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This supplementary material includes implementation
details that help understand the main paper and additional
experiments that are not presented in the main paper due to
space limitation.

1. Implementation Details

(1) Updating of ti in Algorithm 1: This is a constrained
least squares problem

min
ti,i∈V

∑
ij∈E

Wij ||(tj − ti)dij − vij ||22, (1)

s.t.
∑
i∈V

ti = 0;
∑
ij∈E

< tj − ti,vij >= 1,

which can be solved with Cholesky decomposition after ap-
plying Lagrange multipliers [1].

(2) We also provide more explanations for the footnote
given in Sec. 4.1 of the main paper. We note that the original
NRMSE is not a suitable measurement when the camera lo-
cations exhibit a multi-cluster distribution. Specifically, in
the case of the cameras forming two separate clusters as in-
vestigated in the synthetic experiments, increasing L would
cause a concomitant decrease of NRMSE. The main reason
is that for a large L, the dominant feature of the camera dis-
tributions would be this large inter-cluster distance rather
than the specific intra-cluster shapes. In the extreme case of
L becoming infinitely large, the shape of the ground truth
cameras after normalization would be all the cameras col-
lapsing to the two end points of a unit length pole. This also
happens to the estimated solution as long as the inter-cluster
distance is sufficiently large, thus by definition the NRMSE
would approach 0. Therefore, we instead centralize and nor-
malize each cluster separately for both the ground-truth and
estimated locations before computing NRMSE; this avoids
the bias from the large inter-cluster distance and better cap-
tures the accuracy of the intra-cluster shape of the camera
locations.

2. Additional Results

In Fig. 1 and 2, we show the comparison of r1 and r2 on
the synthesized view graphs with all the six different con-
figurations as discussed in the main paper. Clearly, both r1
and r2 from LUD are significantly smaller than the ground
truth, especially under those more challenging cases with
larger noises. This indicates a significant squashing effect
on the shape of the recovered camera locations, thus vali-
dating our analysis in the main paper.

In Tab. 1, we report the performance on the 1DSfM
dataset [2] with two other robust schemes including Huber
and Geman-McClure (both with a 0.1 loss width). Com-
paring those columns without and with rotation involved
(i.e. “R.I. w/o R.” versus “R.I. w R.”, “w/o Rot.” versus
’w Rot.’), we can see that involving the reliable absolute ro-
tation solution generally improves the performance in terms
of both accuracy and efficiency, regardless of the choice of
the robust functions. Since this strategy does not make the
algorithm more complicated, it is always recommended in
practice.

For completeness, we provide more examples of quali-
tative evaluation in Fig. 3. We visualize the point clouds
obtained by feeding the initial camera poses to the same
BA pipeline as described in the main paper. We also plot
the estimated camera locations together with the reference
ground truth after registration to visualize the error distribu-
tion. Overall, the two angle-based methods generally return
better results than the magnitude-based counterparts, which
might suffer from bias from specific camera distributions.
Specifically, for the Roman For. scene, we observe that all
the methods seem to work well except for LUD. Despite its
success in reconstructing the two walls of the triumphal arch
individually, careful inspection from the top-down view re-
veals that the relative position of the two walls is signifi-
cantly distorted in the LUD results. For Tow. London, we
observe that Shapefit/kick returns largely distorted results.
We can also see that BATA reconstructs the boundary wal-
l more completely (highlighted by the red ellipses). This
might be due to the fact that BATA recovers those cameras
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on the periphery more accurately (highlighted by the red el-
lipses). For NYC Library, we supplement the main paper by
providing the result from 1DSfM as well. We observe that
BATA recovers the two sculptures (especially the right one)
most clearly. Referring to the camera distribution, we once
again observe the superior capability of BATA in dealing
with those peripheral cameras (highlighted by the red el-
lipses). Finally, we present the results on Alamo, on which
all the methods perform very well due to its more unifor-
m distribution of cameras, making the problem more well-
posed.

Next, we present the full results of the investigation, de-
scribed in the main paper, of how performance varies a-
gainst the sparsity of the view graph. In Fig. 4, we plot
the median error, 90th pencentile error and ratio of cameras
with large error (>20m) against the ratio of edges removed,
on all the fourteen scenes. As we can see, although 1DSfM
achieves lower median errors in some scenes (e.g. Roman
For.), BATA generally obtains much lower 90th-percentile
error and much smaller number of bad positions. This indi-
cates that no matter what the inherent difficulties of the view
graph are, BATA is more resilient to these difficulties than
1DSfM in that it recovers those difficult camera positions
much better, especially when the view graph becomes in-
creasingly sparser and more cameras become sparsely con-
nected.
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Figure 1: Comparison of r1 under different view graph setup
(p, q) and noise level σ.
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Figure 2: Comparison of r2 under different view graph setup
(p, q) and noise level σ.

