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A. Appendix
A.1. Network (hyper) parameters

In Section 4 we presented the parameter values for the network implementation used in our experiments (M = 8, λ =
10−8, and latent dimensionality 128). In Tables 1, 2, and 3 we show the effects of varying some of these values. We do
not see a benefit beyond 8 weight matrices, and we do not consider a latent dimensionality beyond 128 to avoid introducing
additional model complexity.

M 4 8 16

0.054 0.049 0.050

Table 1. Mean test error for varying weight matrices M with fixed λ = 10−6 and latent dim 64.

latent dimensionality 32 64 128

0.051 0.049 0.043

Table 2. Mean test error for varying latent space dimensionality with fixed M = 8 and λ = 10−6

λ 10−4 10−6 10−8

0.053 0.049 0.041

Table 3. Mean test error for varying the prior weight λ with fixed M = 8 and latent space dimension 64.

A.2. Dataset details

As mentioned in Section 4, we train our models using human shapes from the DFAUST dataset [2]. We subsample each
shape consistently by a factor of 2, resulting in 3446-vertex triangulated meshes. An example is shown in Figure 1 (right).
An interesting property of these sub-sampled meshes is that the spatial distribution of vertices over the shape surface is not
quite uniform. We illustrate this by showing the receptive field (at the n-1 layer before embedding) for a few different vertices
(see Figure 1 left). As can be seen in the figure the support varies across the surface. We will provide the vertex map from
the subsampled mesh to the original data, as well as all train and test splits used in our experiments.

Faces For the experiment using deformable faces, we used 2000 training shapes randomly generated using the face model
made available in [4]. To generate missing patches (see Figure 9, top row) we remove vertices from randomly placed
rectangular regions of size 0.3W -by-0.3H , where W,H are the width and height of the face mesh. We sample 4 such
rectangular patches for each face mesh, allowing for overlap. The hyperplane cuts shown in Figure 9, row 3, are generated by
randomly orienting a hyperplane through the mesh centroid. For noisy correspondences (Figure 9, rows 5 and 7) we randomly
permute a percentage of the ordered mesh vertices (recall this ordering determines the correspondence used to compute the
loss during shape completion optimization). We will make all training shapes and partial evaluation shapes available for
download.
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Figure 1. On the left we show the receptive field at the n-1 layer before embedding corresponding to a few different vertices. On the right
is a visualization of an input 3446-vertex mesh used in our experiments.

A.3. Error maps for range scan completion

The top two rows of Figure 2 reproduce the images from Figure 6 in the main paper. Here, we add an additional row
showing an error heatmap for each of the four completion techniques for the partial input depicted in the second row. The
heatmaps are shown on the ground truth complete shape as reference, and the values indicate the Euclidean error for unseen
vertices. Please zoom into the figure to see the scale.

A.4. Input correspondences for real range scans

In the main text we demonstrate a couple of completions on real data, taken from the MHAD dataset [8]. In an attempt
to find dense correspondences between the point cloud extracted from the Kinect sensor and a model of a human, we have
noticed that off-the-shelf descriptors such as SHOT [10], HKS [9] and WKS [1], did not transfer well between the partial point
cloud and the full mesh domains. Improved descriptors can of course be learned as was proposed by [6, 7] however this is
outside the scope of the work presented here. Thus we chose an ah-hoc solution in which a model of some human in a similar
pose was roughly aligned to the point cloud manually, providing us with initial correspondences for the completion procedure
(after rough alignment the corresponding points are found via extrinsic closest points). While such correspondences will not
be perfect they will be sufficient as initialization to our method since we also utilize correspondence refinement during
optimization (described in the main text). Note, the reference model used for finding input correspondences is then discarded
and not used during the shape completion process. In Figure 3 we show the input point cloud on the left, along with the model
used as reference in the middle. Corresponding points are colored the same. On the right hand side, we show the completed
shape. It might be tempting to think that if a reference model is used for generating the correspondence input it could also
be used for completion. However, as observed in the main text the nearest neighbor completion performance is quite poor,
and furthermore it can be clearly seen that the final completed shape differs from the reference shape in both pose (notice the
bent knees and bent elbows) and body shape (notice the thicker body type which clearly fits better the input point cloud). We
are using a roughly pose-aligned shape only to generate input correspondences.

A.5. Robust optimization and improved correspondences

In Section 4.3 paragraph “Robust optimization”, we describe a correspondence refinement technique to address noisy input
correspondences during the proposed shape completion optimization. As stated, a pleasant side-effect of this refinement step
is that our shape completion method can be used to obtain a de-noised (albeit sparser) correspondence set. Figure 4 provides
an analysis of this phenomenon as geodesic error to the true correspondences is reduced for a sparse set of vertices. To
this end, we apply our shape completion algorithm using the input correspondences from MoNet [7]. Thanks to our learned
shape space which acts as a prior in the optimization process, our method can handle a certain amount of outliers and noise.
These can be detected by measuring the extrinsic distance between each point and the completed shape. Large distances
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Figure 2. Comparison of different synthetic range scan completion methods. From left to right: input range scan, ground truth complete
shape, Poisson reconstruction [5], NN completion, 3D-EPN [3], and our method.

Input point cloud Reference model Completed

Figure 3. Dense correspondence for the real data experiment were found via manual rough alignment of a reference model (middle) in
a similar pose to the input point cloud (left). Corresponding points are colored the same. The completed shape is presented on the left,
exhibiting different pose and body shape than the reference model.

may indicate erroneous correspondence. Such information may be used for developing powerful correspondence denoising
methods but here we only show as a proof-of-concept that removing these points altogether, results in a much more accurate
subset of correspondences.



