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1. Experiment Settings of Semi-supervised
Video Object Segmentation

We extract theNS = 100 seeds for the first frame (frame
0) and form image regions, as described in Sec. 3.2 and Sec.
3.3, respectively. Then we compare the image regions with
the ground truth mask. For one image region Aj , if the
ground truth mask G covers more than α of Aj , i.e.,

|Aj

⋂
G| ≥ α|Aj |, (1)

where | · | denotes the area, the average embedding within
the intersection is computed and added to the foreground
embedding set S0

FG. We set α = 0.7.
For the background, if Aj does not intersect with G at

all, i.e.,

Aj

⋂
G = Ø, (2)

the average embedding in Aj is added to the background
embedding set S0

BG. A visual illustration is shown in Fig. 1.

Figure 1. Left: The image regions and the ground truth mask (in
magenta) on frame 0. Center: The image regions (in magenta)
whose average embeddings are used as foreground embeddings
for the rest of frames. Right: The image regions (in blue) whose
average embeddings are used as background embeddings for the
rest of frames. Best viewed in color.

Then the foreground probability for a pixel on an arbi-
trary frame is obtained by Eqs. 13-15 and results are further
refined by a dense CRF with identical parameters from the
unsupervised scenario. We compare our results with multi-
ple previous semi-supervised methods in Tab. 5 in the pa-
per.

2. Per-video Results for DAVIS
The per-video result are shown for DAVIS train set and

val set are listed in Tab. 1 and Tab. 2. The evaluation metric

Sequence ARP [2] FSEG [1] Ours Ours + CRF
bear 0.920 0.907 0.935 0.952
bmx-bumps 0.459 0.328 0.431 0.494
boat 0.436 0.663 0.652 0.491
breakdance-flare 0.815 0.763 0.809 0.843
bus 0.849 0.825 0.848 0.842
car-turn 0.870 0.903 0.923 0.921
dance-jump 0.718 0.612 0.674 0.716
dog-agility 0.320 0.757 0.700 0.708
drift-turn 0.796 0.864 0.815 0.798
elephant 0.842 0.843 0.828 0.816
flamingo 0.812 0.757 0.633 0.679
hike 0.907 0.769 0.871 0.907
hockey 0.764 0.703 0.817 0.878
horsejump-low 0.769 0.711 0.821 0.832
kite-walk 0.599 0.489 0.598 0.641
lucia 0.868 0.773 0.863 0.910
mallard-fly 0.561 0.695 0.683 0.699
mallard-water 0.583 0.794 0.760 0.811
motocross-bumps 0.852 0.775 0.849 0.884
motorbike 0.736 0.407 0.685 0.708
paragliding 0.881 0.474 0.820 0.873
rhino 0.884 0.875 0.860 0.835
rollerblade 0.839 0.687 0.851 0.896
scooter-gray 0.705 0.733 0.686 0.655
soccerball 0.824 0.797 0.849 0.905
stroller 0.857 0.667 0.722 0.758
surf 0.939 0.881 0.870 0.902
swing 0.796 0.741 0.822 0.868
tennis 0.784 0.707 0.817 0.866
train 0.915 0.761 0.766 0.765
J mean 0.763 0.722 0.775 0.795

Table 1. Per-video results on DAVIS train set. The region similar-
ity J is reported.

is the region similarity J mentioned in the paper. Note that
we used the train set for ablation studies (Sec. 4.4), where
the masks were not refined by dense CRF.
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Sequence ARP [2] FSEG [1] Ours Ours + CRF
blackswan 0.881 0.812 0.715 0.781
bmx-trees 0.499 0.433 0.496 0.496
breakdance 0.762 0.512 0.485 0.559
camel 0.903 0.836 0.902 0.929
car-roundabout 0.816 0.907 0.880 0.890
car-shadow 0.736 0.896 0.929 0.930
cows 0.908 0.869 0.910 0.925
dance-twirl 0.798 0.704 0.781 0.797
dog 0.718 0.889 0.906 0.938
drift-chicane 0.797 0.596 0.760 0.782
drift-straight 0.715 0.811 0.884 0.857
goat 0.776 0.830 0.861 0.864
horsejump-high 0.838 0.652 0.794 0.851
kite-surf 0.591 0.392 0.569 0.653
libby 0.654 0.584 0.686 0.742
motocross-jump 0.823 0.775 0.754 0.773
paragliding-launch 0.601 0.571 0.595 0.625
parkour 0.828 0.760 0.852 0.910
scooter-black 0.746 0.688 0.727 0.743
soapbox 0.846 0.624 0.668 0.670
J mean 0.762 0.707 0.758 0.786

Table 2. Per-video results on DAVIS val set. The region similarity
J is reported.

3. Instance Embedding Drifting
In Sec. 4.4 of the paper, we mentioned the “embed-

ding drift” problem. Here we conduct another experiment
to demonstrate that the embedding changes gradually with
time. In this experiment, we extract foreground and back-
ground embeddings based on the ground truth masks for ev-
ery frame. The embeddings from the first frame (frame 0)
are used as references. We compute the average distance
between the foreground/background embeddings from an
arbitrary frame and the reference embeddings. Mathemati-
cally,

dFG(k, 0) =
1

|FGk|
∑

j∈FGk

min
l∈FG0

||f(j)− f(l)||2, (3)

dBG(k, 0) =
1

|BGk|
∑

j∈BGk

min
l∈BG0

||f(j)− f(l)||2, (4)

where FGk and BGk denote the ground truth foreground
and background regions, respectively, f(j) denotes the em-
bedding corresponding to pixel j, and dFG(k, 0)/dBG(k, 0)
represent the foreground/background embedding distance
between frame k and frame 0. Then we average dFG(k, 0)
and dBG(k, 0) across sequences and plot their relationship
with the relative timestep in Fig. 2. As we observe, the em-
bedding distance is increasing with time elapsing. Namely,
both objects and background become less similar to them-
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Figure 2. The FG/BG distance between later frames and frame 0.
Both FG/BG embeddings become farther from their reference em-
bedding on frame 0.

selves on frame 0, which supports the necessity of online
adaptation.

4. More visual examples
We provide more visual examples for the DAVIS

dataset [4] and the FBMS dataset [3] in Fig. 3 and Fig. 4,
respectively.
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Figure 3. Visual examples from the DAVIS dataset. The “camel” sequence (first row) is mentioned as an example where the static camel
(the one not covered by our predicted mask) acts as hard negatives because it is semantically similar with foreground while belongs to the
background. Our method correctly identifies it as background from motion saliency. The last three rows show some failure cases. In the
”stroller” sequence (third last row), our method fails to include the stroller for some frames. In the ”bmx-bump” sequence (second last
row), when the foreground, namely the rider and the bike, is totally occluded, our method wrongly identifies the occluder as foreground.
The “flamingo” sequence (last row) illustrates a similar situation with the “camel” sequence, where the proposed method does less well
due to imperfect optical flow (the foreground mask should include only the flamingo located in the center of each frame). Best viewed in
color.



Figure 4. Visual examples from the FBMS dataset. The last two rows show some failure cases. In the “rabbits04” sequence (second last
row), the foreground is wrongly identified when the rabbit is wholly occluded. In the “marple6” sequence (last row), the foreground should
include two people, but our method fails on some frames because one of them demonstrates low motion saliency. Best viewed in color.