Data
BATA-Huber BATA-Geman-McClure

R.I. w/o R. R.I. w R. Con. Init. w/o Rot. w Rot. R.I. w/o R. R.I. w R. Con. Init. w/o Rot. w Rot.
Name ẽ ē #iter ẽ ē #iter ẽ ē ẽ ē #iter ẽ ē #iter ẽ ē #iter ẽ ē #iter ẽ ē ẽ ē #iter ẽ ē #iter

Piccadilly 2.1 19.5 95 1.4 11.8 51 3.0 5.0 1.2 7.8 100 1.1 5.8 52 9.9 14.9 100 1.0 6.3 100 3.0 5.0 1.0 3.8 100 0.9 3.6 86
Union Sq. 8.3 20.1 100 7.8 19.7 100 6.2 11.9 4.9 14.3 100 4.7 13.1 100 10.0 17.3 100 7.3 14.4 100 6.2 11.9 4.6 11.7 100 4.1 11.4 100

Roman For. 2.3 30.3 100 2.1 29.9 89 9.4 20.8 1.6 10.9 78 1.8 14.0 55 4.5 29.5 100 2.5 20.9 100 9.4 20.8 2.0 9.8 100 2.1 17.2 100
Vienna Cath. 3.2 31.6 82 3.3 26.0 53 6.1 13.1 2.1 10.8 63 2.0 12.5 41 3.2 24.4 100 2.2 16.2 100 6.1 13.1 1.9 9.5 100 1.9 9.7 76
Piazza Pop. 2.4 18.3 99 1.9 12.8 82 1.4 6.5 2.0 7.0 72 2.0 6.3 38 1.9 14.6 100 3.3 9.4 100 1.4 6.5 2.7 5.7 100 2.8 5.4 80

NYC Library 1.1 8.9 84 1.0 9.3 54 1.1 3.3 0.8 3.3 51 0.7 2.9 37 1.6 10.3 100 0.8 12.7 100 1.1 3.3 0.6 2.9 100 0.5 2.7 91
Alamo 0.6 10.4 53 0.6 9.0 35 1.8 3.9 0.7 3.8 51 0.7 3.6 38 0.6 8.1 100 0.5 6.4 90 1.8 3.9 0.6 3.1 74 0.8 3.5 44

Metropolis 4.4 69.8 87 3.1 56.6 59 4.5 15.7 3.2 20.4 81 2.7 14.1 45 10.4 35.9 100 2.1 18.2 100 4.4 15.7 1.9 13.1 99 1.7 11.5 82
Yorkminster 1.5 74.6 100 1.4 45.0 92 4.4 12.8 1.3 9.0 77 1.2 8.8 62 1.2 17.7 100 0.9 11.3 100 4.4 12.8 1.1 7.6 100 0.9 7.6 100

Montreal N.D. 0.9 3.6 61 0.9 3.0 51 1.0 1.7 0.4 0.8 39 0.4 0.8 28 1.7 6.4 100 1.3 3.3 98 1.0 1.7 0.4 1.0 93 0.4 0.9 75
Tow. London 2.6 34.7 100 2.5 28.2 80 5.1 22.9 2.3 19.9 81 2.2 21.5 53 4.2 35.8 100 2.2 18.3 100 5.1 22.9 2.0 15.0 100 2.0 17.0 100
Ellis Island 1.6 25.0 65 1.6 20.8 43 2.2 9.7 1.5 12.1 44 1.5 16.4 50 1.7 19.2 100 1.3 10.6 80 2.2 9.7 1.1 7.9 100 1.2 7.7 62
Notre Dame 0.4 9.2 77 0.2 6.4 54 3.1 4.1 0.3 2.2 64 0.3 2.0 41 0.5 5.8 100 0.3 3.0 100 3.1 4.1 0.2 1.3 100 0.2 1.5 100

Trafalgar 7.0 45.7 91 5.8 41.8 73 8.8 14.7 4.5 13.1 65 4.1 12.1 43 10.1 2e3 100 3.7 19.9 100 8.8 14.7 3.8 11.2 100 3.1 11.2 98

Table 1: Additional results from BATA with Huber and Geman-McClure as the robust schemes.
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For. 
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(a) LUD (b) Shapefit/kick (c) 1DSfM (d) BATA 

Alamo 

Figure 3: Qualitative evaluation on four different scenes from different methods. For each scene, the point clouds after BA is presented in
the first row. In the second row, the estimated camera locations (orange circles) are plotted together with the reference ground truth (blue
circles) to visualize the errors. Note that those cameras with large errors (>50m) are not plotted so that subtle position difference for the
rest of the cameras can be better visualized.
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Figure 4: Different error quantities plotted against the ratio of the observed edges removed. e1, e2 and e3 respectively denote the median
error, 90th pencentile error, and ratio of cameras with large error (>20m).
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