0 0.05 0.1 0.15 0.2
0.4

0.5

0.6

0.7

0.8

0.9

1

MoNet
refined

Figure 4. Correspondence refinement. Keeping only correspondences of points exhibiting small Euclidean distance to the completed
shape results in a distillation of the original correspondences. Quality of correspondence is plotted for each error value, as the fraction of
correspondences with error smaller that that value. Errors are measured as geodesic distance from ground truth, normalized by the shape
radius.

A.6. Implementation details for competitors

In the main text we report shape completion results for 3 different techniques as comparison: nearest neighbor with ground
truth (referred to as NN), Poisson reconstruction [5], and 3D-EPN [3]. For nearest neighbor with ground truth, we search
over the entire collection of shapes seen at training. The optimal rigid transformation is computed between the partial range
scan and the corresponding region of each complete training shape using ground truth correspondences. The training shape
with the lowest mean Euclidean distance after alignment is chosen as the best match and completed shape. In the tables of
the main text we report the mean Euclidean distance on the unseen region (like we do for all other methods).

For Poisson reconstruction we used the MeshLab implementation of [5] with the following parameters (we manually
looked for the best parameters on a small set of scans). Octree Depth = 8, Solver divide = 6, Samples per Node = 1, Surface
offsetting = 1.5.

For comparison with 3D-EPN [3] we follow closely the details provided in the paper and the code available online.
Demonstrating the performance on a single class of objects, we omitted the “3D shape classification network” whose output is
concatenated to the encoder result to enrich it with class information. We used 32 output features at the first layer, resulting in
a latent space size of 256. 2 channels are provided at input: TSDF and visibility mask. Note that while having the view-angle
(and hence the visibility mask) at our disposal is a valid assumption for range scan completion, it ceases to hold for general
purpose completion. Nevertheless, to keep as close as possible to the original paper we allow this additional information. We
also train 3D-EPN on only range-scans providing the network with a strong prior on the type of partiality. The output voxel
tsdf grid size is 323 as in the original work, from which we apply Matlab’s isosurface function. As with all other methods
error is calculated only on the unseen part of the shape. Note, the full algorithm presented in [3] includes a post-processing
refinement step (to take the network’s output 322 discretization up to 1283). We omit this data-driven nearest neighbor
refinement scheme here for multiple reasons: (1) it is unclear how to best define the shape and patch matching in our setting
of deformable models. The 3D-CNN for nearest neighbor shape retrieval, and the voxel/patch correspondence features,
would likely need to be altered for deformable shape matching. (2) The hierarchical refinement step will be improving the
resolution but also altering the completed shape, and in general a data-driven shape refinement could be applied to any shape
completion technique including ours. We leave it to future work for a separate evaluation of refinement schemes for shape
generation and completion.

A.7. Shape completion convergence

Figure 5 illustrates the convergence properties for the proposed shape completion optimization. Please refer to the caption
for details.

A.8. Additional results for completing partial human shapes

To provide additional insight into the proposed shape completion procedure, we visualize the completed shape at different
iterations. Figure 6 displays shapes at iterations 50, 100, 150, 200 and 950. The vertices are colored according to the Eu-
clidean distance from the corresponding vertex on the groundtruth. Mean Euclidean errors on the entire shape are reported
as well. As noted in the figure caption, while the Euclidean error continues to decrease slightly during the later iterations, the
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Figure 5. This plot illustrates the convergence properties of the proposed shape completion method. The errors shown are averaged over
all 200 test subjects (see Section 4 of the main text). The blue line shows the error between the visible partial shape and the current
completed shape using the input correspondences. Note, noisy input correspondences will be reflected in this error. For this evaluation the
correspondence refinement step was executed at iteration 250 for each partial shape, and this leads to the large drop in error. The red line
shows the error on the unseen part which is the metric we are interested in for completion and is reported in the evaluation tables. A nice
property here is the roughly monotonically decreasing error.

shape and pose converge quickly from a perceptive standpoint.
In Figure 7 we show a completion example where the partial input comes not from a range scan but a manual removal of

large contiguous regions of the body (in this case both arms and the entire lower body). In this figure we show the completed
shape overlaid with the partial input to highlight how the proposed method produces completions that accurately match the
body shape of the input in addition to generating plausible poses.
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Groundtruth Iteration 50 Iteration 100 Iteration 150 Iteration 200 Iteration 950
Mean err 3.09 Mean err 2.31 Mean err 2.09 Mean err 1.95 Mean err 1.59

Figure 6. This figure shows snapshots of the shape completion at different iterations throughout the optimization. The bottom row shows
the same shapes as the top row but from a different viewpoint. Mean Euclidean errors on the entire shape are reported. As you can see,
while the error continues to decrease slightly during the later iterations, the global shape and pose characteristics converge quite quickly.



Figure 7. Frontal- and side-view of the input partial shape overlaid with the completed output.

A.9. Quantitative results on faces
Figure 8 and Table 4 show qualitative and quantitative results for shape completion on the deformable faces data (see

description above). In lieu of metric scale information regarding the input meshes, error is shown as a percentage of shape
radius. As expected the error increases as the correspondence noise increases.

Noise level Error on seen Err on unseen total Err
5% 5.76± 1.8 6.79± 2.04 6.29± 1.75
30% 8.70± 2.13 10.21± 1.79 9.42± 1.37

Table 4. Errors on partial face mesh completion with varying levels of correspondence noise. The error is measured as percentage of the
shape radius.
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Figure 8. Additional face mesh completion examples. Top rows show partial shapes with 5% correspondence noise, bottom rows are with
30% correspondence noise. Please zoom in to see the error heatmap scale in detail.


