwanted ambiguity. In these cases we collapse
the object labels to manually selected labels (e.g. (‘teapot’,
‘coffee_kettle’)Ñ ‘kettle’ and (‘bread’, ‘food’)Ñ ‘food’).

6. Blacklists:
• Rooms: Some question types in the EQA dataset have

room names in the question string (e.g. color_room,
exist, logical). We do not generate such questions
for rooms that have obscure or esoteric names such as
‘loggia’, ‘freight elevator’, ‘aeration’ etc. or names from
which the room being referred might not be immediately
obvious e.g. ‘boiler room’, ‘entryway’ etc.

• Objects: For each question template, we maintain a list
of objects that are not to be included in questions. These
are either tiny objects or whose name descriptions are
too vague e.g. ‘switch’ (too small), ‘decoration’ (not de-
scriptive enough), ‘glass’ (transparent), ‘household ap-
pliance’ (too vague). These blacklists are manually de-
fined based on our experiences performing these tasks.

2. CNN Training Details

The CNN comprising the visual system for our Embod-
iedQA agents is trained under a multi-task pixel-to-pixel
prediction framework. We have an encoder network that
transforms the egocentric RGB image from the House3D

renderer [1] to a fixed-size representation. We have 3 de-
coding heads that predict 1) original RGB values (i.e. an
autoencoder), 2) semantic class, and 3) depth for each pixel.
The information regarding semantic class and depth of ev-
ery pixel is available from the renderer. The range of depth
values for every pixel lies in the range r0, 1s and the seg-
mentation is done over 191 classes.

Architecture. The encoder network has 4 blocks, com-
prising of t5ˆ5 Conv, BatchNorm, ReLU, 2ˆ2 MaxPoolu.
Each of the 3 decoder branches of our network upsample
the encoder output to the spatial size of the original input
image. The number of channels in the output of the decoder
depends on the task head – 191, 1 and 3 for the semantic
segmentation, depth and autoencoder branches respectively.
We use bilinear interpolation for upsampling, and also use
skip connections from the 2nd and 3rd convolutional layers.

Training Details. We use cross-entropy loss to train the
segmentation branch of our hybrid network. The depth and
autoencoder branches are trained using the Smooth-`1 loss.
The total loss is a linear combination of the 3 losses, given
by L “ Lsegmentation`10ˆLdepth`10ˆLreconstruction. We use
Adam [2] with a learning rate of 10´3 and a batch size of
20. The hybrid network is trained for a total of 5 epochs on
a dataset of 100k RGB training images from the renderer.

Quantitative Results. Table 2 shows some quantitative re-
sults. For each of the 3 different decoding heads of our
multi-task CNN, we report results on the validation set for
two settings - when the network is trained for all tasks at
once (hybrid) or each task independently (single). For seg-
mentation, we report the overall pixel accuracy, mean pixel
accuracy (averaged over all 191 classes) and the mean IOU
(intersection over union). For depth and autoencoder, we
report the Smooth-`1 on the validation set.

Qualitative Results. Some qualitative results on images
from the validation set for segmentation, depth prediction
and autoencoder reconstruction are shown in Figure 1.

3. Question Answering Module

The question answering module predicts the agents’ beliefs
over the answer given the agent’s navigation. It first encodes
the question with an LSTM, last five frames of the naviga-
tion each with a CNN, and then computes dot product at-
tention over the five frames to pick the most relevant ones.



GT RGB Pred. RGB GT Depth Pred. Depth GT Seg. Pred. Seg.

Figure 1: Some qualitative results from the hybrid CNN. Each row represents an input image. For every input RGB image, we show
the reconstruction from the autoencoder head, ground truth depth, predicted depth as well as ground truth segmentation and predicted
segmentation maps.

Figure 2: Conditioned on the navigation frames and question, the
question answering module computes dot product attention over
the last five frames, and combines attention-weighted combination
of image features with question encoding to predict the answer.

Next, it combines attention-weighted sum of image features
with the question encoding to predict a softmax distribution
over answers. See Fig. 2.
4. Human Navigation ` Machine QA

In order to contrast human and shortest-path navigations
with respect to question answering, we evaluate our QA

model on the last 5 frames of human navigations collected
through our Amazon Mechanical Turk interface. We find
the mean rank of the ground truth answer to be 3.51 for this
setting (compared to 3.26 when computed from shortest-
paths). We attribute this difference primarily to a mismatch
between the QA system training on shortest paths and test-
ing on human navigations. While the shortest paths typi-
cally end with the object of interest filling the majority of
the view, humans tend to stop earlier as soon as the cor-
rect answer can be discerned. As such, human views tend
to be more cluttered and pose a more difficult task for the
QA module. Fig. 5 highlights this difference by contrasting
the last 5 frames from human and shortest-path navigations
across three questions and environments.

References
[1] Y. Wu, Y. Wu, G. Gkioxari, and Y. Tian, “Building generaliz-

able agents with a realistic and rich 3D environment,” arXiv
preprint arXiv:1801.02209, 2018. 1, 3

[2] D. Kingma and J. Ba, “Adam: A Method for Stochastic Opti-
mization,” in ICLR, 2015. 3



ai
r

co
nd

iti
on

er
ca

nd
le

pe
de

st
al

fa
n

pi
an

o
fis

h
ta

nk

Figure 3: Visualizations of queryable objects from the House3D renderer. Notice that instances within the same class differ significantly
in shape, size, and color.



liv
in

g
ro

om
ki

tc
he

n
be

dr
oo

m

Figure 4: Visualizations of queryable rooms from the House3D renderer.



Figure 5: Examples of last five frames from human navigation vs. shortest path.



(a) location questions before entropy+count based filtering

(b) location questions after entropy+count based filtering

Figure 6: The answer distribution for location template questions. Each bar represents a question of the form ‘what room is the <OBJ>
located in?’ and shows a distribution over the answers across different environments. The blank spaces in 6b represent the questions that
get pruned out as a result of the entropy+count based filtering.



(a) preposition questions before entropy+count based filtering

(b) preposition questions after entropy+count based filtering

Figure 7: The answer distribution for preposition template questions. Each bar represents a question of the form ‘what is next to the
<OBJ>?’ and shows a distribution over the answers across different environments. The blank spaces in 7b represent the questions that get
pruned out as a result of the entropy+count based filtering.



(a) color questions before entropy+count based filtering

(b) color questions after entropy+count based filtering

Figure 8: The answer distribution for color template questions. Each bar represents a question of the form ‘what color is the <OBJ>?’
and shows a distribution over the answers across different environments (the color of each section on a bar denotes the possible answers).
The blank spaces in 8b represent the questions that get pruned out as a result of the entropy+count based filtering.


