Appendices

A. Efficiency of BlockQNN

We demonstrate the effectiveness of our proposed Block-
QNN on network architecture generation on the CIFAR-100
dataset as compared to random search given an equivalent
amount of training iterations, i.e. number of sampled net-
works. We define the effectiveness of a network architec-
ture auto-generation algorithm as the increase in top auto-
generated network performance from the initial random ex-
ploration to exploitation, since we aim to getting optimal
auto-generated network instead of promoting the average
performance.

Figure [I] shows the performance of BlockQNN and ran-
dom search (RS) for a complete training process, i.e. sam-
pling 11, 392 blocks in total. We can find that the best model
generated by BlockQNN is markedly better than the best
model found by RS by over 1% in the exploitation phase
on CIFAR-100 dataset. We observe this in the mean perfor-
mance of the top-5 models generated by BlockQNN com-
pares to RS. Note that the compared random search method
start from the same exploration phase as BlockQNN for
fairness.

Figure[2]shows the performance of BlockQNN with lim-
ited parameters and adaptive block numbers (BlockQNN-
L) and random search with limited parameters and adaptive
block numbers (RS-L) for a complete training process. We
can see the same phenomenon, BlockQNN-L outperform
RS-L by over 1% in the exploitation phase. These results
prove that our BlockQNN can learn to generate better net-
work architectures rather than random search.

B. Evolutionary Process of Auto-Generated
Blocks

We sample the block structures with median perfor-
mance generated by our approach in different stage, i.e. at
iteration [1, 30, 60, 90, 110, 130, 150, 170], to show the evo-
lutionary process. As illustrated in Figure [3| and Figure [4]
i.e. BlockQNN and BlockQNN-L respectively, the block
structures generated in the random exploration stage is
much simpler than the structures generated in the exploita-
tion stage.

In the exploitation stage, the multi-branch structures ap-
pear frequently. Note that the connection numbers is gradu-
ally increase and the block tend choose ”Concat” as the last
layer. And we can find that the short-cut connections and
elemental add layers are common in the exploitation stage.
Additionally, blocks generated by BlockQNN-L have less
”Conv,5” layers, i.e. convolution layer with kernel size of 5,
since the limitation of the parameters.

These prove that our approach can learn the universal de-

68

67

66

Accuracy (%)

Start Exploitation ——RSTopl
===-RS Top5

64 ——BlockQNN Top1l

= = BlockQNN Top5
63
1 21 41 61 81 101 121 141 161

Iteration (batch)

Figure 1. Measuring the efficiency of BlockQNN to random search
(RS) for learning neural architectures. The x-axis measures the
training iterations (batch size is 64), i.e. total number of architec-
tures sampled, and the y-axis is the early stop performance after
12 epochs on CIFAR-100 training. Each pair of curves measures
the mean accuracy across top ranking models generated by each
algorithm. Best viewed in color.

66

65

pup————

@D
ISy

Py PR L L L DT

Accuracy (%)
(<))
w
N
\
|

——RS-L Topl
Start Exploitation
¢ ===-RS-L Top5
62 ’ ——BlockQNN-L Topl
= = BlockQNN-L Top5
61
1 21 41 61 81 101 121 141 161

Iteration (batch)

Figure 2. Measuring the efficiency of BlockQNN with limited pa-
rameters and adaptive block numbers (BlockQNN-L) to random
search with limited parameters and adaptive block numbers (RS-
L) for learning neural architectures. The x-axis measures the train-
ing iterations (batch size is 64), i.e. total number of architectures
sampled, and the y-axis is the early stop performance after 12
epochs on CIFAR-100 training. Each pair of curves measures the
mean accuracy across top ranking models generated by each algo-
rithm. Best viewed in color.

sign concepts for good network blocks. Compare to other
automatic network architecture design methods, our gener-
ated networks are more elegant and model explicable.

C. Additional Experiment

We also use BlockQNN to generate optimal model on
person key-points task. The training process is conducted
on MPII dataset, and then, we transfer the best model found
in MPII to COCO challenge. It costs 5 days to complete
the searching process. The auto-generated network for
key-points task outperform the state-of-the-art hourglass 2



Exploitation from epsilon=0.9 to epsilon=0.1

Random Exploration

Figure 3. Evolutionary process of blocks generated by BlockQNN. We sample the block structures with median performance at iteration
[1, 30,60, 90,110, 130, 150, 170] to compare the difference between the blocks in the random exploration stage and the blocks in the
exploitation stage.

Random Exploration Exploitation from epsilon=0.9 to epsilon=0.1

Figure 4. Evolutionary process of blocks generated by BlockQNN with limited parameters and adaptive block numbers (BlockQNN-L).
We sample the block structures with median performance at iteration [1, 30, 60, 90, 110, 130, 150, 170] to compare the difference between
the blocks in the random exploration stage and the blocks in the exploitation stage.

stacks network, i.e. 70.5 AP compares to 70.1 AP on COCO
validation dataset.



